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Abstract

Firms are increasingly transitioning advertising budgets to Internet display cam-

paigns, but this transition poses new challenges. These campaigns use numerous poten-

tial metrics for success (e.g., reach or clickthrough rate), and because each website rep-

resents a separate advertising opportunity, this is also an inherently high-dimensional

problem. Further, advertisers often have constraints they wish to place on their cam-

paign, such as targeting specific sub-populations or websites. These challenges require

a method flexible enough to accommodate thousands of websites, as well as numer-

ous metrics and campaign constraints. Motivated by this application, we consider the

general constrained high-dimensional problem, where the parameters satisfy linear con-

straints. We develop the Penalized and Constrained optimization method (PAC) to

compute the solution path for high-dimensional, linearly-constrained criteria. PAC is

extremely general; in addition to internet advertising, we show it encompasses many

other potential applications, like portfolio estimation, monotone curve estimation, and

the generalized lasso. Computing the PAC coefficient path poses technical challenges,

but we develop an efficient algorithm over a grid of tuning parameters. Through exten-

sive simulations, we show PAC performs well. Finally, we apply PAC to a proprietary

dataset in an exemplar Internet advertising case study and demonstrate its superiority

over existing methods in this practical setting.

Keywords: PAC; Constrained Problems; Internet Advertising; High-Dimensional Optimization;

Constrained Lasso

1. Introduction

This paper is inspired by problems in the online advertising industry. In 2012, U.S. dig-

ital advertising spending totaled 37 billion dollars, of which Internet display advertising

accounted for 40%. This percentage is expected to continue to grow, outpacing paid search

ad spending (eMarketer, 2012) which until recently has been the forefront of Internet adver-

tising marketing research1. Nevertheless, with millions of potential websites (HBR, 2015),

firms face considerable challenges in deciding where to place their online display ads. As

1Internet display advertising refers to static advertisements shown on specific websites, while search

advertising refers to ads shown on the search result pages. This paper focuses on Internet display advertising.
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the number of ad buying opportunities proliferates, advertising automation has become in-

evitable. Unfortunately, advertising on websites entails a variety of challenges not present

in traditional media such as newspapers or magazines, particularly in the wide variations

in cost and traffic across websites as well as the sheer number of websites. One reason for

the difficulty of optimizing budget allocations over p websites is that simply considering all

possible combinations of websites involves 2p possible subsets, a computationally infeasible

NP-hard problem.

An additional complication arises because firms often wish to optimize a given marketing

metric subject to a set of constraints on the allocation of the advertising budget. For example,

imagine a firm is developing an advertising campaign to promote a new NCAA sports mobile

app. The firm knows its target audience visits sports update websites, e.g. ESPN or Yahoo

Sports. Because of this the firm might wish to allocate, for example, 50% of its advertising

budget to these sports websites, since the firm knows it will reach more target consumers

at these sites. The campaign may also be designed to constrain the advertising to target

consumers from certain demographics such as age group, income level, geographic region,

family status, etc.

Most state-of-the-art marketing methods can only optimize these metrics on the order

of 10 websites, and we are not aware of any that can incorporate a set of linear constraints.

However, the following optimization problem is more computationally tractable:

arg min
β
g(β) + λ‖β‖1, (1)

where g a well-behaved convex loss function and β ∈ Rp is a vector of coefficients over which

we wish to optimize. Recently Paulson et al. (2018) demonstrated that, by choosing g(β) to

represent various marketing metrics, (1) could be used to efficiently optimize Internet cam-

paigns involving thousands of websites. Optimization problems of this form have also been

extensively studied in the statistical literature. For example, if g(β) = ‖Y −Xβ‖2
2, then (1)

reduces to the lasso (Tibshirani, 1996). Alternatively, when g(β) represents the log likeli-

hood function for a generalized linear model (GLM), then (1) implements a GLM extension

of the lasso. However, as Paulson et al. (2018) shows, this generalized form is extremely ver-

satile and can be applied in a variety of settings beyond fitting standard statistical models.

Numerous algorithms have been developed for solving (1) for various instances of g(β), in-

cluding LARS (Efron et al., 2004), the alternating direction method of multipliers (ADMM)
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algorithm (Boyd et al., 2010), DASSO (James et al., 2009a), bundled regularization gradient

methods (Teo et al., 2010), and coordinate descent methods such as block descent (de Leeuw,

1994; Xu and Yin, 2013) or coordinate-wise steepest descent (Lange, 2012). See also Lange

et al. (2014) who provide a very comprehensive overview of penalized regularization methods

for general linear models and their algorithms, including using coordinate descent (Friedman

et al., 2007; Wu and Lange, 2008).

While Paulson et al. (2018) provides an important step forward in handling high-dimensional

marketing problems, it fails to address the important practical issue of imposing constraints

on website allocations. Hence, in this article we consider an extension of (1) to the con-

strained setting:

arg min
β
g(β) + λ‖β‖1 subject to Cβ ≤ b, (2)

where C ∈ Rm×p is a predefined constraint matrix and b ∈ Rm is the corresponding pre-

defined constraint vector. We refer to this problem as Penalized And Constrained (PAC)

optimization. The PAC problem appears similar to the more standard setting in (1). How-

ever, the addition of m linear constraints turns out to significantly increase both the range

of scenarios in which (2) is relevant and also the difficulty of optimizing the criterion. There

has been some previous work on optimizing constrained criteria of this form, mostly in the

setting where g is a quadratic sum of squares term, in which case (2) produces a constrained

lasso fit. The constrained lasso can be fit using standard quadratic programming (Frank and

Wolfe, 1956; Floudas and Visweswaran, 1995). However, just as with the standard lasso,

this approach is inefficient when the solution needs to be computed over a wide range of

possible values for λ. The LARS path algorithm provided an efficient optimization approach

for the lasso, but it can not be used in the constrained setting. In a recent paper, Gaines

et al. (2018) develop an analogous path algorithm to LARS but using linear constraints. The

same paper also proposes an ADMM approach to this problem, while He (2011) develops a

somewhat different path algorithm. However, this work all assumes a quadratic loss function

and can not be easily extended to the more general setting, such as where g represents a

marketing metric as in Paulson et al. (2018).

Main Contributions: This paper makes three important contributions. First we illustrate

a few of the wide range of applications where optimization problems of the form given by

(2) are applicable. In particular, we show that PAC has applications in fitting smooth
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monotone functions and portfolio optimizaiton. We also demonstrate that the generalized

lasso problem (Tibshirani and Taylor, 2011) is a special case of our PAC formulation.

Second we present an efficient algorithm for solving PAC that generates a sequence of

solutions over λ. By exploiting the structure of the linear constraints, our method solves

a standard lasso problem with appropriately-defined vector Y and matrix X. Because our

algorithm can be applied in conjunction with standard lasso optimization methods, our

approach is both simple to implement and much faster than standard algorithms such as

quadratic programming.

Third, we apply our method to solve an important marketing problem. Namely, how to

optimize different metrics across thousands of Internet websites subject to various budget

constraints. We provide an extensive case study of this problem using a unique and propri-

etary comScore Media Metrix dataset (described in Section 3.2) anonymously recording daily

webpage usage information from a panel of 100,000 Internet users. Our case study illustrates

how PAC can be used to efficiently optimize either the reach, the fraction of customers who

are exposed to a given ad at least one time during a specified campaign, or clickthrough rate,

the fraction of customers who click on a given ad, subject to a set of real-world constraints.

Most importantly, we show how the linear constraints in the PAC formulation can be used

to target consumers with certain demographic profiles, such as age group, income level, ge-

ographic region, family status, etc. Our analysis indicates that our method can improve the

clickthrough rate of a target segment by over 100% when compared to existing approaches

in the literature. To our knowledge, this is the first non-propriety method for solving such

problems in a real-world setting.

The rest of this article is structured as follows. In Section 2, we illustrate some ap-

plications where (2) is applicable. Section 3 demonstrates that the constrained marketing

problem can be formulated as a PAC optimization. We present our algorithm for solving

PAC in Section 4. Several simulation studies are provided in Section 5 to demonstrate the

validity of the proposed methodology. In Section 6 we discuss our case study using the

comScore Media Metrix data. Finally, Section 7 provides a brief conclusion.
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2. Applications of PAC

Several well-known real world applications can be formulated as PAC optimization problems.

We briefly discuss a few examples here.

