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Abstract

Medical researchers interested in temporal, multivariatemeasurements of complex diseases have re-
cently begun developinghealth state modelswhich divide the space of patient characteristics into medi-
cally distinct clusters. The current state of the art in health services research usesk-means clustering to
form the health states and a first order Markov chain to describe transitions between the states. This fit-
ting procedure ignores information from temporally adjacent observations and prevents uncertainty from
parameter estimation and cluster assignments from being incorporated into the analysis. A natural way
to address these issues is to combine clustering and longitudinal analyses using a hidden Markov model.
We fit hidden Markov models to longitudinal data using Bayesian methods which account for all the un-
certainty in the parameters, conditional only on the underlying correctness of the model. Potential lack of
time homogeneity in the Markov chain is accounted for by embedding transition probabilities into a hier-
archical model that provides Bayesian shrinkage across time. We illustrate this approach by developing
a hidden Markov health state model for comparing the effectiveness of clozapine and haloperidol, two
antipsychotic medications for schizophrenia. We find that clozapine outperforms haloperidol and iden-
tify the types of patients where clozapine’s advantage is greatest and weakest. Finally, we discuss the
advantages and disadvantages of hidden Markov models in comparison with the current methodology.

Key Words: inhomogeneous hidden Markov model, Markov chainMonte Carlo, health state model,
k-means clustering, hierarchical model

1 Introduction

Applications in many fields, from market segmentation in business to health state modeling in medicine,
involve dividing a population into contextually coherent subgroups. It is frequently desirable to understand
how subjects move from one group to another over time, and in particular how transition patterns are affected
by different treatments applied to members of the population. Various field-specific approaches have been
developed to deal with such situations, for example Sugaret al.(1998) in health services research. However,
these methods tend to be somewhatad hoc, and can potentially be improved using likelihood procedures
based on hidden Markov models (HMMs). HMMs assume that observations are generated from a mixture
of distributions among which subjects move according to a latent Markov chain. By incorporating treat-
ment data into the procedure for estimating the transition matrices one can obtain direct assessments of a
treatment’s effectiveness. This article applies HMMs to a health state modeling problem involving the com-
parison of two antipsychotic medications for schizophrenia and discusses the advantages and disadvantages
of this methodology relative to the current medical approaches.

∗Assistant Professors of Statistics, The Marshall School ofBusiness, University of Southern California. The authors thank the
referees for helpful comments.
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Clinical trials typically measure different aspects of physical and mental well-being using health status
instruments or questionnaires consisting of dozens of itemresponses. Traditionally such data are examined
by performing univariate analyses on composite scores formed from the original responses. However, clin-
ical trial investigators have recently turned to multivariate health state models to capture structural features
in the data because the phenomena being studied are too complex to be described by univariate summaries.
These models divide a population’s sample space into medically coherent subgroups called health states.
Clinical change is measured based on the probability of moving individuals between health states, rather
than by a simple net increase or decrease in the mean of a univariate continuous scale. A treatment benefits
patients in a given cluster if it has a high probability of moving them to a superior state or preventing them
from moving to an inferior state. Health state models have numerous advantages. In particular, they lend
themselves naturally to the assessment of long-run treatment effects via the estimation of stationary distri-
butions, and they can be used in utility elicitation and cost-benefit analyses as the basis for making objective
health policy decisions.

In the medical literature, the state of the art for fitting health state models uses thek-means clustering
algorithm to produce hard assignments of patients to the nearest cluster center (Sugaret al., 2004). The
cluster assignments are then treated as known and used to estimate matrices of transition probabilities for
different medications. The clustering approach is well suited to capturing complex relationships because
it allows the data to choose the optimal locations of the health states. The clustering method, though easy
to implement, has some potential limitations. Thek-means algorithm implicitly assumes that the data are
distributed as an equally weighted mixture of Gaussian distributions with identity covariance matrices. Thus
the algorithm may perform poorly if mixtures of non-spherical or non-Gaussian distributions fit the data
more naturally, or if different mixing weights are needed (see Banfield and Raftery, 1993, for example).
Furthermore, thek-means health state model is fit using a two stage procedure: first the cluster centers
are computed assuming independent observations and then transition matrices are estimated assuming that
cluster means are known and that each subject belongs to the nearest cluster with probability 1. The two
stage estimation procedure ignores potentially valuable information about a subject’s cluster membership
during other observation periods. It also prevents uncertainty about cluster means, cluster membership, and
transition probabilities from correctly propagating through the model.

