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Abstract

Numerous penalization based methods have been proposed for fitting a tra-

ditional linear regression model in which the number of predictors, p, is large

relative to the number of observations, n. Most of these approaches assume

sparsity in the underlying coefficients and perform some form of variable se-

lection. Recently, some of this work has been extended to non-linear additive

regression models. However, in many contexts one wishes to allow for the pos-

sibility of interactions among the predictors. This poses serious statistical and

computational difficulties when p is large, as the number of candidate interac-

tion terms is of order p2. We introduce a new approach, “Variable selection

using Adaptive Non-linear Interaction Structures in High dimensions” (VAN-

ISH), that is based on a penalized least squares criterion and is designed for

high dimensional non-linear problems. Our criterion is convex and enforces the

heredity constraint, in other words if an interaction term is added to the model,

then the corresponding main effects are automatically included. We provide

theoretical conditions under which VANISH will select the correct main effects

and interactions. These conditions suggest that VANISH should outperform

certain natural competitors when the true interaction structure is sufficiently

sparse. Detailed simulation results are also provided, demonstrating that VAN-

ISH is computationally efficient and can be applied to non-linear models involv-

ing thousands of terms while producing superior predictive performance over

other approaches.

Some key words: Non-Linear Regression; Interactions; Heredity structure; Regularization;

Variable Selection

1 Introduction

Recently considerable attention has focussed on fitting the traditional linear regression

model,

Yi = β∗
0 +

p∑

j=1

β∗
jXij + ǫi, i = 1, . . . n, (1)
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when the number of predictors, p, is large relative to the number of observations,

n. In this situation there are many methods that outperform ordinary least squares

(Frank and Friedman, 1993). One common approach is to assume that the true

number of regression coefficients, i.e. the number of nonzero β∗
j ’s, is small, in which

case estimation results can be improved by performing some form of variable selection.

An important class of variable selection methods utilizes penalized regression. The

most well known of these procedures is the Lasso (Tibshirani, 1996) which imposes

an L1 penalty on the coefficients. Numerous alternatives and extensions have been

suggested. A few examples include SCAD (Fan and Li, 2001), the Elastic Net (Zou and

Hastie, 2005), the Adaptive Lasso (Zou, 2006), the Group Lasso (Yuan and Lin, 2006),

the Dantzig selector (Candes and Tao, 2007), the Relaxed Lasso (Meinshausen, 2007),

VISA (Radchenko and James, 2008), and the Double Dantzig (James and Radchenko,

2009).

Penalized regression methods have now been extensively studied for (1). This

paper extends the linear regression model in two important directions. First, we

remove the additive assumption by including interaction terms, using the standard

two-way interaction model,

Yi = β∗
0 +

p∑

j=1

β∗
jXij +

∑

j>k

β∗
jkXijXik + ǫi, i = 1, . . . n. (2)

Second, we extend (2) to the more general non-linear domain using,

Yi = β∗
0 +

p∑

j=1

f ∗
j (Xij) +

∑

j>k

f ∗
jk(Xij, Xik) + ǫi, i = 1, . . . n. (3)

While (2) and (3) are well known models, fitting them involves estimating on the

order of p2 terms, most of which, in the case of (3), are two-variate functions. Thus

fitting these models presents a considerable computational and statistical challenge

for large p.

A relatively small number of papers have been written on sparse high dimen-

sional models involving interactions or non-linearity. Choi et al. (2010) propose an

approach, SHIM, for fitting (2) and also extend SHIM to generalized linear models.

A nice aspect of SHIM is that it enforces a hierarchical structure where main effects

are automatically added to a model at the same time as the corresponding interaction

term. SHIM also possesses the oracle property of Fan and Li (2001). However, its op-

timization criterion is non-convex so it is only examined with up to p = 10 predictors,

corresponding to 45 interaction terms. SHIM is not used to fit the non-linear model,

(3). The SpAM approach of Ravikumar et al. (2009) fits a sparse additive model

by imposing a penalty, λ
∑p

j=1 ‖fj‖2, on the empirical L2 norms of the main effects.

Meier et al. (2009) fit the same model but also incorporate a smoothness term in

the penalty function, λ
∑p

j=1

√
‖fj‖22 +

∫
f ′′

j (x)2dx, leading to interesting theoetical
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properties. Fan et al. (2010) extend the sure independence screening approach of Fan

and Lv (2008) to the ultrahigh dimensional non-linear setting. However, while the

approaches of Ravikumar et al. (2009), Meier et al. (2009), and Fan and Lv (2008),

can all work well on additive models, they are not designed to fit non-linear interac-

tion models such as (3). Yuan (2007) use a non-negative garrote to fit a non-linear

regression model. However, while they discuss fitting (3), in practice they only imple-

ment additive models. Lin and Zhang (2006) propose a method called COSSO that

can fit (3) but only appears feasible for relatively low dimensional settings.

A simple approach to fit (3) would be to use a penalty function of the form

P (f) = λ

(
p∑

j=1

‖fj‖2 +

p∑

j=1

p∑

k=j+1

‖fjk‖2

)
. (4)

Minimizing the usual sum of squares plus the penalty (4) has the effect of shrinking

most of the main effect and interaction terms to zero, in a similar manner to that

of the Lasso in the linear setting. This is a natural extension of SpAM so we call it

the “SpAM with Interactions” (SpIn) method. However, SpIn has some significant

drawbacks. First, it is inefficient, because it treats interactions and main effects

similarly, when in fact an entry of an interaction into the model generally adds more

predictors than an entry of a main effect, and is also harder to interpret. Second, for

sufficiently large p it is computationally prohibitive to naively estimate p2 different

terms.

Instead we introduce a novel convex penalty function that enforces the heredity

constraint and also automatically adjusts the degree of shrinkage on the interactions

depending on whether the main effects are already present in the model. The penalty

function motivates a computationally efficient block coordinate descent algorithm that

handles models involving thousands of interaction terms. One consequence of the

algorithm is to make it easier to enter the model for interaction terms corresponding

to predictors that have already been added. Thus, it reduces the false positive rate

among interaction terms.

The paper is set out as follows. In Section 2 we present our approach, called “Vari-

able selection using Adaptive Non-linear Interaction Structures in High dimensions”

or VANISH for short. VANISH extends the high dimensional linear model (1) both

by incorporating interaction terms and by allowing the main effects and interactions

to be non-linear. We also provide an efficient coordinate descent algorithm for fitting

VANISH. Our theoretical results are given in Section 3. Here we provide conditions

under which VANISH will select the correct model with probability tending to one,

as n and p tend to infinity. Further, these conditions suggest that VANISH should

outperform SpIn when the true interaction structure is sufficiently sparse. A number

of detailed simulation results, both for linear and non-linear models, are surveyed in

Section 4. These simulations involve up to 5, 000 interaction terms and demonstrate

that VANISH is computationally efficient for moderate scale data sets and has bet-
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ter estimation accuracy than competing methods. We end with an application of

VANISH on a real data set in Section 5 and a discussion in Section 6.

2 Methodology

In this section we present the VANISH method. The model and the optimization

criterion are detailed in Section 2.1. Then in Section 2.2 we derive a coordinate descent

algorithm. Methods for accelerating the fitting algorithm are covered in Section 2.3.

2.1 Optimization Criterion

Our goal is to fit the general non-linear model (3). We assume that p is large, but

only a small fraction of the main effects and interaction terms are present in the true

model. We can express (3) as

Y =

p∑

j=1

f∗j +

p∑

j=1

p∑

k=j+1

f∗jk + ǫ, (5)

where f∗j =
(
f ∗

j (X1j), ..., f
∗
j (Xnj)

)T
, f∗jk =

(
f ∗

jk(X1j, X1k), ..., f
∗
jk(Xnj, Xnk)

)T
, and Y

and ǫ are n-dimensional vectors corresponding to the response and the error terms,

respectively. Here it is understood that f ∗
jk(a, b) = f ∗

kj(b, a) for all a and b and

all j 6= k. We don’t include an intercept term in this model, because we center Y,

the f∗j ’s and the f∗jk’s. The estimate for the intercept, which we do not penalize, can

be computed from the fitted model. We assume, for concreteness, that Xij ∈ [0, 1] for

all i and j.