Example 1 (Monotone Curve Fitting). Consider the problem of fitting a smooth function,

h(x), to a set of observations {(x1, y1), . . . , (xn, yn)}, subject to the constraint that h must be

monotone. Model h(x) as B(xi)
Tβ, where B(xi) is a high-dimensional flexible basis function

such as a spline basis. Then this problem can be addressed using the PAC methodology by

minimizing g(β) =
∑n

i=1(yi −B(xi)
Tβ)2 subject to Cβ ≤ 0, where the lth row of C is the

derivative B′(ul) of the basis functions evaluated at u` for a fine grid of points, u1, . . . , um,

over the range of x. Enforcing this constraint ensures that the derivative of h is non-positive,

so h will be monotone decreasing.

Example 2 (Portolio Optimization). Portfolio optimization is another well-known problem

of interest which turns out to fit the PAC setting. Suppose we have p random assets indexed

by 1, 2, . . . , p whose covariance matrix is denoted by Σ. Markowitz (1952, 1959) developed

the seminal framework for mean-variance analysis. In particular his approach involved choos-

ing asset weights β to minimize the portfolio risk R(β) = βTΣβ subject to βT1 = 1. One

often also wishes to impose additional constraints on β to control the expected return of the

portfolio, the allocations among sectors or industries, or the exposures to certain known risk

factors.

In practice Σ is unobserved so must be estimated using the sample covariance matrix, Σ̂.

However, it has been well documented in the finance literature that when p is large, which

is the norm in real-world applications, minimizing R̂(β) = βT Σ̂β gives poor estimates for

β. One possible solution involves regularizing Σ̂, but more recently attention has focused

on directly penalizing or constraining the weights, an analogous approach to penalizing the

coefficients in a regression setting. Fan et al. (2012) adopted this framework by minimizing

R̂(β) subject to βT1 = 1 and ‖β‖1 ≤ c, where c is a tuning parameter. It is not hard to verify

that this optimization problem can be expressed in the form of (2), where C has at least one

row (to constrain β to sum to one) but may also have additional rows if we place constraints

on the expected return, industry weightings, etc. Hence, implementing PAC with g(β) =

R̂(β) allows us to solve the constrained and regularized portfolio optimization problem.
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Example 3 (Generalized Lasso). Another application of PAC involves the generalized lasso

problem (Tibshirani and Taylor, 2011):

arg min
θ

1

2

∥∥∥Y − X̃θ
∥∥∥2

2
+ λ ‖Dθ‖1 , (3)

where D ∈ Rr×p. When rank(D) = r, and thus r ≤ p, Tibshirani and Taylor (2011) show

that the generalized lasso can be converted to the classical lasso problem. However, if r > p

then such a reformulation is not possible. Lemma 1 shows that when r > p and D is full

column rank, then there is an interesting connection between the generalized lasso and PAC.

Lemma 1 (Generalized Lasso is a Special Case of PAC). If r > p and rank(D) = p then

there exist matrices A,C and X such that, for all values of λ, the solution to (3) is equal to

θ = Aβ, where β is given by:

arg min
β

1

2
‖Y −Xβ‖2

2 + λ‖β‖1 subject to Cβ = 0.

The proof of Lemma 1 is provided in Appendix A. Hence, any problem that falls into the

generalized lasso paradigm can be solved as a PAC problem with g(β) = 1
2
‖Y −Xβ‖2

2 and

b = 0. Tibshirani and Taylor (2011) further demonstrate that a variety of common statistical

methods can be formulated as special cases of the generalized lasso. Some examples include:

the fused lasso (Tibshirani et al., 2005), polynomial trend filtering (where one penalizes

discrete differences to produce smooth piecewise polynomial curves), wavelet smoothing,

and the FLiRTI method (James et al., 2009b). She (2010) also considers a similar criterion

to (3) and discusses special cases such as the “clustered lasso”. Lemma 1 shows that all of

these various approaches can be solved using PAC.

3. Internet Media Campaigns and the comScore Data

In Section 3.1 we demonstrate that our target application, the constrained large-scale Inter-

net media selection problem, can be formulated as a PAC optimization problem. We also

include an overview of the data used for the case study in Section 3.2.

3.1 Internet Media Campaigns

Although PAC can be applied in many settings, our main focus in this paper is the application

to Internet media campaigns. These campaigns have traditionally focused on two common
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Internet advertising goals: maximizing ad reach or maximizing clickthrough rate (CTR)

across a given advertising campaign, subject to some maximum allowed budget B. As

discussed in Section 1, reach is defined as the fraction of customers who are exposed to a

given ad at least one time, while clickthrough rate is defined as the fraction of customers

who click on an ad. However, modeling either of these first requires defining the functions

themselves, as there is no standard reach or CTR function for Internet media.

CTR is a natural extension of reach, since before an Internet user can click on an ad, he

or she must first be exposed to it. Thus the two functions are naturally related and in fact

can be formulated together. We assume that we have a collection of p websites indexed by

j = 1, . . . , p where we can potentially show our ads. Let γj = 1
τjCPMj

, where CPMj is the

cost per thousand impressions at website j, and τj is the expected total number of pages

viewed (in thousands) at the jth website during the course of the ad campaign. Then γj

corresponds to the fraction of all ads purchased at website j for every dollar spent by the

campaign. Thus, if βj is the dollar budget allocated to website j, then γjβj represents the

probability of an ad appearing to a user on a visit to website j.

Though this is the definition of an ad reaching a user, we can take this one step further

to incorporate clickthrough rate. Let qj represent the conditional probability that users

click on an ad given that the ad has appeared to them at website j. In practice qj can be

obtained either directly from past click logs (e.g. Dave and Varma, 2010) or estimated in

numerous ways if historical data is not available (e.g. Immorlica et al., 2005). Once the qj

value for each webpage is known, we can incorporate these website-specific values into the

computation of the CTR values as follows. If the probability an ad appears to the user is

γjβj, and users additionally have a probability qj of clicking on an ad at website j given the

ad has appeared to them, the unconditional probability of a user viewing the ad and clicking

through it is γjβjqj.

To develop our complete optimization function, consider that because ad appearances

are independent of users and previous visits, each time a user views website j, he or she

has the same probability of failing to click through the ad (i.e. 1 − γjβjqj). Hence, if user

i views each website a total of zij times, then the probability he or she fails to click on the

ad at least once over all p websites is
p∏
j=1

(1 − βjγjqj)zij . If we average this over all n users
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in our data, we have our CTR function, g(β) = 1
n

n∑
i=1

p∏
j=1

(1 − βjγjqj)
zij where the sum of

money spent across the p websites
∑

j βj must be less than our total allowed budget B, and

spending at all websites must be nonnegative. Thus maximizing CTR can be formalized as

arg min
β

1

n

n∑
i=1

p∏
j=1

(1− βjγjqj)zij + λ‖β‖1, (4)

where λ is a tuning parameter with a one-to-one correspondence to our budget B. This

is an instance of (1). Further, our nonnegativity constraint on the βj values is ultimately

unnecessary, since our solution will never optimize by setting βj to a negative value. The

minimization of the function ensures βj will be, at minimum, zero; a negative βj would

actually increase the value of the objective function.

Our case study in Section 6 goes through the above application in detail for a potential

Norwegian Cruise Lines (NCL) marketing campaign, including examples of the optimization

for both reach and CTR. The case study demonstrates the use of several constraints that

firms often wish to incorporate into their campaigns, such as allocating a certain percent-

age of budget to a given set of websites or maximizing CTR subject to reaching certain

demographics. We are able to show that, not only does PAC demonstrate measurable, sta-

tistical improvements over existing methods, but it also incorporates constraints directly

in the problem formulation, which to the best of our knowledge, no existing method can

currently incorporate.