The preceding limitations can be addressed by modeling the data using a hidden Markov model. Because
HMMs directly model the temporal aspect of the data they can borrow strength across nearby observations
when estimating model parameters and classifying observations to states. HMMs are fit using likelihood-
based procedures that simultaneously estimate the transition probabilities and the parameters of the mixture
components. The Bayesian methods employed in this article allow arbitrary functions of HMM parameters
to be estimated while automatically accounting for parameter uncertainty. Furthermore, the mixture compo-
nents in an HMM belong to distributional families chosen by the modeler, so HMMs provide a very flexible
way to fit the data. We model the data examined in this article using mixtures of multivariatet distributions,
each with its own covariance matrix. The HMM described in this article is a strict generalization of the
mixture model implicit in thek-means clustering algorithm, which we refer to as thek-means model.

Both thek-means and HMM approaches assume that transitions over timeare governed by a time-
homogeneous Markov process, an assumption which may be violated if the effect of a treatment changes
as the study progresses. To address this concern we develop an inhomogeneous hidden Markov model,
i.e. one in which different transition probabilities may apply for each observation period. To prevent an
explosion in the number of parameters we model the rows of each period’s transition matrix as draws from a
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common Dirichlet distribution with parameters embedded ina Bayesian hierarchical model. The transition
matrices in our inhomogeneous model benefit from Bayesian shrinkage, so that if the data show no evidence
of inhomogeneity the inhomogeneous model collapses back tothe homogeneous model. Shrinkage factors
for the inhomogeneous model can be used to check whether the homogeneity assumption is reasonable.

The purpose of this article is to demonstrate the HMM approach to health state modeling and evaluate
its potential advantages and disadvantages relative to theclustering method. We have fit HMMs to data
from a comprehensive double-blind trial that compared the impact of haloperidol and clozapine, two medi-
cations for treating schizophrenia, on clinical outcomes,social, vocational and community functioning and
societal costs (Rosenhecket al., 1997). This data set has already been studied using a cluster-based health
state model, which will allow us to make direct comparisons between the HMM and cluster methods. In
Section 2 we provide a description of the data. Details of both a homogeneous and an inhomogeneous hid-
den Markov health state model are provided in Section 3. Section 4 gives results from the HMM fit to the
schizophrenia data set. Finally, Section 5 provides a discussion of the relative merits of the clustering and
HMM approaches. Details of the MCMC algorithms used to fit themodel are left to an appendix.

2 Data

The schizophrenia data set contains 423 patients treated at15 veterans health centers around the United
States. The measurements consist mainly of scores on standard health status instruments measuring a broad
spectrum of emotional, interpersonal, and physical functioning. Our analysis focuses on movement disorders
that are typically induced by antipsychotic medications. We combined items from three commonly used
instruments, the Abnormal Involuntary Movement Scale (AIMS) which measures tardive dyskinesia, i.e.
unconscious movements, (Guy, 1976); the Barnes Akathesia Scale (BAS), which focuses on involuntary
restlessness (Barnes, 1989); and the Simpson-Angus Scale (SAS), which deals with syndromes of pseudo-
parkinsonism such as involuntary tremors, muscle stiffness, and salivation (Simpson and Angus, 1970). All
these instruments use Likert scales to measure severity of symptoms with higher scores indicating a greater
degree of impairment. Data were collected by trained research assistants at six time-points (baseline, 6
weeks, and 3, 6, 9, and 12 months). There was evidence of significant differences in ratings among the 15
study sites. To make the responses comparable we subtractedoff the site effects, which were estimated by
fitting mixed effects models to each question using patient response as the dependent variable, with time,
treatment, and study site as independent variables.

The side effects data were 24 dimensional. To reduce the dimension of the data and to allow com-
parisons with previous analyses (e.g. Sugaret al., 2004) we replaced the full data set with its first four
principal components. Principal components also smooth over roughness inherent in the Likert responses to
individual items, making mixtures of continuous distributions more reasonable. The choice of four compo-
nents was made on both quantitative and qualitative grounds. We opted to include all dimensions for which
the proportion of variance explained was higher than the average variance per dimension. This procedure
yielded a small number of easily interpretable dimensions.The components represent, in order of variance
explained, overall severity (PC1), a contrast between akathesia and tardive dyskinesia (PC2), extrapyramidal
syndromes, as measured by the SAS, excluding akathesia (PC3), and a contrast between facial and extrem-
ity movements (PC4). The four principal components explained approximately 60% of the total variance.
Clustering based on principal components has the potentialto obscure cluster distinctions (Chang, 1983;
Raftery, 2003). However because of the obvious medical interpretations attached to the principal compo-
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nents we believe that the benefits from dimension reduction are likely to outweigh the potential risks in our
particular case.