We consider candidate vectors {fj , fjk} that are defined analogously to their true

counterparts. The corresponding functions are assumed to belong to some pre-

specified finite dimensional space. Our general approach for fitting (5) is to minimize

the following penalized regression criterion,

1

2
‖Y − f‖2 + P (f), (6)

where

f =

p∑

j=1

fj +

p∑

j=1

p∑

k=j+1

fjk,

and P (f) is a penalty function on f . However, the choice of the penalty function is

crucial to the performance of the method.

The SpIn approach, which uses the penalty function given by (4), is an obvious

candidate. However, as discussed in the introduction, a significant disadvantage to

SpIn is that it treats the main effects and interactions equivalently. We argue that, “all

else equal”, there are two reasons one would prefer to add main effects to the model
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ahead of interaction terms. First, adding an interaction when the corresponding main

effects are not present results in two new predictors. In terms of model sparsity this is

the equivalent of adding two main effects. Second, interaction terms are more difficult

to interpret than main effects, thus, given similar predictive ability, one would prefer

to add a main effect ahead of an interaction. SpIn does not account for either of these

concerns.

Instead we suggest a more refined penalty function,

P (f) = λ1

p∑

j=1

(
‖fj‖2 +

p∑

k: k 6=j

‖fjk‖2
)1/2

+ λ2

p∑

j=1

p∑

k=j+1

‖fjk‖ , (7)

which automatically addresses the above issues. In the discussion section we provide

an extension of (7) to higher order interactions. The norm ‖·‖ that we use is the usual

Euclidean vector norm. We show in the next few sections that the VANISH algorithm

resulting from (7) has several desirable properties. In particular, it turns out that λ1

can be interpreted as the weight of the penalty for each additional predictor included in

the model, while λ2 corresponds to an additional penalty on the interaction terms for

the reduction in interpretability of a non-additive model. We also show in Sections 3

and 4 that the VANISH estimator has desirable theoretical properties and results in

strong performance in comparison to other methods. In addition, penalty function (7)

imposes the heredity constraint and, unlike the approach of Choi et al. (2010), has

the advantage of producing a convex optimization criterion.

In order for (6) to have a non-trivial solution some form of smoothness constraint

must be imposed on the fj’s and fjk’s. Two standard approaches are to include

a smoothness penalty in the optimization criterion or, alternatively, to restrict the

functions to some finite-dimensional class. In this setting either approach could be

adopted but we use the latter method. More specifically, we represent the candidate

main effect functions using a preselected finite orthonormal basis with respect to the

Lebesgue measure on the unit interval, {ψ1(·), ..., ψdm
(·)}, and we represent the inter-

action functions using a preselected orthonormal basis with respect to the Lebesgue

measure on the unit square, {φ1(·, ·), ..., φdin
(·, ·)}. The assumption we are making is

that f ∗
j and f ∗

jk are well approximated by the ψ’s and the φ’s respectively. The exact

statement of this assumption and further details on the construction of the basis are

given in the theory section.

Recall that we center all the candidate functions, so the basis functions are centered

as well. Let Ψj denote the n by dm matrix with the (i, k)-th entry given by ψk(Xij),

and let Φjk denote the n by din matrix with the (i, l)-th entry given by φl(Xij , Xik).

Hence the main effects and interaction terms can be expressed as fj = Ψjβj and fjk =

Φjkβjk where βj and βjk respectively denote the dm and din-dimensional vectors

of basis coefficients for the j-th main effect, and the jk-th interaction term. We

write β̂j, β̂jk, f̂j and f̂jk for the corresponding estimates and assume that Φjk = Φkj

and βjk = βkj. Using this basis function representation, the optimization criterion
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given in (6) and (7) can be expressed as

1

2

∥∥∥∥∥Y −
p∑

j=1

Ψjβj −
p∑

j=1

p∑

k=j+1

Φjkβjk

∥∥∥∥∥

2

+

(8)

λ1

p∑

j=1

(
∥∥Ψjβj

∥∥2
+

p∑

k: k 6=j

∥∥Φjkβjk

∥∥2

)1/2

+ λ2

p∑

j=1

p∑

k=j+1

∥∥Φjkβjk

∥∥

Our general approach is to minimize (8) over βj ∈ R
dm ,βjk ∈ R

din . Note that the

criterion is strictly convex in the parameters as long as the columns of each Ψ and Φ

matrix are linearly independent. The last requirement will hold with probability one

if dm and din are less than n.

2.2 Fitting the Penalized Optimization

We use the block coordinate descent method to fit the VANISH model (Fu, 1998;

Friedman et al., 2007; Wu and Lange, 2008). This approach works by cycling through

all the terms in the expansion, i.e. all the main effects and all the interaction terms,

at each step holding all but one term fixed. The VANISH penalty function is not

separable with respect to the different terms, hence the coordinate descent need not

optimize the criterion for all values of the tuning parameters. However, for the types

of sparse fits we are interested in achieving one can write out sufficient conditions for

the algorithm to converge to the correct solution. For example, the algorithm will

optimize the criterion when λ2 is sufficiently large, which falls in line with the sparse

interaction setting that VANISH is designed to fit.

Direct calculation shows that the following iterative method provides the coordi-

nate descent algorithm corresponding to (8).

VANISH Algorithm

0. Initialize β̂j, β̂jk for all j, k ∈ {1, ..., p}. Let Sj = Ψj(Ψ
T
j Ψj)

−1ΨT
j and Sjk =

Φjk(Φ
T
jkΦjk)

−1ΦT
jk represent the projection matrices for the main effects and

interaction terms respectively.

For each j ∈ {1, ..., p},

1. Compute the residual: Rj = Y −
∑

l:l 6=j f̂l −
∑

k>l f̂lk.

2. Compute P̂j = SjRj, the projection of the residual onto the space spanned by

the columns of Ψj . This gives the unshrunk estimate of fj .

3. Set f̂j = αjP̂j where 0 ≤ αj ≤ 1 is the shrinkage parameter defined below.

For each (j, k) with 1 ≤ j < k ≤ p,
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4. Compute the residual: Rjk = Y −∑p
l=1 f̂l −

∑
m>l, (l,m)6=(j,k) f̂lm

5. Compute P̂jk = SjkRjk, the projection of the residual onto the space spanned

by the columns of Φjk. This gives the unshrunk estimate of fjk.

6. Set f̂jk = αjkP̂jk where 0 ≤ αjk ≤ 1 is the shrinkage parameter defined below.

Iterate the steps 1 through 6 until convergence.

Remark. It is well known that penalized regression methods can over

shrink coefficient estimates. A common solution is to use the unshrunk least

squares fits based on the currently selected model. See for example the Relaxed

Lasso approach of Meinshausen (2007). For the remainder of this paper we

take a similar approach, producing, for each λ, final estimates for the functions

using the least squares fits based on the current VANISH model.

When the quantity cj =
∑

k:k 6=j ‖f̂jk‖2 is zero, the shrinkage parameter from step 3

can be computed in closed form using the equation αj =
(
1− λ1/‖P̂j‖

)

+
, where (·)+

represents the positive part. When cj is nonzero, the shrinkage parameter is derived

by solving the equation

αj



1 +
λ1√

α2
j‖P̂j‖2 + cj



 = 1. (9)

Equation (9) can be solved by applying the Newton-Raphson method, but instead

of iterating until convergence, we only do one step. We have found that in practice

the number of sweeps through all the terms does not increase after this simplification.

Generally VANISH is fitted using a grid of tuning parameters. In this case we initialize

Newton-Raphson using the corresponding αj from the previous fit on the grid. Typi-

cally, the fitted models contain few interaction terms, so cj = 0 for most j, and αj can

be computed directly. Note that after solving for αj we set β̂j = αj(Ψ
T
j Ψj)

−1ΨT
j Rj

and f̂j = Ψjβ̂j = αjP̂j.