3.2 comScore Internet Browsing Data

The NCL online marketing campaign case study considered in this paper is implemented

using a subset of the 2011 comScore Media Metrix data. comScore’s data is a commer-

cial, proprietary data set purchased through comScore and accessed through the Wharton

Research Data Service (www.wrds.upenn.edu). comScore records daily webpage usage in-

formation from a panel of 100,000 Internet users, whose behavior is recorded anonymously

by individual computer. Using these comScore by-computer records, we construct a matrix

of all websites visited and the number of times each computer visited each website (and how

many webpages were viewed at each visit) during a particular time period. This comScore

data is commonly utilized in the marketing literature when Internet visitation is considered

(e.g., Danaher, 2007; Liaukonyte et al., 2015; Montgomery et al., 2004; Park and Fader,
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Category CPM No. Websites Avg. Visits Category CPM No. Websites Avg. Visits

Community 2.10 24 5942 Online Shop 2.52 29 4563

E-mail 0.94 6 5321 Photos 1.08 6 5194

Entertainment 4.75 100 3349 Portal 2.60 36 45660

Fileshare 1.08 22 6670 Retail 2.52 49 6672

Gaming 2.68 75 3677 Service 2.52 16 8503

General News 6.14 12 4945 Social Network 0.56 25 10837

Information 2.52 58 6816 Sports 6.29 13 4227

Newspaper 6.99 12 2400 Travel 2.52 17 2304

Table 1: Number of websites in each of the 16 website categories for the January 2011 500-website

filtered comScore data

2004; Paulson et al., 2018). The comScore Internet browsing data is analogous to the more

commonly-known Nielsen ratings for television; like Nielsen, comScore collects not only the

websites visited by users but also household demographic information such as income level,

geographic area, size of the household, etc. Thus researchers can use the data to get an over-

all sense of Internet browsing both at individual levels (by particular machine) and at higher

group levels (by demographic characteristics or website visitation). For our case study, this

data is supplemented by comScore Inc.’s Media Metrix data from May 2010 (Lipsman, 2010)

to provide average advertising costs (given as CPMs, or cost per thousand ad impressions)

for each website by grouping the websites into common website categories.

The data used in the NCL case study utilizes website visits by the 100,000 comScore

users during January 2011. To create a manageable dataset, we manually identify the 500

most-visited websites in January 2011 which also supported Internet display ads. We choose

this time period for our case study to mimic a hypothetical yearly promotion for Norwegian

Cruise Line’s “wave season,” which runs from January to March (with the bulk of advertising

taking place in January). Thus, our filtered data contains a record of every computer which

visited at least one of the 500 most-visited websites at least once (48,628 users) during the

month of January. The NCL case study ultimately uses a matrix of 48,628 comScore users

by 500 websites, where the matrix entries are the total number of webpages viewed by each

user at each website during the month of January.
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Table 1 provides the categorical makeup of the 500 websites in the January 2011 data

set. It includes the sixteen broad categories of websites presented by Lipsman (2010): Social

Networking, Portals, Entertainment, E-mail, Community, General News, Sports, Newspa-

pers, Online Gaming, Photos, Filesharing, Information, Online Shopping, Retail, Service,

and Travel. The CPM columns are the average CPM values provided for that website cate-

gory from the Media Metrix data, while the Number of Websites columns provide the total

number of websites in each category, and the Average Visits column provides the average

number of visits during January 2011 to a website in that category by our comScore users.2

Note that for simplicity, the CPM values given in Table 1 are taken from comScore Inc.’s

Media Metrix May 2010 data, but in practice firms would likely have already obtained actual

average CPMs for each individual website from previously collected data or directly from

the advertiser.

4. Methodology and Algorithm

In this section we develop our PAC optimization algorithm using the following three steps.

First, we use Taylor’s Theorem to approximate g(β) using a quadratic term. Second, we in-

corporate the linear coefficient constraint into the objective function, and finally we minimize

the new, unconstrained criterion.

Given a current parameter estimate β̃, our objective function can be approximated by

g(β) ≈ g(β̃)+ d̃T (β− β̃)+ 1
2
(β− β̃)T H̃(β− β̃), where H̃ and d̃ are respectively the Hessian

and gradient of g at β̃. Let X = D1/2UT and Y = X(β̃ − H̃−1d̃) where H̃ = UDUT

represents the singular value decomposition of the Hessian. Then it is not hard to show

that, up to an irrelevant additive constant, g(β) is approximated by 1
2
‖Y −Xβ‖2. Hence,

we can approximate (2) by

arg min
β

1

2
‖Y −Xβ‖2

2 + λ‖β‖1 subject to Cβ = b, (5)

2For further details on the relationships among categories, see Table 4 in Appendix B for an overview of

viewership correlations within and across each of the sixteen website categories during January 2011.
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a constrained version of the standard lasso3. Thus solving (5), updating β̃ with the new

solution, and iterating, will solve (2) in a similar fashion to the so-called iterative reweighted

least squares algorithm for fitting GLMs.

Unfortunately, even though many algorithms exist to fit the lasso, the constraint on the

coefficients in (5) makes it difficult to directly solve. However, we can reformulate (5) as an

unconstrained optimization problem. Let A represent an index set of size m corresponding

to a subset of β and let XA and XĀ respectively represent the columns of X corresponding

to A and the complement of A.4 Further define βA = C−1
A (b−CĀβĀ) and

βĀ = arg min
θ

1

2
‖Y ∗ −X∗θ‖2

2 + λ‖θ‖1 + λ‖C−1
A (b−CĀθ) ‖1, (6)

where Y ∗ = Y − XAC−1
A b, X∗ = XĀ − XAC−1

A CĀ. In this setting βA represents the m

constrained coefficients, and βĀ the p −m remaining unconstrained coefficients. Then, we

have the following lemma.

Lemma 2. For any index set A such that CA is non-singular, the solution to (5) is given

by β = (βA
T ,βĀ

T )T .

Solving (6) still poses a significant challenge, because the final term in the criterion is non-

separable in the coefficients so standard optimization approaches, such as coordinate descent,

will fail. Fortunately, an alternative, more tractable criterion can be used to compute βĀ.

For a given index set A and m-dimensional vector s, define βĀ,s by:

βĀ,s = arg min
θ

1

2
‖Ỹ −X∗θ‖2

2 + λ‖θ‖1 , (7)

where Ỹ = Y ∗+λX−
(
C−1
A CĀ

)T
s, and X− is a matrix such that X∗TX− = I. Equation (7)

is a much simpler criterion to solve as it is a standard lasso objective function which can be

optimized using a variety of techniques. We discuss some additional implementation details

in handling this reformulation in Appendix D.

Then, Lemma 3 shows that, provided we are careful in our choice of A and s, solving (7)

will provide a solution to (5).

3To simplify the presentation of our algorithm we have assumed equality constraints in (5). However,

by introducing slack variables, the same basic approach can be used to optimize over inequality constraints.

See Appendix C for further details.
4To reduce notation we assume without loss of generality that the elements of β are ordered so that the

first m correspond to A.
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Figure 1: A simple illustration of the PAC algorithm with p = 4 variables and m = 2 constraints.

Lemma 3. For any index set A, it will be the case that βĀ = βĀ,s provided

s = sign (βA,s) , (8)

where βA,s = C−1
A
(
b−CĀβĀ,s

)
. Hence, the solution to (5) is given by β = (βA,s

T ,βĀ,s
T )T .5

The proofs of Lemmas 2 and 3 are provided in Appendix E. There is a simple intuition

behind Lemma 3. The difficulty in computing (6) lies in the non-differentiability (and non-

separability) of the second `1 penalty. However, if (8) holds, then for any θ close to βĀ,

‖C−1
A (b−CĀθ) ‖1 = sTC−1

A (b−CĀθ). Thus we can replace the `1 penalty by a differen-

tiable term which no longer needs to be separable.

Of course the key to this approach is to select A and s such that (8) holds, which appears

challenging given that s is a function of the unknown solution. However, choosing A and

s turns out to be relatively simple in practice. Consider Figure 1, which illustrates our

approach on a toy example involving p = 4 coefficients (the four colored lines), and m = 2

constraints. We generate the PAC solution over a decreasing grid of values for λ and the

left-hand plot illustrates the solution up to λ = λ1. To compute the PAC coefficients at

λ = λ2, we select A corresponding to the m = 2 largest coefficients in absolute terms (in this

5sign(a) is a vector of the same dimension as a with the ith element equal to 1 or −1 depending on the

sign of ai.
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case blue solid and red dashed) and set s equal to their current signs (both positive here).

Thus, βA corresponds to the blue and red coefficients, while βĀ represents the remaining

two coefficients. In the right-hand plot we have computed the solution at λ2 using (7). Since

the blue and red coefficients are still positive, one can immediately observe that (8) holds,

so we have the correct solution.