Patients within each study site were randomized to receive clozapine or haloperidol. Haloperidol is a
standard treatment, while clozapine is a relatively new so-called atypical antipsychotic which is thought to
show promise for reducing medication induced movement disorders. Because such disorders are ubiqui-
tous side effects of antipsychotic medication, studies of this sort typically involve many patients switching
treatments. During the study 105 subjects (24.8%) switched from one treatment medication to the other.
Furthermore, 157 patients (37.1%) switched from either clozapine or haloperidol to a non-conventional
treatment or went off medication altogether. While addressing this problem is not a central feature of the
current article, frequent treatment switching clearly hasimplications for any analysis of this type of data. To
simplify comparisons with earlier studies, we adopt the convention used in Sugaret al. (2004) for modeling
treatment switches. Subjects who crossed over were analyzed on an as-treated basis. Subjects who went
off all medications or switched to a non-conventional treatment were analyzed on an intent to treat basis,
meaning that they remained in the group to which they were originally assigned. We also examined the data
using a pure as-treated analysis, with patients who switched off both treatments counted as a third group.
This had minor effects on some of our numerical estimates, but not on our qualitative conclusions regarding
the relative merits of the two medications.

Data were available for 80% of planned follow up observations. Missing data were modeled as ignorable
(Little and Rubin, 1987) largely because the forward-backward recursions used to fit the models in Section 3
make it easy to analytically integrate out ignorable but temporally dependent missing data. Patients with
missing data tended to lack complete questionnaires ratherthan individual item responses. Most of the 420
missing observation times are due to patients who left the study. However, there were 41 patients who were
unobserved for a single observation but subsequently returned. Eleven patients were unobserved for gaps of
two observations or longer.

3 Longitudinal Hidden Markov Models

The hidden Markov models defined in this section differ from typical HMMs in two primary respects.
First, different transition matrices are used to model subjects observed under different treatments. Second,
because multiple subjects are observed at each time point, it is possible to fit an inhomogeneous model
in which different Markov transition probabilities apply at each observation time. Section 3.1 defines the
homogeneous model. Section 3.2 defines the inhomogeneous model.

3.1 Time Homogeneous Hidden Markov Models

Let yit be the vector of observed responses from subjecti at timet ∈ {1, . . . ,T}, when subjecti is under
treatmentkit ∈ K = {1, . . . ,K}. In our case studyyit is a four dimensional vector of principal components.
Our model assumes that responses are conditionally independent given a hidden state variablehit ∈ S =

{1, . . . ,S}. Hence,
p(yit |hit = s, ·) = T (yit |µs,Σs,νs), (1)

where the raised dot· in a probability distribution represents all other known and unknown quantities,
and µs,Σs and νs respectively represent the mean vector, the “scatter matrix,” and the scalar degrees of
freedom parameter for the multivariatet distribution describing states. We used the parameterization of the

4



µ

κ

h
ν

k

Σ w

y

N
Q

α
π0

Q

κ

h
ν

k

Σ w
µ

y

N

α
π0

Figure 1: Directed acyclic graph (left) and moral graph (right) describing the model. Each variable in the DAG
is conditionally independent of its ancestors given its parents. Each variable in the moral graph is conditionally
independent of all other variables given its neighbors. In the homogeneous model N is fixed. In the inhomogeneous
model it is random. Other fixed hyperparameters are not shown.

multivariatet distribution favored by Liu (1996), namely ifxit ∼ N (0,Σ), wit ∼ Ga(ν/2,ν/2), andxit ⊥
⊥ wit , thenyit = (µ+ xit /

√
wit ) ∼ T (µ,Σ,ν). We opted to model responses using mixtures of multivariate

t distributions instead of the more common mixtures of Gaussians because a small number of outlying
observations had an undue impact on the variance matrices inGaussian mixtures (see McLachlan and Peel,
2000, Chapter 7).