The shrinkage parameter for the interaction terms from step 6 can be computed

in a similar fashion. Let c1jk = ‖f̂j‖2 +
∑

l /∈{j,k} ‖f̂jl‖2 and c2jk = ‖f̂k‖2 +
∑

l /∈{j,k} ‖f̂kl‖2.
If c1jk = c2jk = 0 then the shrinkage parameter can be computed in closed form using

the equation αjk =
(
1− (2λ1 + λ2)/‖P̂jk‖

)

+
. Alternatively, if both c1jk and c2jk are

nonzero, the shrinkage parameter is derived by solving the equation

αjk‖P̂jk‖



1 +
λ1√

α2
jk‖P̂jk‖2 + c1jk

+
λ1√

α2
jk‖P̂jk‖2 + c2jk



 =
(
‖P̂jk‖ − λ2

)

+
. (10)
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Finally, if only one of these quantities is nonzero, say c1jk, then the shrinkage parameter

satisfies

αjk‖P̂jk‖



1 +
λ1√

α2
jk‖P̂jk‖2 + c1jk



 =
(
‖P̂jk‖ − λ1 − λ2

)

+
. (11)

As before, we solve for αjk using one step of the Newton-Raphson method which

again proved to be more computationally efficient in practice. Note that after solving

for αjk we set β̂jk = αjk(Φ
T
jkΦjk)

−1ΦT
jkRjk and f̂jk = Φjβ̂jk = αjkP̂jk.

Examination of the above equations for αj and αjk shows that terms will be added

to the model if and only if the norms of their unshrunk estimates, ‖P̂‖, are above a

given threshold, with the threshold varying for different terms. For the main effect, fj ,

the threshold is given by

Threshold for fj to enter =

{
λ1 , ‖fjk‖ = 0 for all k

0 , otherwise.

If none of the interactions associated with fj have entered the model, then its threshold

equals λ1, the same as for the SpAM method. However, if any fjk enters the model,

then the threshold for fj drops to zero. This is intuitive, because in this case adding

the main effect would not introduce any new predictors. This change in threshold

can be seen by noting that cj > 0 implies, through equation (9), that αj > 0. Hence,

if an interaction term enters the model, the two corresponding main effects must

also enter the model, automatically implementing the standard hierarchical principal.

For the remainder of this paper we make the assumption that the heredity structure

holds for the true model. This is a common assumption that significantly reduces the

complexity of the high dimensional data, making the problem more tractable.

The threshold for adding the interaction term, fjk, is as follows,

Threshold for fjk to enter = λ2 +






2λ1 , ‖fj‖ = ‖fk‖ = 0

λ1 , either ‖fj‖ 6= 0 or ‖fk‖ 6= 0

0 , ‖fj‖ 6= 0 and ‖fk‖ 6= 0,

i.e. λ2 plus λ1 multiplied by the number of main effects, fj and fk, that are absent

from the model. For example, if both fj and fk are already in the model, adding fjk
introduces no new predictors, so equation (10) shows that the threshold drops to λ2,

corresponding to the penalty for moving away from an additive model. However,

if both fj and fk are absent from the model, then including fjk introduces two new

predictors, so the threshold for its entry rises to 2λ1 +λ2. Finally, when exactly one of

the main effects is present, adding the interaction term introduces one new predictor,

so equation (11) shows that the threshold becomes λ1 + λ2.

One can generalize our algorithm, following the reasoning of Ravikumar et al.
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(2009), by allowing Sj and Sjk to be general linear smoothers. Using this approach

the algorithm is identical to the one we outline above, except that the least squares

calculations for ‖P̂j‖ and ‖P̂jk‖ are replaced by a more general operator such as a

kernel smoother or a smoothing spline.

So far we have presented the most general version of VANISH involving both λ1

and λ2. However, in our experience we have generally obtained good results by set-

ting the tuning parameters equal and selecting a single λ = λ1 = λ2. This approach

amounts to imposing the same degree of penalty on model size (λ1) as on interpretabil-

ity of the interaction terms (λ2). Several criteria, such as CV, GCV, BIC or AIC can

be used to select λ. In the simulation studies we used a validation set, and for the

real data we used cross-validation; both methods worked well. We constructed the

path of VANISH solutions by selecting a fine grid of λ’s and iteratively applying the

VANISH algorithm to each grid point, using the previous solution as a warm start.

From here on when we refer to the VANISH estimator, we will mean a point on the

solution path constructed according to this iterative grid approach.

2.3 Accelerating VANISH

A significant difficulty when incorporating interaction terms into a regression context

is that we need to fit of order p2 different terms, requiring multiple sweeps through p2

variables for each value of the tuning parameter. While coordinate descent algorithms

are generally very fast (Friedman et al., 2007; Wu and Lange, 2008), for sufficiently

large p this can be extremely costly computationally. It is also inefficient, because

in practice VANISH will prevent almost all the interaction terms from entering the

model.

Let Aλ represent the active set of variables associated with a tuning parameter λ,

i.e. the variables with non-zero coefficients. When constructing the path of solutions

as a function of the tuning parameter, one typically chooses a grid of λ’s and computes

the solution iteratively at each point. For adjacent points λ and λ′ it is usually the

case that Aλ and Aλ′ are identical or differ by at most one element. Hence, Peng

et al. (2010) and others suggest that, given the current active set, Aλ, one should

first assume Aλ = Aλ′ and iterate through the small number of active variables to

produce the estimated fit. Once convergence is achieved on the candidate active set,

one performs a single sweep through all the variables to ensure that no new predictors

enter the model. If the active set is unchanged, the correct solution has been found.

If the set changes, then the algorithm again iterates through the new Aλ′. Peng et al.

(2010) show that this procedure involves many fewer sweeps through all the variables

and hence provides large computational savings.

We implement a version of this approach. However, even a single sweep through

all p2 terms is expensive and should be avoided where possible. In practice, given our

current fit, most of the interaction terms have almost no chance of entering the model

for a small change in λ. Hence we primarily restrict ourselves to examining a small set
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of candidate variables, Cλ. The set Cλ is defined as all main effects plus the K highest

ranked interaction terms with respect to the difference between their threshold value

for entry and their unshrunk norm, ‖P̂jk‖. There are various strategies for selecting

K. One reasonable approach is to adjust K according to the rank of interactions

entering the model. For example, if an interaction ranked near the top of Cλ enters,

this would suggest K could safely be kept relatively low. However, if interactions

ranked near the bottom of Cλ start being selected, one would be concerned that Cλ
was too small so K should be enlarged. A simple rule might be to keep K at least

twice as large as the largest observed jump. In practice we have found that when

fixing K between 10% and 20% of p and using a sufficiently dense grid of λ’s it was

extremely rare for an interaction term outside Cλ to enter the model.

Using the candidate set Cλ and the current active set Aλ we compute the VANISH

solution at a nearby λ′ using the following accelerated algorithm.

Accelerated Algorithm

0. Set Aλ′ ← Aλ and Cλ′ ← Cλ.

1. Iterate the VANISH algorithm on the variables in Aλ′ until convergence.

2. Iterate through the candidate variables in Cλ′ until convergence. Usually this

only involves a single sweep, because the active set is often the same for λ and λ′.

If no new variables become active then stop.

3. If the active set changes at Step 2, iterate through all variables until convergence

(typically a single sweep) and update Cλ′ with the K highest ranked interaction

terms.

Using this algorithm we often only iterate through the active set Aλ′, with a single

sweep through the small number of elements in Cλ′ . It is only necessary to sweep

through all the variables in situations where the active set changes. Usually this

only involves one sweep, except for the rare situation where Cλ′ does not include all

variables that enter the model. We have found that restricting to this candidate set

significantly accelerates the algorithm without affecting the performance.

3 Theory

As mentioned earlier, we assume the heredity structure for the true model. Let Km

and Kin, respectively, denote the index sets of the true main effects and the true

interaction terms. We define the corresponding estimated sets K̂m and K̂in by analogy.