Crucially we use the fact that the coefficient paths are continuous in λ so, provided the

step size from λ1 to λ2 is small enough, we are guaranteed that the signs of the largest m

coefficients will remain the same. If our step size is too large, then it is possible that one of

the coefficients in A may change sign. For example, the right-hand plot in Figure 1 shows

that if we had selected the green dash-dot coefficient in A, then the sign would have switched

between λ1 and λ2. However, in such a situation one immediately observes that the solution

is incorrect, and the correct solution can then be computed by choosing a smaller step size

in λ. In this case a step size half as large would have allowed the sign of the green coefficient

to remain positive. It is important to note that A will change for each step, so we are free

to update the index set with the coefficients that are least likely to switch signs, i.e. those

furthest from zero. In practice, provided the step size is not too large, this approach works

well, with very few instances of sign changes. Algorithm 1 formally summarizes the PAC

approach for solving (5).

Algorithm 1 PAC with Equality Constraints

1. Initialize β0 by solving (5) using λ0 = λmax.

2. At step k select Ak and sk using the largest m elements of |βk−1| and set λk ←
10−αλk−1, where α > 0 controls the step size.

3. Compute βĀk,sk by solving (7). Let βAk,sk = C−1
Ak

(
b−CĀk

βĀk,sk

)
.

4. If (8) holds then set βk =

βAk,sk

βĀk,sk

, k ← k + 1 and return to 2.

5. If (8) does not hold then one of the largest m elements of βk−1 has changed sign so

our step size was too large. Hence, set λk ← λk−1 − 1
2
(λk−1 − λk) and return to 3.

6. Iterate until λk < λmin.
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Step 3 of the algorithm is the main computational component, but βĀk,sk is easy to com-

pute because (7) is just a standard lasso criterion, so we can use any one of a number of

optimization tools. The initial solution, β0, can be computed by noting that as λ→∞ the

solution to (5) will be

arg min
β
‖β‖1 such that Cβ = b, (9)

which is a linear programming problem that can be efficiently solved using standard algo-

rithms. We also implement a reversed version of this algorithm where we first set λ0 = λmin,

compute β0 as the solution to a quadratic programming problem, and then increase λ at each

step until λk > λmax. We discuss some additional implementation details in Appendix D.

This approach can be extended in much the same way for inequality constraints by incorpo-

rating slack variables. See Appendix C for details.

5. Simulation Studies

In this section, we present simulation results to compare PAC’s performance relative to un-

constrained lasso fits. We choose the lasso due to its versatility, particularly in handling

high-dimensional problems, as well as its widespread use in statistical modeling. Thus the

results presented here correspond to data generated from a standard Gaussian linear re-

gression with g(β) = ‖Y − Xβ‖2
2. (For further comparisons with data generated from a

binomial logistic regression model with g(β) equal to the corresponding loglikelihood, see

Appendix F). In Section 5.1 we show that, when the true underlying parameters satisfy

equality constraints, PAC can yield significant improvements in prediction accuracy over

unconstrained methods. In addition, Section 5.2 shows that these improvements are robust

in the sense that, even when the true parameters violate some of the constraints, PAC still

yields superior estimates. Finally, we demonstrate the computational efficiency of the PAC

algorithm relative to a quadratic programming implementation in Section 5.3.

5.1 PAC Comparison to Existing Lasso Methods

To demonstrate the use of PAC in practice, we consider six simulation settings: three different

combinations of observations (n) and predictors (p), corresponding to both classical and high-

dimensional problems, and two different correlation structures, ρjk = 0 and ρjk = 0.5|j−k|

(where ρjk is the correlation between the jth and kth variables). The training data sets were
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produced using a random design matrix generated from a standard normal distribution. For

each setting we randomly generated a training set, fit each method to the data, and computed

the error over a test set of N = 10, 000 observations, where the error metric used is the root

mean squared error: RMSE =

√
1
N

∑N
i=1

(
Ŷi − E(Yi|Xi)

)2

. This process was repeated 100

times for each of the six settings.

In all cases, the m-by-p constraint matrix C and the constraint vector b were randomly

generated from a normal distribution. The true coefficient vector β∗ was produced by first

generating β∗Ā using 5 non-zero random uniform components and p−m− 5 zero entries and

then computing β∗A = C−1
A (b − CĀβ

∗
Ā). Note that this process resulted in β∗ having at

most m + 5 non-zero entries and ensured that the constraints held for the true coefficient

vector. For each set of simulations, the optimal value of λ was chosen by minimizing error

on a separate validation set, which was independently generated using the same parameters

as for the corresponding training data.

For each method we explored three combinations of n, p, and m: a low-dimensional

setting with few constraints (n = 100, p = 50 and m = 5), a higher-dimensional problem

with few constraints (n = 50, p = 500 and m = 10), and a high-dimensional problem

with more constraints (n = 50, p = 100 and m = 30). The test error values for the six

resulting settings are displayed in Table 2. For each method, we compared results from four

different approaches: the standard unconstrained but penalized fit, i.e. the lasso as given

in (1) (Friedman et al., 2010), PAC, the relaxed lasso, and the relaxed PAC. The latter

two methods use a two-step approach in an attempt to reduce the overshrinkage problem

commonly exhibited by the `1 penalty. In the first step, the given method is used to select

a candidate set of predictors. In the second step, the final model is produced using an

unshrunk ordinary least squares fit on the variables selected in the first step. The relaxed

PAC coefficients are still optimized subject to the linear constraints.

Even in the first setting, with a low value for m, PAC shows highly statistically significant

improvements over the unconstrained methods. Both relaxed methods display lower error

rates than their unrelaxed counterparts, and the correlated design structure does not change

the relative rankings of the four approaches. As one would expect, in the second setting,

given the low ratio of m relative to p, PAC only shows small improvements over its uncon-
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ρ Lasso PAC Relaxed Lasso Relaxed PAC

n = 100, p = 50 0 0.59(0.01) 0.52(0.01) 0.45(0.01) 0.30(0.01)

m = 5 0.5|i−j| 0.63(0.01) 0.49(0.01) 0.57(0.02) 0.35(0.01)

n = 50, p = 500 0 3.38(0.07) 3.33(0.09) 3.27(0.08) 3.16(0.10)

m = 10 0.5|i−j| 2.58(0.07) 2.33(0.09) 2.44(0.07) 2.09(0.09)

n = 50, p = 100 0 6.59(0.07) 1.19(0.03) 6.75(0.08) 0.96(0.03)

m = 60 0.5|i−j| 6.51(0.07) 1.31(0.04) 6.66(0.09) 0.98(0.03)

Table 2: Average RMSE over 100 training data sets, for four lasso methods tested in three

different simulation settings and two different correlation structures. The numbers in parentheses

are standard errors.

strained counterparts. However, this setting shows the PAC algorithm is still efficient enough

to optimize the constrained criterion even for large data sets and very high-dimensional data.

The final setting is more favorable to PAC, because m is much larger, and thus there is the

potential to produce significantly more accurate regression coefficients by correctly incor-

porating the constraints. However, this is also a computationally difficult setting for PAC,

because a large value of m causes the coefficient paths to be highly variable. Nevertheless,

the large improvements in accuracy for both PAC and relaxed PAC demonstrate that our

algorithm is quite capable of dealing with this added complexity.

5.2 Violations of Constraints

The results presented in the previous section all correspond to an ideal situation where the

true regression coefficients exactly match the equality constraints. Here, we also investi-

gate the sensitivity of PAC to deviations of the regression coefficients from the assumed

constraints. In particular we generate the true regression coefficients according to

Cβ∗ = (1 + u) · b, (10)

where u = (u1, . . . , um), ul ∼ Unif(0, a) for l = 1, . . .m, and the vector product is taken

pointwise. The PAC and relaxed PAC were then fit using the usual (but in this case incorrect)

constraint, Cβ = b.