Subjects move through the state space according to a Markov chain with treatment dependent transition
probabilities. The initial state distribution for subjects assigned to treatmentk is πk

0(s) = p(hi1 = s|ki1 = k).
Note that it is common in applications of HMMs to model the initial state distribution as the stationary
distribution of the hidden Markov chain. This is true partlybecause most applications of HMMs involve
a single long time series, but multiple subjects are needed to estimateπk

0 empirically. We modelπk
0 as a

separate parameter because we expect the distribution of subjects among states to evolve over time after
treatments are administered. For patients who remain undertreatmentk from timet −1 to timet we define
Qk(r,s) ≡ p(hit = s|hit−1 = r,kit = kit−1 = k). Transitions for subjects who switch treatments between ob-
servationst −1 andt are modeled using a mixture of the “pure” transition probabilities where the treatment
proportions are the mixing weights. Ifkit 6= kit−1 andαit is the (observed) proportion of time subjecti spent
under treatmentkit between observationst −1 andt then

qit (r,s) ≡ p(hit = s|hit−1 = r,kit ,kit−1,αit ) = αit Q
kit (r,s)+ (1−αit )Q

kit−1(r,s). (2)

It is computationally convenient to introduce a Bernoulli latent class indicatorκit that decouples the mixture
of transition probabilities in equation (2). That is,p(κit = kit |k,α) = αit , p(κit = kit−1|k,α) = 1−αit , and
p(hit |hit−1,κ,k,α) = Qκit (hit−1,hit ). In summary, the parameters of our model areθ = {µs,Σs,νs,πk

0,Q
k :

s∈ S ,k ∈ K }. The observed data aredobs = {yit ,kit ,αit : i = 1. . .n, t = 1. . .T}, and the latent data are
dmis= {hit ,κit ,wit : i = 1. . .n, t = 1. . .T}. The relationships among these variables are illustrated in Figure 1.

We adopt a Bayesian approach to model fitting, which requiresplacing a prior distribution on model
parameters. When available, standard independent conjugate priors are used. Specifically we use a Gaussian
prior with meanms and varianceΩs for µs, a Wishart prior with scalar degrees of freedomDFs and sum of
squares matrixSSs for Σ−1

s and Dirichlet priors with prior count vectorsNk
0 andNk

r for πk
0 andQk(r, ·) (therth

row of Qk) respectively. We modelνs using the “uniform shrinkage prior”p0(νs|z0s) = z0s/(z0s+νs)
2I(νs >

0) developed by Christiansen and Morris (1997). Note thatp0 is a normalized proper density function with
medianz0s, but with no moments because of its heavy polynomial tail. Christiansen and Morris (1997) show
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that p0 has good frequency properties in a hierarchical Poisson regression model. It is relevant here because
Christiansen and Morris’s hierarchical model and the multivariatet used here are both defined through a
latent gamma distribution with priorp0 on its shape parameter. Hence the joint prior onθ is given by

p(θ) =

(

∏
s∈S

N (µs|ms,Ωs)W (Σ−1
s |DFs,SSs)p0(νs|z0s)

)

∏
k∈K

(

D(πk
0|Nk

0)∏
r∈S

D(Qk(r, ·)|Nk
r )

)

. (3)

Equation (3) allows different hyperparameters for different treatments and mixture components, but in prac-
tice we choose identical priors for allk ands. Specifically we setz0s = 1, ms = 0, Ωs = 1000I , DFs = 6,
SSs = 6I , andNk

r = Nk
0 = 1, whereI is the identity matrix and0 and1 are vectors of 0’s and 1’s. These

choices represent weak prior information while ensuring that the posterior distribution is proper.

3.2 A Hierarchical Inhomogeneous HMM

Because multiple subjects are present at each period, it is possible to estimate a different transition matrix for
each pair of successive times using a hierarchical model that borrows strength across observations. LetQk

t

be the matrix of transition probabilities for subjects under treatmentk between observation timest −1 and
t. If a subject switches treatments betweent −1 andt thenQkit−1

t andQkit
t are combined as in equation (2).

We modelQk
2(r, ·), . . . ,Qk

T(r, ·) as draws from a common Dirichlet distribution with parameter Nk
r , a vector

of positive real numbers interpretable as prior counts. Thejoint prior for Q andN can be written

p(Q,N) = ∏
k

∏
r

p(Nk
r )∏

t
D(Qk

t (r, ·)|Nk
r ). (4)

Equation (4) allows for Bayesian shrinkage across time, butelements ofQ andN are independent across
treatment and state indices. The hyperprior distributionp(Nk

r ) is defined by splittingNk
r = ak

r φk
r whereak

r

is a positive scalar controlling the variance ofD(Qk
t (r, ·)|Nk

r ) andφk
r is a probability vector. That is,φk

r has
elementsφk

rs ∈ (0,1) with ∑sφk
rs = 1. We callak

r the shrinkage parameterandφk
r the location parameter.