Further, define sm = |Km|, sin = |Kin| and s = sm + sin. In this section we establish

conditions for sparsistency and persistency of VANISH. Sparsistency means

P (K̂m = Km, K̂in = Kin)→ 1 as n goes to infinity.
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We have omitted the superscript n for simplicity of the notation, but we treat all the

introduced quantities as functions of the sample size. Thus, for example, sm may tend

to infinity along with n. For clarity of exposition we first present our sparsistency

results for the linear VANISH setting in Section 3.1 and then for the more general

non-linear setting in Section 3.2. The definition of persistency and the corresponding

results are provided in Section 3.3. In what follows we assume that the error terms

are i.i.d. gaussian with zero mean and finite variance, although this assumption could

be relaxed to include subgaussian random variables.

3.1 Linear Results

Let b = min{|β∗
j |, |β∗

jk|, j ∈ Km, jk ∈ Kin} denote the smallest signal size in the

true model. We use XK to denote the matrix with columns of the form Xj, j ∈ Km

and Xjk, jk ∈ Kin and let ΣK = XT
KXK. Theorem 1 provides conditions under which

VANISH is sparsistent in the linear setting. It is a consequence of a more general

nonlinear result given in Theorem 2.

Theorem 1 Set λ1 = λ2 and let s and b be bounded above and away from zero,

respectively. In the linear setting VANISH is sparsistent for p as large as exp(n1−ǫ),

with arbitrarily small positive ǫ, as long as λ1 ≍
√

(log p)(log n), and conditions

√
s

1− δ‖X
T
j XKΣ−1

K ‖ ≤ (1 + 2γ)−1/2 , j /∈ Km (12)

√
s

1− δ‖X
T
jkXKΣ−1

K ‖ ≤






(
1
9

+ 8
9
γ
)−1/2

, jk /∈ Kin, j and k /∈ Km(
1
4

+ 2γ
)−1/2

, jk /∈ Kin, either j or k ∈ Km

(1 + 8γ)−1/2 , jk /∈ Kin, j and k ∈ Km

(13)

are satisfied for all j, k where γ = sin/s and δ > 0 is an arbitrarily small constant.

The Lasso bounds generally involve setting the tuning parameter proportional

to
√

log p. In fact, a close analysis of our proof shows that one could also set λ1

proportional to
√

log p without affecting the results of Theorem 1 in any way. Note

that we set λ1 = λ2 in Theorem 1 for notational convenience, but a similar result holds

in the general case. As with the analogous Lasso conditions, (12) and (13) cannot be

verified in practice but are still useful because they allow us to compare VANISH to

the linear version of SpIn, introduced in Section 1. It follows directly from the proofs

in the Appendix that for the SpIn method the right hand sides in the four inequalities

above would equal 1. Hence, since 0 ≤ γ < 1, two of the conditions are weaker for

SpIn, i.e. (12) and the third inequality of (13), one is weaker for VANISH, i.e. the

first inequality of (13), while the final condition depends on the relative sizes of sm

and sin.

As mentioned in the introduction, our goal for VANISH is to relax the restrictive

additive structures associated with most high dimensional methods, which effectively

11



assume γ = 0. However, introducing two way interactions requires considering of

order p2 terms. Hence, even for moderate p, an assumption of sparsity in the inter-

action terms is necessary, both for computational and statistical reasons. With this

in mind, we designed VANISH for the small γ setting. One way to interpret equa-

tions (12) and (13) is that as γ → 0, i.e. the fraction of true interaction terms becomes

small, the VANISH conditions are strictly weaker than their SpIn counterparts for the

first two inequalities in (13), while the other two conditions converge to their SpIn

counterparts. Thus, for low values of γ one may expect VANISH to dominate SpIn.

If one wishes to assume a large γ then neither method dominates in terms of these

conditions. However, it is worth noting that even in this situation the two conditions

that are weaker for SpIn involve only a total of O(p) inequalities while the condition

that is weaker for VANISH involves O(p2) inequalities, using the assumption s = O(1).

3.2 Non-Linear Results

In this section we extend the linear sparsistency results, developed in the previous

section, to the non-linear setting. Let {ψ0 ≡ 1, ψ1, ψ2, ...} be a uniformly bounded

orthonormal basis in L2[0, 1]. Consequently, the set {φl1l2(x, y) = ψl1(x)ψl2(y), l1, l2 =

0, 1, ...} of the corresponding tensor products forms an orthonormal basis in L2[0, 1]2.

We center functions φl1l2 and, to simplify the notation, we let them retain their original

names. We then do exactly the same for the univariate functions ψl. Recall that all

the true effects are assumed to be centered, thus we can represent the j’th true main

effect as
∑∞

l=1 β
∗
ljψl(x) and the jk’th true interaction term as

∑∞
l1,l2=1 β

∗
l1l2jkφl1l2(x, y).

We will follow Ravikumar et al. (2009) and require that all true main effects belong

to the Sobolev space of order two:
∑∞

l=1(β
∗
lj)

2l4 < C2 for each j, with C being

some constant independent of n. We will use S2
C([0, 1]) to denote this space of main

effects. We will also impose the same smoothness requirement on the two univariate

projections corresponding to each true interaction function:
∑∞

l1
(β∗

l1l2jk)
2l41 < C2 and∑∞

l2
(β∗

l1l2jk)
2l42 < C2. We will refer to this space of interaction terms as S2

C([0, 1]2).

Let d be the dimension of the univariate basis used in the VANISH algorithm. We will

assume that it is growing to infinity, but slower than n. For notational convenience,

we will also assume that the dimension of the two-variate basis used in the algorithm

is growing at the order d2.

We write β∗
j and β∗

jk, respectively, for the vectors of basis coefficients for the j-

th main effect, and the jk-th interaction term. Let b = min{‖β∗
j‖∞, ‖β∗

jk‖∞, j ∈
Km, jk ∈ Kin} denote the smallest signal size in the true model relative to the selected

basis. We let ΘK denote the matrix with columns {Ψj, j ∈ Km} and {Φjk, jk ∈ Kin},
and we define ΣK = ΘT

KΘK. For the remainder of this section we will assume that

the eigenvalues of ΣK/n stay bounded above and away from zero as n and p grow.

We define CK and cK as the largest and the smallest eigenvalues, respectively, of the

matrices of the form ΨT
j Ψj or ΦT

jkΦjk for j ∈ Km and jk ∈ Kin. Theorem 2 is our

most general result, providing conditions to guarantee sparsistency in the non-linear

12



setting, for arbitrary p, s, d, b, λ1 and λ2. It is proved in the Appendix.

Theorem 2 Suppose that conditions

M ‖ΨT
j ΘKΣ−1

K ‖ ≤ [sm + sin(2 + λ2/λ1)]
−1/2, j /∈ Km (14)

M ‖ΦT
jkΘKΣ−1

K ‖ ≤
1{j /∈Km} + 1{k/∈Km} + λ2/λ1

(sm + sin[2 + λ2/λ1]2)1/2
, jk /∈ Kin, (15)

and

√
log(sd)

b
√
n

+
s
√
s

b
√
d

+
(λ1 ∨ λ2)

√
s

b
√
n

+
s
√
n

(λ1 ∧ λ2)
√
d

+
d2 log(dp)

λ2
1

+
d2 log(dsm)

λ2
2

→ 0 (16)

hold for all j, k, where M = 1
1−δ

√
CK

cK
and δ > 0 is arbitrarily small. Then VANISH

is sparsistent.

Conditions (14) and (15) are generalizations of their linear versions, (12) and

(13), from Theorem 1. Condition (16) constrains the relative sizes of s, d, n, sm, λ1

and λ2. To better understand it, suppose that the basis dimension grows at the one

dimensional minimax rate n1/5, the true model size is bounded, and the smallest signal

size is bounded away from zero. Then condition (16) will be satisfied for p as large

as exp(n3/5−ǫ), with arbitrarily small positive ǫ, if we set λ1 ≍ λ2 ≍ (n1/2/ logn).

Corollary 1 reexpresses the conditions from Theorem 2 in the format of Theorem 1,

with λ1 = λ2.