Table 3 reports the new RMSE values for three Gaussian settings under the ρ = 0

correlation structure, corresponding to the three settings of Table 2. Again, the first two

settings are used for demonstration purposes to show PAC performs well even in standard
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a Lasso PAC Relaxed Lasso Relaxed PAC

n = 100 0.25 0.59(0.01) 0.52(0.01) 0.44(0.01) 0.31(0.01)

p = 50 0.50 0.59(0.01) 0.53(0.01) 0.44(0.01) 0.33(0.01)

m = 5 0.75 0.59(0.01) 0.54(0.01) 0.44(0.01) 0.36(0.01)

1.00 0.59(0.01) 0.55(0.01) 0.44(0.01) 0.39(0.01)

n = 50 0.25 3.35(0.07) 3.31(0.09) 3.27(0.08) 3.13(0.10)

p = 500 0.50 3.39(0.07) 3.34(0.09) 3.31(0.09) 3.17(0.10)

m = 10 0.75 3.35(0.07) 3.30(0.09) 3.29(0.08) 3.09(0.10)

1.00 3.33(0.07) 3.30(0.09) 3.25(0.08) 3.09(0.10)

n = 50 0.25 6.59(0.07) 1.20(0.03) 6.72(0.08) 0.97(0.03)

p = 100 0.50 6.60(0.07) 1.21(0.03) 6.73(0.08) 0.98(0.03)

m = 60 0.75 6.59(0.07) 1.26(0.03) 6.75(0.08) 1.03(0.03)

1.00 6.61(0.07) 1.29(0.03) 6.77(0.08) 1.06(0.03)

Table 3: Average RMSE over 100 training data sets in three different simulation settings using the

ρ = 0 correlation structure. The numbers in parentheses are standard errors. The true regression

coefficients were generated according to (10).

or very high-dimensional settings, while the last is a setting with a very large number of

constraints to demonstrate robustness even when n < m. We tested four values for a:

0.25, 0.50, 0.75 and 1.00. The largest value of a corresponds to a 50% average error in the

constraint. The results suggest that PAC and relaxed PAC are surprisingly robust to random

violations in the constraints. While both methods deteriorated slightly as a increased, they

were still both superior to their unconstrained counterparts for all values of a and all settings.

5.3 Efficiency of PAC Algorithm

In this section we demonstrate the efficiency of the PAC algorithm relative to a standard

quadratic programming solution. Quadratic programming provides an excellent comparison

since, as shown in the preceding section, PAC relies on approximating g(β) with a sum of

squares term. In addition, quadratic programming is a well-established option for optimiz-

ing constrained problems and can even be used in high-dimensional settings like the ones

proposed in Section 5.1.
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Figure 2: Plots of average time per lambda value (each grid point where a solution was calculated),

on a logarithmic scale, for solutions over a range of p in two settings: our first setting, n = 100 and

m = 5 (left) and our third setting, n = 50 and m = 60 (right). The quadratic solution is given both

for data with no correlation structure (solid red line) as well as data with the correlation structure

of Table 2 (dashed purple line); likewise PAC is also given with no correlation in the data (dotted

black line) and with correlation (dotted-dashed blue line).

Figure 2 shows how computational efficiency dramatically increases for PAC relative to

quadratic programming as the number of coefficients p increases.6 Here, two general settings

are plotted: (1) the first setting of Table 2, where n = 100 and m = 5 to demonstrate a

low-constraint problem, and (2) the third setting of Table 2, where n = 50 and m = 60

to demonstrate a higher-constraint problem. Further, we also consider the two correlation

structures to the data used in Table 2. In all cases, Figure 2 demonstrates that an increase in

predictors can dramatically increase computational time for quadratic programming. While

computation time increases for PAC as well, it is not nearly as dramatic. Thus PAC repre-

sents an efficient method to optimize constrained problems on increasingly large scales.

6To measure computational efficiency between PAC and quadratic programming, both were implemented
in R on a personal laptop computer using a 2.59 GHz i7 processor.
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6. Case Study: Cruise Line Internet Marketing Campaign

In this section, we apply PAC to an exemplar real-world case study for Norwegian Cruise

Lines (NCL). Each year, the cruise industry advertises for its annual “wave season,” a

promotional cruise period which begins in January. NCL is among the cruise lines that

participate heavily in wave season (Satchell, 2011). Because consumers who are interested

in booking a cruise often use travel aggregation sites like Orbitz and Priceline to compare

offerings across multiple options, and cruise lines frequently want to make the sales known

to potential customers without sacrificing clickthrough to their websites, this case study

is ideal for demonstrating PAC subject to various constraints. Since the wave season sale

begins in January, we consider the comScore data from January 2011 to approximate an

NCL advertising campaign. In Section 6.1 we demonstrate PAC in comparison to other

possible approaches when NCL wishes to maximize reach subject to constraints. Section 6.2

demonstrates PAC in the setting in which NCL wishes to maximize clickthrough rate.

6.1 Internet Media Metric 1: Maximizing Reach

For real-life advertising campaigns, firms attempt to leverage business insights in order to

improve their advertising campaigns by reaching target customers. Although NCL does

want to reach as many potential cruisers as possible, they also know which characteristics

make a consumer more likely to purchase a cruise. For example, because consumers who

are interested in booking a cruise often use travel aggregation sites like Orbitz and Priceline

to compare offerings, NCL will reach more likely customers at these websites. Because of

this, NCL may want to allocate at least a minimum amount of budget (say, 20%) to a set

of major aggregate travel websites. This induces a constraint on the optimization; NCL

wishes to optimize total overall reach, but subject to 20% of budget being spent at the

set of aggregate travel websites. In our January 2011 comScore data, we have eight major

aggregate travel websites.

Formally, if firms have a subset S of websites on which they know they want to advertise

and thus dedicate a minimum proportion of their budget to this subset, this fits very naturally

into our constraint matrix setup by defining CT
Sβ ≥ bSB, where CS defines the websites in

the subset S, and bS is the proportion of budget the firm wishes to allocate to the subset S.
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Figure 3: Plots of the reach calculated for 500 websites on the full data set (left) and the subset

of travel users (right) using four methods: PAC with constraints (thick dashed black), PAC with

no constraints (thin dashed brown), ELMSO with constraints (thick dotted-dashed blue), and cost

adjusted allocation (dotted purple).

Figure 3 shows the results for reach as a function of budget, both on the overall data

set and on the target users, the ones who have visited at least one of the eight aggregate

travel websites. Here, we compare both the constrained and unconstrained PAC to two

naive methods: equal budget allocation across the eight travel websites and cost-adjusted

allocation across those websites. In addition, we compare to ELMSO (Paulson et al., 2018),

which optimizes reach based on modeling views of Internet ads as a Poisson arrival process.

In this way, ELMSO is similar to an unconstrained PAC, except the latter method assumes a

binomial process rather than Poisson. We implement a constrained version of ELMSO. While

PAC can handle the 20% minimum budget allocation directly through a single constraint

(where CS identifies the aggregate travel sites and b = 0.20B), ELMSO cannot implement

constraints of this form. Instead, ELMSO places a minimum budget, 2.5%, at each of the

aggregate travel websites, thus ensuring at least 20% of the budget overall is allocated to

these sites.
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As Figure 3 shows, once constraints are introduced, PAC consistently outperforms ELMSO

and the naive methods. Because the PAC optimization incorporates the budget allocation

constraint directly, it has more flexibility in allocating across the subset of websites. ELMSO

is forced to allocate a minimum to each website, whether that website is preferred over oth-

ers or not. Most importantly, however, on the target subset of users (those who visit travel

websites), constrained PAC very clearly outperforms all other methods, but overall reach

is relatively unchanged between the constrained and unconstrained PAC methods. This

means NCL is reaching its target customers at the aggregate sites without sacrificing much

overall reach. By contrast, the naive allocation methods actually slightly outperforms the

constrained ELMSO on the aggregate travel users’ subset. PAC provides an option to max-

imize reach over the target consumer base without losing other potential customers at the

non-aggregate travel websites.

6.2 Internet Media Metric 2: Maximizing Clickthrough

In this section, we consider an alternative performance metric: allocating budget to maximize

clickthrough, as described in Section 3.1. Here, NCL wishes to maximize the number of

people who click on their ad subject to a given budget. Clickthrough rates (CTR) are a

more recent area of interest in the marketing literature, and as such have been far less

explored than the traditional reach setup.

6.2.1 Clickthrough Rate

To implement this analysis, we compute CTR using the binomial formulation in (4). We use

MediaMind’s 2011-2012 Global Benchmarks Report (MediaMind 2012) to estimate qj, the

probability that a user clicks on an ad at website j given it is shown to them. This report

provides average display ad clickthrough rates by industry for 2011-2012. Thus, we first

group the websites by industry, then use the industry average for qj. In practice, advertisers

would have specific values for qj and would update these throughout the campaign.

We first consider a campaign analogous to the one in Section 6.1 above, where instead

of maximizing reach subject to a constraint on the subset of aggregate travel websites, NCL

wishes to maximize CTR subject to the same budget constraint. As shown in Section 3.1,

PAC does this directly, but we are not aware of any other publicly available method that
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can maximize CTR on a large-scale problem such as a 500-website optimization. However,

while ELMSO is designed for reach only, we can modify the reach criterion to incorporate

a CTR parameter by multiplying the probability of an ad appearance by the probability a

user will click on it (our CTR parameter, qj). This is not directly a CTR optimization, since

CTR is defined as the proportion of users who click on an ad at least once and thus does

not fit neatly into a Poisson arrival process definition, but in the absence of other analogous

methods, it works well for comparison purposes.