The full conditional distribution ofQk
t (r, ·) is D(Nk

r +nk
t (r, ·)), wherenk

t (r,s) counts the number of transitions
from stater to states for treatmentk between timest −1 andt. Thus one may interpretak

r as the number
of prior observations present in the posterior distribution of Qk

t (r, ·). If ak
r is large thenQk

2(r, ·), . . . ,Qk
T(r, ·)

will all be close toφk
r , in which case the model collapses back to the homogeneous form of Section 3.1. If

ak
r is close to zero thenQk

2(r, ·), . . . ,Qk
T(r, ·) may vary substantially. We assumep(ak

r ,φk
r ) = p0(ak

r |ζ0)p(φk
r )

wherep0 is the uniform shrinkage prior discussed in Section 3.1 andp(φk
r ) = D(1), the uniform prior on the

Sdimensional probability simplex. Transforming this priorback to the original scale introduces a Jacobian
term of(ak

r )
−(S−1), so that the normalized prior distribution forNk

r is

p(Nk
r ) =

ζ0Γ(S)

(ζ0 +ak
r )

2(ak
r )

S−1 . (5)

Small values ofζ0 correspond to a prior belief in small amounts of shrinkage. We choseζ0 = 1. Small
changes in this value (e.g.ζ0 = 2) had no discernible effect on the posterior distribution.
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Figure 2:Posterior distribution of log likelihood values produced by the MCMC sampler for models of different state
space sizes after subtracting the BIC penalty klog(n)/2.

3.3 Posterior Computation

We sample the parameters of the models described in this Section from their posterior distribution given
dmis using an MCMC algorithm developed in Appendix B. The algorithm cycles between sampling from
p(dmis|θ,dobs) and sampling fromp(θ|dobs,dmis). A key feature of our MCMC algorithm is a set of
forward-backward recursions that allowdmis to be drawn directly fromp(dmis|θ,dobs) without breaking it
into multiple components (Scott, 2002). Conditioning ondmis induces desirable independence properties in
p(θ|dobs,dmis), so that the MCMC algorithm has only three components:p(dmis|dobs,θ), p(µ,Q,ν,π0|dmis,dobs,N,Σ),
and p(Σ,N|dmis,dobs,µ,Q,ν,π0). Each of these components further benefits from independence relation-
ships which may be seen in the moral graph (Whittaker, 1990) shown in Figure 1. Gibbs updates are used
for µ, Σ, Q, andπ0. Metropolis-Hastings updates are used forν, and forN in the inhomogeneous model.

4 Case study

4.1 The Health States

The first task in developing the health state model is choosing S, the number of health states, based on
empirical evidence and medical judgments. In essence, we are attempting to find a decomposition which
provides a reasonable, medically interpretable, fit to the data. The natural Bayesian tool for choosingSis the
posterior model probability,p(S|dobs). We implemented two methods for estimating this quantity, which is
notoriously difficult to calculate. Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001) computes a direct
Monte Carlo estimate ofp(S|dobs) from the MCMC output. Alternatively, the Bayesian information criterion
BIC, which applies a penalty toℓ(θ̂) the maximized log likelihood, can be used to obtain an asymptotic
approximation top(S|dobs) (Schwarz, 1978; Kass and Raftery, 1995). The BIC penalty isk log(n)/2, where
n is the number of observations andk is the number of free parameters in the model. Rather than maximize
ℓ(θ) we applied the BIC penalty toℓ(θ(t)), the sequence of log likelihood values associated with eachMCMC
draw ofθ, producing the distribution of penalized likelihoods shown in the Figure 2. Note that we implement
BIC on the homogeneous model becausek, the effective number of parameters in the inhomogeneous model,
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Figure 3: Cluster centers and 50% probability ellipses for the seven state HMM (top row) and the k-means model
(bottom row). Each panel excludes a small number of outliers.

can not be determined exactly due to the Bayesian hierarchy (Spiegelhalteret al., 2002). Chib’s method
suggested seven states while Figure 2 suggests four to sevenstates with a slight preference for five. We
opted to fit the seven state model because it included a clinically distinct group that was absent from smaller
models. In each case we ran the MCMC algorithm for 10,000 burn-in iterations, then we kept an additional
10,000 iterations. Models were initialized by setting all transition probabilities to 1/S, setting allµs = 0 and
setting allΣs equal to large multiples of the identity. We checked convergence by monitoring time series
plots of log likelihood for each model.