Corollary 1 Set λ1 = λ2 and let s and b be bounded above and away from zero, re-

spectively. Then VANISH is sparsistent for p as large as exp(n1−ǫ/d2), with arbitrarily

small positive ǫ, as long as λ1 ≍
√
n/(log n), d≫ logn, and conditions

√
sM‖ΨT

j ΘKΣ−1
K ‖ ≤ (1 + 2γ)−1/2 , j /∈ Km

√
sM‖ΦT

jkΘKΣ−1
K ‖ ≤






(
1
9

+ 8
9
γ
)−1/2

, jk /∈ Kin, j and k /∈ Km(
1
4

+ 2γ
)−1/2

, jk /∈ Kin, either j or k ∈ Km

(1 + 8γ)−1/2 , jk /∈ Kin, j and k ∈ Km

are satisfied for all j, k, where M = 1
1−δ

√
CK

cK
and δ > 0 is arbitrarily small.

As in the linear case, the right hand sides in the four inequalities above would equal 1

for the SpIn method. The same reasoning applies as in the linear case, in other words

the VANISH conditions will dominate those for SpIn as γ → 0.

3.3 Persistence

For a given functionm(·), which may depend on the observed data, predictive riskR(m)

is defined as E
(
Y −m(X1, ..., Xp)

)2
, where the expected value is taken with respect

13



to an independently generated random vector (Y,X1, ..., Xp). For a given functional

classMn, let m∗
n denote the predictive oracle, i.e. the minimizer of the predictive risk

overMn. The empirical counterpart m̂n, which minimizes the sample sum of squares

over the class Mn, is said to be persistent relative to Mn if R(m̂n)− R(m∗
n)→ 0 in

probability as n and p tend to infinity. In this section we derive conditions for the

persistence of the estimator corresponding to the VANISH optimization criterion.

Here we do not assume a particular structure for the true regression function. The

only assumption we impose is that the regression function is uniformly bounded. For

simplicity of exposition we focus on the case λ1 = λ2, although the result that follows

is given for the general case. It is now convenient to view m̂n as the minimizer of the

sum of squares
∑n

i=1

(
Yi −m(Xi1, ..., Xip)

)2
over the class Mn of functions m(x) =∑p

j=1 βjgj(xj)+
∑p

j=1

∑p
k=j+1 βjkgjk(xjk), such that gj ∈ S2

C [0, 1]) and gjk ∈ S2
C([0, 1]2)

for all j and k, and

p∑

j=1

(
|βj|2 +

p∑

k:k 6=j

|βjk|2
)1/2

+

p∑

j=1

p∑

k=j+1

|βjk| ≤ Ln. (17)

Greenshtein and Ritov (2004) show that the Lasso is persistent for Ln = o
(
[n/ logn]1/4

)

when p grows polynomially in n. Ravikumar et al. (2009) establish a similar result for

the SpAM method, and our Theorem 3 provides the corresponding result for VANISH.

Theorem 3 If n = O(p), then

R(m̂n) = R(m∗) +Op

(
L2

n

√
log p

n

)
.

In particular, if Ln = o
(
[n/ log p]1/4

)
then m̂n is persistent over the classMn. If p =

o(n), then the above results hold with the log p factor replaced by logn.

4 Simulation Results

In this section we report results from two simulation studies conducted to compare

the performance of VANISH with other possible competing methods. In Section 4.1

we test VANISH using linear models, while Section 4.2 covers the more general non-

linear situation. Throughout the simulation study we set the two VANISH tuning

parameters, λ1 and λ2, equal to each other.

4.1 Linear

Our first set of results is from high dimensional data generated using a standard linear

regression model. A total of six sets of simulations were performed; corresponding to

differences in the magnitudes of the coefficients and number of interaction terms. For

14



each simulation we generated 100 training data sets, each with n = 75 observations,

and p = 100 main effects. This corresponded to 100 × 101/2 = 5, 050 possible main

effects and interactions. Of these main effects sm = 5 of the regression coefficients

were randomly set to either ±0.5, or to ±1, and the remainder were set to zero. In

addition, each generated model contained sint = 0, sint = 2 or sint = 6 interaction

terms produced by multiplying together two main effects with non-zero coefficients.

The main effects as well as the error terms came from an uncorrelated standard normal

distribution.

In addition to our VANISH approach we fitted five competing methods, “SpAM”,

“SpAMLS”, “SpIn”, “SpInLS” and “Oracle”. SpAM corresponded to the approach of

Ravikumar et al. (2009), with no interaction terms, except that all fitted functions

were restricted to be linear. In this setting SpAM simply amounted to a Lasso fit.

SpAMLS was similar to SpAM except that the final estimates for the non-zero co-

efficients were produced using their least squares estimates rather than their shrunk

counterparts. SpIn also used a linear version of SpAM but included interaction terms,

created by multiplying together all possible pairs of main effects. In this setup interac-

tion terms and main effects were treated similarly. SpInLS took the SpIn models and

estimated the non-zero coefficients using their least squares fits. Finally, the Oracle

approach provided a best case scenario by assuming the correct model was known

and using the least squares estimate to compute the corresponding coefficients. This

method could not be used in a real life situation but represented a gold standard with

which to compare the other methods. The tuning parameters for each method were

selected by generating an independent validation data set, with the same sample size

and characteristics as the original training data, and choosing the parameters that

gave the lowest prediction error on the validation data.

The results from the six simulations are shown in Table 1. For each simulation and

method we report five statistics. “False-Pos Main” is the number of noise main effects

that each method incorrectly included in the final model, while “False-Neg Main” is

the number of true main effects that are incorrectly excluded. “False-Pos Inter” and

“False-Neg Inter” are the corresponding counterparts computed for the interactions.

Finally, “L2-sq” corresponds to the squared Euclidean distance between the vectors

of true and estimated regression coefficients. For this last statistic we placed in bold

font the results that correspond to the best method, or else a method that is not

statistically worse than the best method. The Oracle results were excluded from

this comparison since they are not achievable in practice. False positive and negative

values were not reported for the Oracle because these are, by definition, zero. Similarly

the interaction false positive and negative values were not reported for SpAM because

the method does not fit interaction terms.

VANISH was statistically superior, in terms of L2-sq, to all methods but the Oracle

in all the simulations where the true regression function included interaction terms.

Alternatively, in the settings with Sint = 0 SpAMLS was either statistically indis-

tinguishable from VANISH or statistically better. Because SpAMLS fitted a model
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Simulation Statistic VANISH SpInLS SpIn SpAMLS SpAM Oracle

False-Pos Main 0.81 0.16 0.7 0.74 13.38 −
β = ±1 False-Neg Main 0 0.17 0.08 0 0 −

False-Pos Inter 0.67 5.8 31.42 − − −
Sint = 0 False-Neg Inter 0 0 0 − − −

L2-sq 0.125 0.739 1.54 0.11 0.376 0.068

False-Pos Main 2.03 0.14 0.56 2.77 14.14 −
β = ±0.5 False-Neg Main 0.53 2.75 2.17 0.41 0.07 −

False-Pos Inter 1.2 5.96 20.98 − − −
Sint = 0 False-Neg Inter 0 0 0 − − −

L2-sq 0.331 1.066 1.066 0.309 0.383 0.068

False-Pos Main 2.41 0.2 0.53 1.71 12.88 −
β = ±1 False-Neg Main 0.01 1.24 0.88 0.25 0.07 −

False-Pos Inter 2.03 8.52 27.62 − − −
Sint = 2 False-Neg Inter 0.06 0.63 0.49 − − −

L2-sq 0.408 3.048 3.846 2.79 3.188 0.118

False-Pos Main 2.96 0.08 0.31 2.82 12.46 −
β = ±0.5 False-Neg Main 0.75 3.75 3.11 1.1 0.52 −

False-Pos Inter 2.4 3.65 16.77 − − −
Sint = 2 False-Neg Inter 0.69 1.45 1.18 − − −

L2-sq 0.676 2.023 1.63 1.071 1.033 0.11

False-Pos Main 5.81 0.19 0.34 3.03 11.79 −
β = ±1 False-Neg Main 0.22 2.99 2.52 1.25 0.58 −

False-Pos Inter 6.62 9.99 25.42 − − −
Sint = 6 False-Neg Inter 1.18 3.85 3.46 − − −

L2-sq 2.758 14.674 12.313 8.613 8.253 0.221

False-Pos Main 4.67 0.11 0.27 2.75 9.93 −
β = ±0.5 False-Neg Main 1.07 4.08 3.62 2.09 1.24 −

False-Pos Inter 5.06 5.77 16.94 − − −
Sint = 6 False-Neg Inter 2.86 5.19 4.68 − − −

L2-sq 1.671 4.345 2.996 2.804 2.321 0.199

Table 1: Simulation results in the linear setting.
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with no interaction terms, while VANISH could include interactions, this simulation

scenario was specifically designed to favor SpAM. The fact that VANISH provided

a roughly similar level of performance demonstrates that it need not be significantly

handicapped even if the true relationship turns out to be purely additive. The rel-

ative improvement in performance for VANISH also grew with the number of true

interaction terms; see for example the sint = 6 simulation. Relative to VANISH, both

SpIn and SpAM tended to have many more false negatives, among both the main

effects and the interactions. SpIn also tended to have more false positives among

the interactions. In general, the methods using least squares fits outperformed the

Lasso type fits with shrunk coefficients. While VANISH could not match the idealized

performance of the Oracle, it was considerably closer than the examined competitors.