Figure 4 shows CTR as a function of budget, both on the overall data set and on the target

users who have visited the aggregate travel websites. Again, we compare both constrained

and unconstrained PAC to the two naive methods: equal budget allocation across the eight

aggregate travel websites and cost-adjusted allocation across these websites. In addition, we

again compare to the constrained implementation of the ELMSO CTR proxy. The results

are qualitatively very similar to those in Figure 3, with PAC still outperforming the other

approaches. Overall clickthrough is much lower than reach, as expected since only a few

users who see the ad will click on it, but for the subset of aggregate travel site visitors, CTR

is almost double that of the overall advertising campaign.

6.2.2 Clickthrough Rate subject to Multiple Constraints

Here we examine a setting involving optimizing CTR subject to multiple different constraints.

Suppose that NCL wishes to target a particular subset of consumers H by ensuring that these

consumers receive K times the average views relative to those not in H. PAC can incorporate

this constraint using:

1

nH

∑
i∈H

p∑
j=1

zijγjβj ≥ K
1

n− nH

∑
i/∈H

p∑
j=1

zijγjβj, (11)

where nH is the number of people in the target group, and zijγjβj represents the expected

number of ad appearances to person i at website j (since zij is the number of times person

i views pages at website j, and γjβj is the probability the ad appears to user i at web-

site j on any given visit). As a specific application of (11), in 2011 NCL created special

single-occupancy rooms to appeal to solo cruise travelers, a niche which had been previously

unexplored by the cruise industry. Historically, cruise lines had focused on double-occupancy

rooms, requiring solo travelers to room with a stranger or incur the cost of booking a room
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Figure 4: Plots of the clickthrough rate for 500 websites on (left) the full data set and (right) the

subset of travel users using four methods: PAC with constraints (thick dashed black), constrained

ELMSO proxy (thick dotted-dashed blue), cost adjusted allocation (dotted purple), and equal

allocation (solid green).

for two people (Clements, 2013; CruiseCritic, 2017). Capitalizing on this niche can be ex-

tremely valuable; Cruise Lines International Association expected 23 million solo travelers

in 2015 in North America alone (Ambroziak, 2015), and solo travelers accounted for 24% of

total travelers in 2015 (Post, 2017). Hence, NCL might wish to optimzie CTR subject to

(11) with K = 2 and H chosen to include households without children (because solo travelers

necessarily travel without children).

In addition, NCL could have several other constraints. For example, solo cruise line trav-

elers typically fall into an age range of 30-59 with an income of $35,000 to $70,000 (Clements,

2013). Hence, we constrain our optimization to ensure twice as many average views come

from the target group (that is, single-person households in the 30-59 age range with incomes

between $35,000 and $70,000) as from all others. To illustrate a geographical constraint, we

also constrain average views of those from the “West” region of the US to be at least as large

as those from other parts of the country. Further, we add six additional constraints, corre-

sponding to the seven income levels provided by comScore, to ensure average ad views at a

higher income level are always at least as large as average ad views at a lower income level.
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Figure 5: Clickthrough rates on travel users aged 30-59 with income between $35,000 and $70,000

using five methods: unconstrained PAC (dashed brown), constrained PAC (thick dashed black),

constrained PAC using only the travel users (dotted-dashed red), allocation by cost across travel

websites (dotted purple), and equal allocation across travel websites (solid green).

Finally, we constrain our optimization to force 20% of the budget to our aggregate travel

websites, as we previously considered. This ultimately results in ten constraints, though

firms would often include many more such target groups.

Figure 5 shows CTR as a function of budget on the target users who have visited the ag-

gregate travel websites, are between the ages of 30 and 59, and have annual incomes between

$35,000 and $70,000. Again, we compare both constrained and unconstrained PAC to the

two naive methods: equal allocation across the eight travel websites and cost-adjusted allo-

cation across these websites. Finally, we implement the previous constrained PAC method,

which only includes the single constraint of 20% of the budget to aggregate travel web-

sites. ELMSO can not be implemented with these constraints. We see that both versions of

the constrained PAC provide the highest CTR on this target group, with the most highly-

constrained fit generating by far the largest jump.
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Figure 6: Plots of the ratio of average ad views between target demographic groups. A solid gray

line is plotted at 1 for comparison.

Figure 6 demonstrates that PAC is effectively enforcing the various constraints that we

considered. In the upper left corner, the plot shows the ratio for our constrained PAC

optimization of average ad views by users in successive income ranges. Each line represents

a comparison between a given income bracket and the lowest income bracket (“less than

$15,000”); for example, the dotted blue line is the ratio of average ad views in the “$25,000

to $34,999” income bracket relative to the “less than $15,000” income bracket. Without

constraints, we would expect all lines to show a ratio of 1, indicating no randomly-chosen

member of a particular income group is more likely to view the ad than any other. However,

because we have forced successively higher income brackets to have more average ad views

than the previous bracket, we see an increase in the ratio. Most notably, a jump occurs at

the “$35,000 to $49,999” (solid black line) income group, because the additional constraint

for our target group begins to take effect at incomes above $35,000. We have also plotted
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the highest income bracket (“above $100,000”) with a dotted-dashed red line. As expected

this line never falls below the “$35,000 to $49,999” bracket.

The top right plot shows a comparison between constrained PAC (solid black) and uncon-

strained PAC (dashed brown), constrained ELMSO (dotted-dashed blue), and unconstrained

ELMSO (dotted red) in the ratio of average ad views by single-person household users in the

30-59 age range with incomes between $35,000 and $70,000, relative to all other users. The

bottom left plot is identical to the top right except it provides the ratio of average ad views

by users in the households without children compared to households with children. Recall

in both cases our constraint forced the optimization to allocate twice as many average ad

views in the target group as in any other. In both plots the black line sitting consistently at

2 demonstrates the constraint is holding for PAC, while the other methods all hover around

a ratio of 1.

Finally, the bottom right plot matches the previous two plots showing the ratio of average

ad views by users in the “West” region relative to all other users. Recall our constraint here

forced the optimization to ensure at least as many average ad views in this group as in any

other group. As the figure demonstrates, the constrained PAC method stays consistently

above a ratio of 1, while the other methods all vary around a ratio of 1.

7. Conclusion

In this paper we have illustrated a few of the wide range of statistical applications for the

PAC formulation and developed a computationally efficient path algorithm for computing

its solutions. Our simulation results show the PAC estimates generally outperform the

unconstrained estimates, not only when the constraints hold exactly, but also when there is

some reasonable error in the assumption on the constraints. Furthermore, we show PAC can

easily be used in practice to accommodate real-world considerations, particularly in the case

of Internet advertising budget allocation problems. We demonstrate via our exemplar case

study that PAC actually presents a significant advantage over current methods, which cannot

handle constraints directly. PAC can handle multiple linear constraints with no additional

ad hoc optimization requirements, and it is not limited to a single optimization criterion.

Firms can run campaigns to maximize reach, clickthrough rate, or any other metric for which

they have a known function. We are currently exploring other applications of PAC.
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A. Proof of Lemma 1

Since D has full column rank, by reordering the rows if necessary, we can write D as

D =

 D1

D2


where D1 ∈ Rp×p is an invertible matrix and D2 ∈ Rr−p×p. Then,

1

2

∥∥∥Y − X̃θ
∥∥∥2

2
+ λ ‖Dθ‖1 =

1

2

∥∥∥Y − X̃D−1
1 D1θ

∥∥∥2

2
+ λ ‖D1θ‖1 + λ ‖D2θ‖1

=
1

2

∥∥∥Y − (X̃D−1
1 )D1θ

∥∥∥2

2
+ λ ‖D1θ‖1 + λ

∥∥D2D
−1
1 D1θ

∥∥
1

Using the change of variables

β1 = D1θ, β2 = D2D
−1
1 D1θ = D2D

−1
1 β1, and β =

 β1

β2

 ,

we can rewrite the generalized lasso problem as follows:

min
θ∈Rp

1

2

∥∥∥Y − X̃θ
∥∥∥2

2
+ λ ‖Dθ‖1 = min

β∈Rr

{
1

2

∥∥∥Y − X̃D−1
1 β1

∥∥∥2

2
+ λ ‖β‖1

∣∣ D2D
−1
1 β1 − β2 = 0

}
,

= min
β∈Rr

{
1

2
‖Y −Xβ‖2

2 + λ ‖β‖1

∣∣ Cβ = 0

}
,

where X =
[
X̃D−1

1 0
]

and C =
[
D2D

−1
1 − I

]
. Note that θ = [D−1 0]

 β1

β2

, and

thus, the generalized lasso is a special case of the constrained lasso, which is a standard

formulation for PAC.