Figure 3 shows results from seven-state models fit using bothour HMM and a finite mixture of Gaussian
distributions with identity variance matrices, which serves as our proxy for thek-means procedure used by
Sugaret al. (2004). Each panel of Figure 3 plots the posterior means ofµs andΣs (represented by 50%
probability ellipses) for each mixture component, along with the original data in the first four principal
component dimensions. The “ellipses” for thek-means model would be circles if the axes in each plot were
identically scaled. Note that state labels are arbitrary inall mixture models, including HMMs. Sometimes
this can lead to a “label switching” phenomenon in the MCMC algorithm as the sampler jumps between
S! symmetric modes in the likelihood. Several authors have recently pointed out the danger of imposing
artificial constraints on the parameters to create an identifiable likelihood function (Stephens, 2000; Celeux
et al., 2000; Frühwirth-Schnatter, 2001). We ran our algorithm with no such constraints, yet we saw no
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Figure 4:The profile plots corresponding to a typical patient in each of the seven health states. The scores have been
centered by subtracting off the global mean for each question. The six regions correspond to 1) facial/oral movements,
2) extremity and trunk movements, 3) global severity, 4) rigidity of gait, arms, head, 5) glabellar tap, tremor and
salivation and 6) akathesia.

evidence of label switching in the MCMC run for the seven state model, presumably because theS! modes
are well separated in the high dimensional parameter space.To check for label switching we examinedSsets
of boxplots representing the marginal posterior distributions of the four components ofµs. In the presence
of label switching one would expect to find a collection of states in which all four boxplots overlapped
substantially. In our case, each state was clearly different from the others along at least one of the four
dimensions. For descriptive purposes after the sampler finished we used PC1, a measure of a patient’s
overall distress, to construct a partially ordered labeling of the mixture components in which state 1 contains
the healthiest patients and state 7 contains the patients with the most severe symptoms. PC2 contrasts
akathesia (restlessness, positive scores) with tardive dyskinesia (involuntary movements, negative scores)
and separates HMM states 3 and 4. A negative score on PC3 corresponds to extra-pyramidal symptoms such
as problems with gait, rigidity, tremor, and salivation. State 5, which was absent from models with fewer than
seven states, captures the observations with the most extreme values of PC3. The final principal component,
PC4, is a contrast between facial movements and other movement difficulties. PC4 helps separate HMM
state 6 from the other states. All the HMM states except 2 and 6have posterior medians below 20 for
νs, the t degrees of freedom parameter. States with smallνs are capturing outliers that would otherwise
be influential forµs andΣs in a Gaussian mixture (McLachlan and Peel, 2000). The ability to fit different
variance matrices seems to help the HMM capture the triangular shape of the data. The more severe HMM
states tend to have larger variances, while states 3 and 4 have rotated to capture observations along the edges
of the plot. The HMM places a much smaller variance on state 1 than does thek-means model. Thus the
HMM is more conservative thank-means about classifying observations into the healthieststate.

The information in Figure 3 is difficult to explain to clinicians because it is measured using principal
components rather than the scale of the original 24 items. Wecan help clinicians interpret the health states by
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using cluster profile plots that show the posterior mean response to each item for subjects in each state. Let
xi jt denote the observed response of subjecti to item j at observation timet. Letπit (s) denote the probability,
averaging overθ, that subjecti is in states at timet, which is available from the MCMC algorithm (Scott,
2002, Section 3). A cluster profile plot displays ¯x js = ∑i ∑t xi jt πit (s)/∑i ∑t πit (s). A medical doctor can
examine cluster profile plots like those in Figure 4 and provide brief medical descriptions of each state. For
instance, the typical patient in “no side effects” (NSE) hasbelow average scores on all but one of the items,
indicating relative health. The opposite can be said for the“severe side effects” (SSE) state. The “mild
side effects” (MSE) state has a typical patient with averagescores on most questions, but slightly higher
scores on extra-pyramidal symptoms. The other four states each pick out the medical conditions “mild
akathesia” (MAK), “mild tardive dyskinesia” (MTD), “extra-pyramidal symptoms” (EPS) and “abnormal
movements/akathesia” (AMA). We feel confident using these states for our final model because each of
the seven groups corresponds to a medically distinct healthstate. Otherwise we would have combined
medically redundant states into larger clusters. Henceforth we will refer to the seven states by their three
letter abbreviations. More detailed descriptions of the cluster profiles are provided in Appendix A.