4.2 Non-Linear

We also tested the more general implementation of VANISH using five non-linear

simulation scenarios. For the first simulation we generated 100 data sets, each con-

taining n = 300 observations. For each observation p = 50 predictors were produced,

each independently sampled from a Uniform distribution on the [0, 1] interval. The

responses were produced using the following non-linear basis function model,

Y = f1(X1)+f2(X2)+f3(X3)+f4(X4)+f5(X5)+f12(X1, X2)+f13(X1, X3)+ǫ, ǫ ∼ N(0, 1)

The main effects and interactions were generated as

fj(x) ∝
6∑

l=1

βljbl(x) and fjk(xj , xk) ∝
4∑

l=1

4∑

m=1

βlm,jkbl(xj), bm(xk)

where each bl(x) was an element of the Fourier basis, and all the β coefficients were

independently sampled from a standard normal distribution. All the main effects

and interactions were scaled to ensure that V ar[fj(Xj)] = V ar[fjk(Xj, Xk)] = 0.5

for Xj, Xk ∼ U(0, 1). We then fitted the non-linear version of VANISH and the five

competing methods to each data set. For each method we used the same functional

basis as the one that generated the data.

The second simulation was identical to the first, except that the responses were

generated using no interaction terms. The third and fourth simulations tested the

harder situation where the true main effects and interactions were not generated from

the basis functions used in VANISH and the competing methods. Instead of using

the basis functions, the five true main effects were initially generated as

f1(x) = x, f2(x) =
1

(1 + x)
, f3(x) = sin(x), f4(x) = exp(x), f5(x) = x2.

Then each fj was standardized by subtracting E[fj(X)] and dividing by SD[fj(X)]
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with X ∼ U(0, 1). The interaction functions in simulation three were generated by

multiplying together the standardized main effects,

fjk(xj , xk) = fj(xj)× fk(xk).

The responses were then produced using the non basis function model

Y =
√

0.5[f1(x1) + f2(x2) + f3(x3) + f4(x4) + f5(x5) + f12(x1, x2) + f13(x1, x3)] + ǫ,

where the
√

0.5 scaling factor was used to ensure that each of the seven terms had

variance equal to 0.5, the same as in the previous simulations. We used a Cosine basis

to fit all methods. No interaction functions were generated in simulation four.

In simulation five we examined the case p > n by using 100 predictors and 75

observations with the noise level set to 0.5. We generated two true main effect func-

tions and one interaction function using the basis function model described earlier,

but with fixed values of β coefficients. More specifically, rather than generating the

coefficients from N(0, 1), we set all them to one, except the last three coefficients for

the second main effect, which we set to minus one.

The results from these five simulations are shown in Table 2. The summary statis-

tics are the same as for the linear simulations except that L2-sq is now calculated

using the integrated squared difference between the true and the estimated functions.

Qualitatively the results are very similar to those from the linear simulations. VAN-

ISH is again statistically superior, in terms of L2-sq, among all methods other than

Oracle. The only exception is the simulation settings involving no interaction terms,

where SpAMLS performs somewhat better than VANISH. This is not surprising, as

SpAM fits no interaction models by design. In comparison to the SpIn and SpAM

methods VANISH has lower false negative rates and roughly similar main effect false

positive rates. It also has significantly lower interaction false positive rates than SpIn.

Figure 1 plots the true main effects in simulation five together with some represen-

tative estimates from VANISH. We ordered the 100 simulation runs by the L2 distance

between the estimated regression function and the truth. We then identified the 25-

th, 50-th and 75-th best simulations and plotted their main effect estimates. We can

see that the shapes of the true main effects were reasonably well estimated in each

of the selected simulations. A similar conclusion can be made for the corresponding

estimates of the interaction effect, which are illustrated in Figure 2.

5 Applications

We illustrate VANISH on the Boston housing data (Harrison and Rubinfeld, 1978)

because this is one of the data sets used for the SpAM method of Ravikumar et al.

(2009). The data has also been examined in other papers (Härdle et al., 2004; Lin and

Zhang, 2006). There are 506 observations and 10 predictors, with the response corre-
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Simulation Statistic VANISH SpInLS SpIn SpAMLS SpAM Oracle

False-Pos Main 0.04 0 0 0.1 15.12 −
Basis function False-Neg Main 0.23 1.42 0.9 0.23 0 −
model False-Pos Inter 0.51 1.14 9.69 − − −
Sint = 2 False-Neg Inter 0.06 0.21 0.06 − − −

L2-sq 0.38 0.879 1.848 1.276 1.437 0.267

False-Pos Main 0 0 0 0.02 16.54 −
Basis function False-Neg Main 0.12 0.93 0.46 0.04 0 −
model False-Pos Inter 0.16 0.36 11.7 − − −
Sint = 0 False-Neg Inter 0 0 0 − − −

L2-sq 0.132 0.344 1.012 0.109 0.227 0.106

False-Pos Main 0 0 0 0.08 15.48 −
Non Basis False-Neg Main 0 0.65 0.33 0 0 −
function model False-Pos Inter 0.48 1.96 9.72 − − −
Sint = 2 False-Neg Inter 0 0.2 0.07 − − −

L2-sq 0.333 1.023 2.100 1.217 1.405 0.277

False-Pos Main 0 0 0 0.03 16.58 −
Non Basis False-Neg Main 0 0.05 0.01 0 0 −
function model False-Pos Inter 0.06 0.72 11.37 − − −
Sint = 0 False-Neg Inter 0 0 0 − − −

L2-sq 0.116 0.223 1.064 0.114 0.232 0.112

False-Pos Main 0.05 0 0 0.22 7.47 −
Basis False-Neg Main 0.17 1.94 1.85 0.13 0.01 −
function model False-Pos Inter 0.04 0.03 1.69 − − −
p > n False-Neg Inter 0.27 0.94 0.85 − − −

L2-sq 0.452 2.221 1.793 0.771 0.882 0.217

Table 2: Simulation results for each method in the nonlinear setting.
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Figure 1: The two main effects from Simulation 5. Truth (black solid), and VANISH
estimates, 25th (blue dash), 50th (red dot), and 75th (green dash-dot) percentiles.

sponding to the median house value in each neighborhood. Ravikumar et al. (2009)

added 20 noise variables to the data to test whether SpAM correctly removed these

from the model. Likewise we added 30 noise variables, 20 drawn from a Uniform(0, 1)

distribution and the remainder generated by permuting the rows of the design ma-

trix. Hence the data contained a total of 820 potential main effects and interactions

of which 765, or 93%, corresponded to noise terms.