B. comScore Data Details

Table 4 provides an overview of correlation in viewership among the 16 website groups in

the data for the NCL case study. The table includes both within-group correlations and

among-group correlations. Within-group correlation in the table is calculated by taking the

mean of all absolute correlations between websites in a particular group. These are displayed

on the diagonal. For example, in January 2011 the Gaming category shows extremely low

average correlation in viewership with other Gaming websites (0.01). Most groups show very
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low average correlations; the highest comes from the Travel category (0.14), which we expect

due to users doing travel website price comparisons.

The off-diagonal elements of Table 4 show the maximum absolute correlation between

each pair of groups. This is calculated by taking the maximum correlation between two

websites from the respective groups. For example, in January 2011 there is a high correlation

of 0.89 between an E-mail and Portal site. Likely this means users are accessing a particular

portal site (for example, Yahoo) and also receiving e-mail there. In contrast, there is a low

correlation between E-mail and Filesharing sites, only 0.04. Particular e-mail users are not

also using the same Filesharing website.

C. Extension to Inequality Constraints

We can also consider the more general optimization problem given by (5). One might imagine

that a reasonable approach would be to initialize with β such that

Cβ ≤ b (12)

and then apply a coordinate descent algorithm subject to ensuring that at each update (12)

is not violated. Unfortunately, this approach typically gets stuck at a constraint boundary

point where no improvement is possible by changing a single coordinate. In this setting the

criterion can often be improved by moving along the constraint boundary, but such a move

requires adjusting multiple coefficients simultaneously which is not possible using coordinate

descent, because it only updates one coefficient at a time.

Instead we introduce a set of m slack variables δ so that (12) can be equivalently ex-

pressed as

Cβ + δ = b, δ ≥ 0 or C̃β̃ = b, δ ≥ 0, (13)

where β̃ = (β, δ) is a p + m-dimensional vector, C̃ = [C I], and I is an m-dimensional

identity matrix. Let eδ(a) be a function which selects out the elements of a that correspond

to δ. For example, eδ(β̃) = δ while eδ̄(β̃) = β. Then, the inclusion of the slack variables in

(13) allows us to reexpress the criterion (5) as

arg min
β̃

1

2
‖Y − X̃β̃‖2

2 + λ‖eδ̄(β̃)‖1 such that C̃β̃ = b, eδ(β̃) ≥ 0, (14)

29



where X̃ = [X 0], and 0 is a n by m matrix of zero elements. The criterion in (14) is

very similar to the equality PAC, (5). The only differences are that the components of β̃

corresponding to δ do not appear in the penalty term and are required to be non-negative.

Even with these minor differences, the same basic approach from Section 4 can still be

adopted for fitting (14). In particular Lemma 4 provides a set of conditions under which (5)

can be solved.

Lemma 4. For a given index set A and vector s such that eδ(s) = 0, define β̃Ā,s by:

β̃Ā,s = arg min
θ

1

2
‖Ỹ −X∗θ‖2

2 + λ‖eδ̄(θ)‖1 such that eδ(θ) ≥ 0, (15)

where Ỹ = Y − X̃AC̃−1
A b + λX−

(
C̃−1
A C̃Ā

)T
s, X− is a matrix such that X∗TX− = I and

X∗ = X̃Ā − X̃AC̃−1
A C̃A. Suppose

eδ̄(s) = sign
(
eδ̄

(
β̃A,s

))
, (16)

eδ

(
β̃A,s

)
≥ 0, (17)

where β̃A,s = C̃−1
A

(
b− C̃Āβ̃Ā,s

)
. Then, the solution to the PAC criterion (5) is given by

eδ̄(β̃) where,

β̃ =

β̃A,s
β̃Ā,s

 .
The proof of this result is similar to that for Lemma 3, so we omit it here. Lemma 4

shows that, provided an appropriate A and s are chosen, the solution to the PAC can still

be computed by solving a lasso type criterion, (15). However, we must now ensure that both

(16) and (17) hold. Condition 16 is equivalent to (8) in the equality constraint setting, while

(17) along with the constraint in (15) ensure that δ ≥ 0. We use the same strategy as in

Section 4. First, obtain an initial coefficient estimate, β̃0. Next, select A corresponding to

the largest m elements of |β̃0|, say β̃A. Finally, the m-dimensional s vector is chosen by

fixing eδ̄(s) = sign(eδ̄(β̃A)) and setting the remaining elements of s to zero, i.e. eδ(s) = 0.

β̃A is our initial guess for β̃A,s so as long as β̃A is sign consistent for β̃A,s then (16) will hold.

Similarly, by only including the largest current values of δ in A, for a small enough step in

λ, none of these elements will become negative, and (17) will hold.

30



Algorithm 2 PAC with Inequality Constraints

1. Initialize β̃0 by solving (14) using λ0 = λmax.

2. At step k select Ak and sk using the largest m elements of |β̃k−1| and set

λk ← 10−αλk−1.

3. Compute β̃Āk,sk by solving (15). Let β̃Ak,sk = C̃−1
Ak

(
b− C̃Āk

β̃Āk,sk

)
.

4. If (16) and (17) hold then set β̃k =

β̃Ak,sk

β̃Āk,sk

, k ← k + 1 and return to 2.

5. If (16) or (17) do not hold then the step size must be too large. Hence, set

λk ← λk−1 −
1

2
(λk−1 − λk)

and return to 3.

6. Iterate until λk < λmin.

Hence, Algorithm 2 can be used to fit the inequality PAC criterion. Notice that Algorithm

2 only involves slight changes to Algorithm 1. In particular solving (15) in Step 3 poses little

additional complication over fitting the standard lasso criterion. The only differences are

that the elements of θ that correspond to δ, i.e. eδ(θ), have zero penalty and must be

non-negative. However, these changes are simple to incorporate into a coordinate descent

algorithm. For any θj that is an element of eδ(θ), we first compute the unshrunk least

squares estimate, θ̂j, and then set

θ̃j =
[
θ̂j

]
+
. (18)

It is not hard to show that (18) enforces the non-negative constraint on δ while also ensuring

that no penalty term is applied to the slack variables. The update step for the original β

coefficients, eδ̄(θ) (those that do not involve δ), is identical to that for the standard lasso.

The initial solution, β̃0, can still be computed by solving a standard linear programming

problem, subject to inequality constraints.
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D. Algorithm Implementation Details

Implementing the PAC lasso algorithm requires making a choice for X−, which is generally

not difficult. If p ≤ n + m, then it is easy to see that X− = UD−1VT satisfies X∗TX− = I

where X∗ = UDVT represents the singular value decomposition of X∗. If p > n+m, then we

use the fact that in general for Lemma 3 to hold, we only require X− to be chosen such that

βĀ,s = X−
T
X∗βĀ,s, (19)

where βĀ,s is the solution to (7). But standard properties of the lasso tell us that βĀ,s

can have at most n non-zero components. Hence, (19) will hold if we choose X− to be the

inverse of the columns of X∗ corresponding to the (at most) n non-zero elements of βĀ,s.

Of course we do not know a priori with complete certainty which elements of βĀ,s will be

non-zero. However, based on the solution to the previous step in the algorithm, it is easy to

compute the elements that are furthest from becoming non-zero, and these can generally be

safely ignored in computing X−. On the rare occasions where an incorrect set of columns is

selected, we simply reduce the step size in λ.

As mentioned in Section 4, one can generally initialize the algorithm using the solution

to (9). However, this approach could potentially fail if one of the constraints in C is parallel

with ‖β‖1, for example
∑
βj = 1, in which case there may not be a unique solution to (9).

In this setting we use quadratic programming to initialize the algorithm, which is slightly

less efficient but does not unduly impact the computational burden, because the solution

only needs to be found for a single value of λ.