4.2 Analysis of Longitudinal Treatment Effects

The preceding results are all from the homogeneous hidden Markov model, although the inhomogeneous
model identified nearly identical health states. The inhomogeneous model allows one to measure the sta-
bility of the transition probabilities in the underlying Markov chain, which can be understood through the
shrinkage parametersak

r . Figure 5(a) shows boxplots describing the marginal posterior distributions of
log10ak

r . The posterior medians of the shrinkage parameters are typically 100 or more for most states in
both treatments. Recall thatak

r represents the number of prior observations present in the full conditional
distribution ofQk

t (r, ·), so the very large values ofak
r indicate that the model has shrunk almost entirely back

towards the homogeneous model. Bayesian shrinkage is typically measured in terms of shrinkage factors
between 0 and 1 (Morris, 1983). Shrinkage factors for this model are defined asBk

r (t) = ak
r /(a

k
r +nk

t (r,+)),
wherenk

t (r,+) = ∑snk
t (r,s), the total number of transitions out of stater betweent −1 andt for subjects on

treatmentk. Posterior medians ofBk
r (t) are plotted in Figures 5(b) and (c). During the first transition the

SSE state for clozapine had a posterior median shrinkage factor of .63, by far the lowest for either treatment.
Most other transition probabilities had posterior median shrinkage factors above .8, with roughly half of the
clozapine figures above .9. The consequence of such large shrinkage factors is that the transition probabil-
ities Qk

t (r,s) are essentially the same for allt. The only substantial evidence of inhomogeneity is shown
in Figure 5(d), which plots marginal posterior distributions for Q1

t (7,7), the probability that a clozapine
subject in state SSE at timet −1 remains in SSE at timet. A low probability is medically desirable because
it indicates that patients are likely to leave the worst state (SSE) for a better one. Figure 5(d) suggests that
the first probability between baseline and six weeks was somewhat lower than the other periods, indicating
that clozapine’s effect on the sickest patients is felt immediately. The inhomogeneous effect is slight, but
it was present for all choices ofS that we considered (up to 10). By contrast the transition probabilities
for haloperidol patients shown in Figure 5(e) appear to be homogeneous, as did all other sets of transition
probabilities for both medications.

The high degree of shrinkage means that the inhomogeneous model is very close to the homogeneous
model, with the possible exception of the first interval between observations. At first glance this is a some-
what surprising result given that the first two time intervals are half the length (6 weeks) of the other three
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Figure 5:Shrinkage in the inhomogeneous model. (a) Marginal posterior distributions oflog10 shrinkage parameters
ak

r . (b) Posterior median shrinkage factors for haloperidol. (c) For clozapine. (d) The posterior distribution of
Q1

t (7,7), the probability of a patient remaining in SSE at each of the five transition times for clozapine. (e) Q0
t (7,7)

for haloperidol.

intervals. However, there are medical reasons to expect more rapid transitions early in the study, which is
why it was designed with early measurements at 6 week intervals. For example, the study period for a patient
began when they were released from the hospital and one mightexpect this change in clinical care to have
an important short term effect. It appears in this case that the shorter intervals between observations roughly
offset the more rapid transitions to produce data consistent with a homogeneous model. This suggests that it
would be inappropriate to account for the different durations between observations using a continuous time
homogeneous HMM for these data. The remainder of this Section only considers the homogeneous model.

We can compare the effectiveness of clozapine versus haloperidol in terms ofπk
t (s), the proportion of

patients under treatmentk in states at timet. Figure 6 plots the posterior means ofπk
t (s) for both medica-

tions at each of the six observation times. Figure 6 also plots the posterior mean ofπk
∞(s), the stationary

distribution ofQk for each medication. As one would hope, at baseline (0M) there is very little difference
between the two medications. However, as early as the six week time point (6W) we note substantial differ-
ences. At six weeks, clozapine patients have approximatelyan 80% probability of belonging to one of the
four best health states NSE, MSE, MAK and MTD and a 45% chance of falling in the two best states NSE
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Figure 6: Posterior expected proportions of patients in each health state for clozapine and haloperidol. The two
groups of bars correspond to the six observed times plus the long run stationary distribution. The order of the states
from bottom to top is NSE, MSE, MAK, MTD, EPS, AMA and SSE.

or MSE. In comparison haloperidol patients have only 60% and27% chances of falling in these groupings.
The most dramatic change for clozapine patients is seen in the first six weeks. However the proportion of
clozapine patients in NSE continues to climb, with the long run fraction greater than 50%. In comparison
haloperidol patients experience relatively small gains. While there is a small increase over time in the pro-
portion of haloperidol patients in the best health state NSE, the fraction in SSE remains fairly stable. This
implies that the patients in the worst health states are not helped by haloperidol. Another dramatic difference
between the medications is in EPS, which is essentially eliminated by clozapine but shows no improvement
with haloperidol. The long run and 12 month distributions are similar for both haloperidol and clozapine,
indicating that the patients appear to be close to stationarity after one year. The only state other than NSE
whose proportion under clozapine grows over the course of the study was MTD.