We first randomly split the data into a training set and a test set, so that the

training set contained 400 observations. We then fitted both VANISH and SpIn to

the training data, using ten-fold cross-validation to select the tuning parameters. We

tested two possible values for λ2 corresponding to λ2 = λ1 and λ2 = 1.25λ1. The CV

statistic favored the latter value so we used this for our analysis, but both settings

for λ2 gave reasonable models that did not include the noise terms. Using the tuning

parameters chosen via cross-validation VANISH correctly excluded the 765 noise terms

and selected a model containing four main effects and one interaction term. The main

effects corresponded to percentage of lower economic status of the population (lstat),

the average number of rooms per dwelling (rm), pupil-teacher ratio by town (ptratio),

and nitric oxides concentration in parts per 10 million (nox). The interaction term

corresponded to the variables lstat and nox. Ravikumar et al. (2009) found that

SpAM also chose lstat, rm and ptratio plus a crime variable. They found nox to be
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Figure 2: The true and estimated interaction effects for the last nonlinear simulation.

borderline. SpAM was not capable of selecting the interaction term.

Figure 3 provides plots of the estimated relationships between rm and house value

and between ptratio and house value. The rm variable shows a sharp increase in value

moving from 6 to 8 rooms, while ptratio suggests a more gradual decrease in value as

the pupil to teacher ratio increases. Figure 4 plots the main effects and interaction

combined for the lstat and nox variables. Not surprisingly, there is a significant

decrease in housing value for poorer neighborhoods. There is also a decrease in values

for more polluted neighborhoods. However, the figure also suggests that the effect of

lstat is more pronounced for neighborhoods with higher pollution levels.

By comparison SpInLS selected only the lstat variable, while the shrunk version

of SpIn selected a large 27 variable model including 17 noise variables. To test the

predictive accuracy of VANISH versus SpIn we fixed the five variable active set for

VANISH and the one variable active set for SpInLS. We then randomly generated 100

partitions of the data into training and test sets. For each training set we used least

squares to fit the five variable VANISH and the one variable SpInLS models. Next

we computed the mean squared error (MSE) of each method on the test data. The

average MSEs over the 100 data sets were 16.22 for VANISH and 29.15 for SpInLS ,

with VANISH superior on 99 of the 100 data sets. Finally, we compared the four

variable model including only the main effects to the five variable model including

the interaction term. The larger model was superior on approximately 2/3rds of the
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Figure 3: Estimated main effects from VANISH for the rm and ptratio variables.

data sets, suggesting that the interaction term was a real effect.

6 Discussion

VANISH is attempting to address the difficult problem of fitting a non-additive, non-

linear model in a high dimensional space. In order to make this problem feasible we

model a sparse response surface in terms of the main effects and the interactions.

We further assume that all interactions correspond to nonzero main effects. As a

simple example, if we let Y = g12(X1, X2) + ǫ then EX1
g12(X1, X2) = f2(X2) 6= 0

and EX2
g(X1, X2) = f1(X1) 6= 0. This assumption seems reasonable and makes the

problem far more tractable, because it concentrates the search on a much smaller

subset of interactions. Note that VANISH does not prevent interactions entering the

model when the corresponding main effects are not currently present, but it does raise

the threshold for such terms, significantly lowering the false positive rate.

A simple alternative would be to adapt the SpIn method by imposing different

penalties on the main effects and interactions. However, such an approach does not

differentiate between “more likely” and “less likely” interactions, based on whether

the main effects are present in the model. Hence, in addition to introducing another
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Figure 4: Estimated two-dimensional response surface, including the main effects and
interaction term, for the lstat and nox variables.

tuning parameter, such an approach would likely either miss true interactions or

include noise ones.

VANISH could be extended to higher order interaction terms using a similar

penalty function to (7). For example, one could implement VANISH with third order

interactions, fjkl, using the following penalty function,

λ1

∑

j

(
‖fj‖2 +

p∑

k: k 6=j

‖fjk‖2
)1/2

+ λ2

∑

j<k

(
‖fjk‖2 +

p∑

l: l 6=j,k

‖fjkl‖2
)1/2

+ λ3

∑

j<k<l

‖fjkl‖.

Fitting the corresponding optimization criterion would use a similar algorithm except

now we would fit three dimensional functions. The main practical limitation is that

one would need to fit of order p3 terms which may not be possible for large p. More

generally, we recently became aware of a large class of “CAP” penalty functions (Zhao

et al., 2009). CAP only covers the linear setting but it turns out that the VANISH

penalty can be considered as a non-linear generalization of one of the CAP penalties.

This connection between CAP and VANISH suggests many other potential non-linear

penalty functions for these types of models.

Our theoretical results imply that VANISH should perform best when the model is

non-additive but has few interaction terms. Simulation studies show that in practice it
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can produce significant improvements in performance over simpler alternatives. Even

when the true model is additive VANISH is competitive relative to the purely additive

SpAM approach. Finally, the VANISH fitting algorithm is very efficient, allowing it

to search through thousands of non-linear two-dimensional surfaces.
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A Proof of Theorem 2

The general approach we follow is similar to the one in the SpAM method paper by

Ravikumar, Lafferty, Liu and Wasserman, to which we refer as RLLW from here on.

A similar argument was earlier used in the linear case by Wainwright (2009). Our job

is complicated by the fact that we consider models with interactions and use a more

complex penalty function.

For concreteness we will take the dimension of the two-variate basis exactly equal

to d2 and let D stand for dp + d2p(p − 1)/2. The VANISH estimator, β̂ ∈ R
D, is

constructed along a path as described in Section 2.3. The ratio of the two tuning

parameters is kept fixed throughout the construction, and one of the tuning parame-

ters is decreased along a grid, from a large value that corresponds to an empty model

down towards zero. We will assume that in between two grid points there is no more

than one change in the active set (here we count an entry of an interaction that brings

in the corresponding main effects as only one change). For convenience we introduce

a “modified penalty function” for a given index set K′,

PK′(β) = λ′1
∑

j

√∥∥Ψjβj

∥∥2
+
∑

jk∈K′

∥∥Φjkβjk

∥∥2
+
∑

jk

(
λ′11{j /∈K′}+λ

′
11{k/∈K′}+λ

′
2

) ∥∥Φjkβjk

∥∥ ,

which in turn corresponds to a “modified criterion function”. Note that we suppress

the dependence of the penalty on λ′1 and λ′2 to simplify the notation. Observe that a

VANISH estimator with a given support K̂ satisfies the heredity constraint and mini-

mizes the modified criterion function corresponding to PK̂. Write K for the collection

of indexes in Km and Kin and denote by HS(K) the collection of index sets K′ that are

subsets of K and satisfy the heredity constraint. To check that for a particular sam-

ple the VANISH estimator corresponding to the tuning parameters λ1 and λ2 recovers

the correct support, we need to establish two results. First, we need to show that for

each λ′1 ≥ λ1, λ
′
2 ≥ λ2 and each K′ ∈ HS(K) there exists a unique minimizer, β̂, of

the modified criterion function, for which K̂ ⊆ K and the dual feasibility conditions
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(discussed below) for the subgradient are satisfied as strict inequalities. Second, we

need to show that for λ′1 = λ1, λ
′
2 = λ2 and each K′ ⊆ K we actually have K̂ = K. The

first result would imply that no noise terms can enter the model along the VANISH

path up to the point specified by λ1 and λ2, while the second result would mean that

at that point all the correct terms are in the model.

Note that a vector β̂ ∈ R
D minimizes the modified criterion function if there exists

a subgradient ĝ that belongs to the subdifferential ∂PK′(β̂) and

ΘT (Θβ̂ − Y ) + ĝ = 0, (18)

where Θ is defined by analogy with ΘK. Note that we suppress, for simplicity of the

notation, the dependence of ĝ and β̂ on λ′1, λ
′
2 and K′. The above display provides

the stationary conditions for our criterion function. The minimizer is unique if the

dual feasibility conditions for ĝK̂c are satisfied as strict inequalities. We proceed

by setting β̂Kc = 0 and defining β̂K as the unique (due to invertibility of ΘT
KΘK)

minimizer of the modified criterion function restricted to the index set K. We then

derive ĝ from the stationary conditions above. To complete the proof it is sufficient

to establish that there exists a set of probability tending to one, on which the strict

dual feasibility conditions for ĝKc ,

ĝT
j (ΨT

j Ψj)
−1ĝj < (λ′1)

2, j /∈ Km (19)

ĝT
jk(Φ

T
jkΦjk)

−1ĝjk <






(2λ′1 + λ′2)
2, jk /∈ Kin, j and k /∈ Km

(λ′1 + λ′2)
2, jk /∈ Kin, either j or k ∈ Km

(λ′2)
2, jk /∈ Kin, j and k ∈ Km,

(20)

hold for all K′ ∈ HS(K) and all λ′1 ≥ λ1, λ
′
2 ≥ λ2, while inequality

‖β̂K − β∗
K‖∞ ≤ b/2 (21)

holds for all K′ ∈ HS(K) and λ′1 = λ1, λ
′
2 = λ2.