E. Proofs of Lemmas 2 and 3

Consider any index set A such that CA is non-singular. The constraint Cβ = b can be

written as

CAβA + CĀβĀ = b ⇔ βA = C−1
A (b−CĀβĀ) ,
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and thus, we can determine βA from βĀ. Then, for any β such that Cβ = b,

1

2
‖Y −Xβ‖2

2 + λ ‖β‖1

=
1

2
‖Y −XĀβĀ −XAβA‖2

2 + λ ‖βĀ‖1 + λ ‖βA‖1

=
1

2

∥∥Y −XĀβĀ −XAC−1
A (b−CĀβĀ)

∥∥2

2
+ λ ‖βĀ‖1 + λ

∥∥C−1
A (b−CĀβĀ)

∥∥
1

=
1

2

∥∥[Y −XAC−1
A b
]
−
(
XĀ −XAC−1

A CĀ
)
βĀ
∥∥2

2
+ λ ‖βĀ‖1 + λ

∥∥C−1
A (b−CĀβĀ)

∥∥
1
.

By using the change of variable θ = βĀ, the PAC problem is equivalent to the following

unconstrained optimization problem:

min
θ

1

2
‖Y ∗ −X∗θ‖2

2 + λ ‖θ‖1 + λ
∥∥C−1
A (b−CĀθ)

∥∥
1
,

and let θĀ denote a solution to the above optimization problem. Then, a solution to the

original PAC problem is given

β =

 βA
βĀ

 =

 C−1
A (b−CĀθĀ)

θĀ

 ,

and this completes Lemma 2.

To prove Lemma 3, consider an arbitrary βĀ,s and s such that s = sign
(
C−1
A
(
b−CĀβĀ,s

))
.

Let F : Rp−m → R+ denote the objective function of the optimization problem in Equa-

tion (6); that is, for each θ,

F (θ) =
1

2
‖Y ∗ −X∗θ‖2

2 + λ ‖θ‖1 + λ
∥∥C−1
A (b−CĀθ)

∥∥
1
.

By definition of βĀ, we have F (βĀ) ≤ F (βĀ,s). To complete the proof, it suffices to show

that F (βĀ,s) ≤ F (βĀ). Suppose, on the contrary, that F (βĀ,s) > F (βĀ). For each α ∈ [0, 1],

let θα ∈ Rp−m and g(α) ∈ R+ be defined by:

θα ≡ (1− α)βĀ,s + αβĀ and g(α) ≡ F (θα) = F
(
(1− α)βĀ,s + αβĀ

)
.

Note that g is a convex function on [0, 1] because F (·) is convex. Moreover, we have g(0) =

F (βĀ,s) > F (βĀ) = g(1). Thus, for all 0 < α ≤ 1,

g(α) = g(α · 1 + (1− α) · 0) ≤ αg(1) + (1− α)g(0) < g(0) .
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By our hypothesis, |si| = 1 for all i, and thus, every coordinate of the vector C−1
A
(
b−CĀβĀ,s

)
is bounded away from zero. So, we can choose α0 sufficiently small so that

sign
(
C−1
A (b−CĀθα0)

)
= sign

(
C−1
A
(
b−CĀβĀ,s

))
.

Then, it follows that

F (θα0) =
1

2
‖Y ∗ −X∗θα0‖

2
2 + λ ‖θα0‖1 + λsTC−1

A (b−CĀθα0)

=
(Y ∗)TY ∗

2
− (Y ∗)TX∗θα0 − λsTC−1

A CĀθα0 +
(X∗θα0)

TX∗θα0

2
+ λ ‖θα0‖1 + λsTC−1

A b

=
(Y ∗)TY ∗

2
− (Y ∗)TX∗θα0 −

(
λX−

(
C−1
A CĀ

)T
s
)T

X∗θα0

+
(X∗θα0)

TX∗θα0

2
+ λ ‖θα0‖1 + λsTC−1

A b

=
1

2

∥∥∥Ỹ −X∗θα0

∥∥∥2

2
+ λ ‖θα0‖1 + d

where the last equality follows from Ỹ = Y ∗ + λX−
(
C−1
A CĀ

)T
s, and d is defined by

d = −λ(Y ∗)TX−
(
C−1
A CĀ

)T
s −

[
λX−

(
C−1
A CĀ

)T
s
]T [

λX−
(
C−1
A CĀ

)T
s
]

2
+ λsTC−1

A b .

Also, the third equality follows from the fact that (X−)TX∗ = I.

It follows from the same argument that

F (θA,s) =
1

2

∥∥∥Ỹ −X∗θA,s

∥∥∥2

2
+ λ ‖θA,s‖1 + d

Since g(α) < g(0), we have that F (θα0) < F (βĀ,s), and this implies that

1

2

∥∥∥Ỹ −X∗θα0

∥∥∥2

2
+ λ ‖θα0‖1 <

1

2

∥∥∥Ỹ −X∗βĀ,s

∥∥∥2

2
+ λ

∥∥βĀ,s∥∥1
,

but this contradicts the optimality of βĀ,s! Therefore, it must be the case that F (βĀ,s) ≤ F (βĀ),

which completes the proof.

F. Simulation Studies: PAC Comparison to Binomial Methods

In this section, we present further simulation results to compare PAC’s performance relative

to unconstrained binomial fits. Here we consider the setting corresponding to data generated

from a binomial logistic regression model with g(β) equal to the corresponding loglikelihood.

The setup for the binomial simulation results is very similar to the procedure followed in
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Section 5.1. We again consider six simulation settings, three different combinations of n

observations and p predictors, and two different correlation structures. The training data

sets and constraints are produced in an identical fashion to that in Section 5.1 except that

the response is Bernoulli with a logistic link. However, instead of using RMSE for our error

computations, the error metric is the percentage of incorrect binomial predictions. This

process is repeated 100 times for each of the six settings.

The test error values for the six resulting settings are displayed in Table 5. GLM versions

of the four comparison methods from Table 2 are included, along with the Bayes error rate

for comparison. For the low-dimensional, traditional setting (m = 5, n = 100, p = 50),

PAC shows a moderate improvement over the standard logistic regression fit. As in the

lasso case presented in Section 5.1, one might expect this result given this is a relatively

low-dimensional problem with only a small number of constraints. Both relaxed methods

display lower error rates than their unrelaxed counterparts, and the higher correlations in

the ρ = 0.5|i−j| design structure do not change the relative rankings of the four approaches.

For the second, more complex situation with n = 1000, p = 500, and m = 10,7 the low ratio

of m relative to p results in PAC showing only small improvements over its unconstrained

counterparts. Again, however, our main purpose in examining this setting was to prove that

the PAC algorithm is still efficient enough to optimize the constrained criterion even for large

data sets and very high-dimensional data.

The final setting examined data with n = 50, p = 100 and a larger number of constraints,

m = 30. This setting is more statistically favorable for PAC, because it has the potential

to produce significantly more accurate regression coefficients by correctly incorporating the

larger number of constraints. However, this is also a computationally difficult setting for

PAC, because a large value of m causes the coefficient paths to be highly variable. Neverthe-

less, the large improvements in accuracy for both PAC and relaxed PAC demonstrate that

our algorithm is quite capable of dealing with this added complexity.

7We use a larger value for n in the binomial setting because these distributions provide less information

for estimating the regression coefficients.
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ρ Bayes GLM PAC Relaxed GLM PAC Relaxed

n = 100, p = 50 0 12.27(0.11) 19.36(0.23) 18.56(0.24) 19.33(0.45) 17.68(0.31)

m = 5 0.5|i−j| 9.30(0.10) 14.60(0.18) 14.08(0.19) 14.51(0.20) 13.34(0.25)

n = 1000, p = 500 0 11.02(0.19) 12.33(0.22) 12.00(0.26) 12.14(0.26) 11.68(0.28)

m = 10 0.5|i−j| 8.60(0.19) 10.15(0.28) 9.76(0.31) 10.01(0.33) 9.44(0.27)

n = 50, p = 100 0 8.20(0.06) 43.17(1.07) 36.06(0.85) 41.60(1.01) 31.23(0.63)

m = 30 0.5|i−j| 7.26(0.10) 37.73(1.58) 28.03(0.78) 35.67(1.47) 24.54(0.70)

Table 5: Average misspecification error (in percentages) over 100 training data sets for four bino-

mial methods tested in three different simulation settings and two different correlation structures.

The Bayes error rate is given for comparison; it represents the minimum error rate. The numbers

in parentheses are standard errors, also in percentages.
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