It follows from the stationary conditions for the modified criterion function re-

stricted to K that ĝT
j (ΨT

j Ψj)
−1ĝj ≤ (λ′1)

2 and ĝT
jk(Φ

T
jkΦjk)

−1ĝjk ≤ (2λ′1 + λ′2)
2, which

in turn implies ‖ĝj‖ ≤ λ′1C
1/2
K for j ∈ Km and ‖ĝjk‖ ≤ (2λ′1 + λ′2)C

1/2
K for jk ∈ Kin.

Note that these bounds hold for all possible K′ ∈ HS(K). In the arguments that follow

we will refer to ĝK only through these bounds, and hence all of these arguments will

hold uniformly over K′ ∈ HS(K).

B Conditions (19) and (20)

The argument to establish these inequalities is very similar to the corresponding one in

RLLW. The required conditions on the tuning parameters only impose lower bounds

on their growth, and hence are satisfied for all λ′1 and λ′2. The set of probability
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tending to one can be chosen as the set needed for λ1 and λ2, because it would work

for the larger tuning parameters as well.

First we consider condition (19). The only major difference with the corresponding

proof in RLLW is that we use inequality ‖ĝjk‖ ≤ (2λ′1 + λ′2)C
1/2
K for jk ∈ Kin in

addition to ‖ĝj‖ ≤ λ′1C
1/2
K for j ∈ Km, which results in the bound ‖ĝK‖2 ≤ (sm(λ′1)

2+

sin[2λ
′
1+λ′2]

2)CK as opposed to the bound ‖ĝK‖2 ≤ (λ′1)
2sCK. Consequently, the right

hand side in condition (14) is (sm + sin[2 + λ2

λ1

])−1/2 rather than simply s−1/2 as in

RLLW.

Next we consider the first inequality in condition (20). Now there are two ma-

jor differences with RLLW. First, as in the above paragraph, we need to use the

bound ‖ĝK‖2 ≤ (sm(λ′1)
2 + sin[2λ′1 +λ′2]

2)CK instead of the bound ‖ĝK‖2 ≤ (λ′1)
2sCK.

And second, the inequality we are striving for here is ‖ΨT
j ΘKΣ−1

K ‖ ≤ (2λ′1+λ
′
2)c

1/2
K /‖ĝK‖

rather than ‖ΨT
j ΘKΣ−1

K ‖ ≤ λ′1c
1/2
K /‖ĝK‖. As a result, the right hand side in condi-

tion (15) is (2λ1 + λ2)(smλ
2
1 + sin[2λ1 + λ2]

2)−1/2 rather than s−1/2 as in RLLW. The

reasoning for the second and third inequalities in condition (20) is analogous.

C Condition (21)

Define V = Y − ΘKβ∗
K − ǫ, which gives the error due to finite truncation of the

orthonormal basis. It follows directly from the stationary conditions that

β̂K − β∗
K = Σ−1

K (ΘT
K[ǫ + V]− ĝK). (22)

The bounds we derived for ĝK at the end of Appendix A imply

‖Σ−1
K ĝK‖∞ ≤ λ−1

min(ΣK)
√
s(2λ1 + λ2)

√
CK. (23)

We argue analogously to RLLW, using the assumptions on the rate of decay of the

coefficients in β∗, and derive the bound

‖Σ−1
K ΘT

KV‖∞ ≤ ‖Σ−1
K ‖∞

sn

d3/2
. (24)

Now consider the term Σ−1
K ΘKǫ, whose elements have a mean zero gaussian distribu-

tion. We again follow the argument in RLLW, using the Gaussian comparison results

in Ledoux and Talagrand (1991), and derive

E‖Σ−1
K ΘKǫ‖∞ . σ

√
log(sd)

λmin(ΣK)
, (25)

where σ2 is the variance of the error terms, and λmin(ΣK) is the smallest eigenvalue

of ΣK. Note that ‖Σ−1
K ‖∞ ≤

√
sd/λmin(ΣK) and CK is bounded above by λmax(ΣK),

the largest eigenvalue of ΣK. Recall that λmax(ΣK) = O(n) and λ−1
min(ΣK) = O(1/n).
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Consequently, if we use (22) together with bounds (23) through (25) and apply

Markov’s inequality, we can bound the probability of the event ‖β̂K − β∗
K‖∞ > b/2

by a quantity that goes to zero under the assumption (16). This establishes condi-

tion (21) with probability tending to one.

D Proof of Theorem 3

Let νn denote the empirical process h 7→ νnh = n1/2(Pnh − Eh), where the empir-

ical measure Pn is defined with respect to the random vector (Y,X1, ..., Xp). Con-

sider a functional class G that consists of all pairwise products of the form ygj(xj),

ygjk(xj , xk), gj(xj)gk(xk), gj(xj)gkl(xk, xl), and gjk(xj , xk)glm(xl, xm), with all the g-

functions coming from the Sobolev classes S2
C([0, 1]) and S2

C([0, 1]2). Let R̂ denote

the empirical analog of the predictive risk. Note that inequality (17) in the definition

of Mn guarantees ‖β‖1 ≤ Ln. This observation along with an argument analogous

to the one in the proof of the persistence theorem in RLLW establish that

sup
m∈Mn

|R̂(m)− R(m)| ≤ n−1/2(Ln + 1)2 sup
G
|νn(·)|.

It follows from, for example, Corollary 19.35 of van der Vaart (1998) that supG |νn(·)|
can be bounded above by a multiple of the bracketing integral for the functional

class G. Bracketing integrals for the Sobolev classes S2
C([0, 1]) and S2

C([0, 1]2) are

finite by the classical results of Birman and Solomjak (1967) and hence the bracketing

integral for the class of all possible pairwise products of the members of these two

classes is finite as well. Because the true regression function is uniformly bounded,

there exists a constant c such that maxi≤n |Yi| ≤ c
√

log n with probability tending to

one. From here on we restrict our attention to the set where the above inequality

is satisfied. On this set the bracketing integral for each of the classes {ygj(xj)}
and {ygjk(xj , xk)} is of order (log n)1/4. Consequently, the bracketing integral for the

functional class G is of order (log p)1/2 + (log n)1/4, and hence

sup
m∈Mn

|R̂(m)− R(m)| . L2
nn

−1/2
[
(log p)1/2 + (logn)1/4

]
. (26)

For concreteness we will focus on the case n = O(p); the case p = o(n) can be han-

dled analogously. The right hand side of the bound (26) simplifies to L2
n

√
(log p)/n.

Now we can use a comparison argument based on inequalities R(m∗
n) ≤ R(m̂n)

and R̂(m∗
n) ≥ R̂(m̂n), exactly as in RLLW, to deduce R(m̂n) = R(m∗

n)+L2
n

√
(log p)/n

and complete the proof.
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Härdle, W., Müller, M., Sperlich, S., and Werwatz, A. (2004). Nonparametric and

Semiparametric Models. Springer-Verlag Inc.

Harrison, D. and Rubinfeld, D. L. (1978). Hedonic prices and the demand for clean

air. Journal of Environmental Economics and Management 5, 81–102.

James, G. M. and Radchenko, P. (2009). A generalized Dantzig selector with shrinkage

tuning. Biometrika 96, 323–337.

Ledoux, M. and Talagrand, M. (1991). Probability in Banach spaces: Isoperimetry

and Processes. Springer-Verlag.

Lin, Y. and Zhang, H. H. (2006). Component selection and smoothing in multivariate

nonparametric regression. The Annals of Statistics 34, 2272–2297.

28
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