Similar effects can be seen in the Markov transition probabilities displayed in Table 1. The transition
probabilities reveal that a clozapine patient has a much higher probability of remaining in NSE than a
haloperidol patient, a lower probability of remaining in any negative state except MTD, and a much lower
probability of remaining in EPS. The probability of a clozapine patient transitioning into MTD is higher
than that of a haloperidol patient for all states except NSE and MAK. Therefore clozapine does not induce
MTD on healthy patients any more than does haloperidol, so MTD is not a side effect of clozapine in that
sense. Rather, it appears to be a destination state for patients who fail to reach the more favorable state NSE.

Figure 7 captures the uncertainty about Figure 6 by plottingthe marginal posterior distributions of
π1

t (s)−π0
t (s) for each state and observation time. For example, the plot for NSE indicates relatively similar

proportions for both medications at baseline, the first box plot, but higher proportions of clozapine patients
at six weeks. The difference in proportions increases at three months and then stays relatively stable over
time. At three months and beyond there is a very high posterior probability that the proportion of clozapine
patients in NSE is at least 20% greater than for haloperidol patients. Thus one can feel very confident that
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From: Clozapine
NSE 0.809 0.042 0.076 0.056 0.005 0.008 0.005

MSE 0.351 0.255 0.146 0.161 0.015 0.048 0.024

MAK 0.359 0.071 0.451 0.060 0.011 0.034 0.015

MTD 0.130 0.060 0.062 0.645 0.016 0.037 0.050

EPS 0.115 0.216 0.097 0.146 0.149 0.060 0.217

AMA 0.105 0.136 0.138 0.161 0.020 0.382 0.058

SSE 0.050 0.079 0.069 0.202 0.044 0.066 0.491

To: NSE MSE MAK MTD EPS AMA SSE

Haloperidol
0.488 0.109 0.232 0.057 0.042 0.052 0.020

0.226 0.300 0.199 0.085 0.053 0.106 0.032

0.134 0.097 0.595 0.059 0.018 0.074 0.023

0.112 0.123 0.063 0.479 0.030 0.077 0.116

0.033 0.132 0.052 0.045 0.619 0.040 0.079

0.051 0.120 0.149 0.063 0.021 0.504 0.093

0.017 0.041 0.040 0.089 0.023 0.085 0.706

NSE MSE MAK MTD EPS AMA SSE

Table 1:Posterior means of transition probabilities for clozapineand haloperidol.

clozapine is providing a genuine short term and long run overall improvement relative to haloperidol. Fig-
ure 7 also provides strong evidence of lower rates of clozapine patients in the MAK, EPS, AMA and SSE
states, and similarly strong evidence of elevated levels inMTD. The differences do not appear as large for
the other states, notably EPS, because they have fewer overall members than NSE. The differences in EPS
would appear larger if they had been standardized by the total state size. Note that the differenced long run
stationary distributions are population inferences basedsolely on the posterior distribution ofQ0 andQ1.
The other differences in proportions are in-sample inferences for the 423 subjects in our data set, which are
less variable.

5 Discussion and Conclusions

In this article we used a hidden Markov model to analyze multivariate longitudinal data comparing the side
effects experienced by patients with schizophrenia under two different medications. There was evidence that
the population could be described by seven states of health ranging from no to severe side effects. Based on
the fitted model we found very strong evidence that clozapineproduces a larger and more rapid improvement
in side effects than haloperidol, a standard antipsychotictreatment. There was also strong evidence of long
term improvements with 60% of clozapine patients predictedto exhibit no or mild side effects compared to
fewer than 30% for haloperidol. One of the advantages of a health state model over more standard univariate
approaches is the ability to easily determine not just whether an overall improvement has occurred but also
the types of improvement. For example we found evidence thatclozapine was very effective at treating
akathesia and extra-pyramidal symptoms, but less effective at treating tardive dyskinesia.

Our most compelling methodological advance is the hierarchical inhomogeneous model. As with other
hierarchical models, the inhomogeneous HMM allows data to decide the extent of the compromise between
fitting each period’s transition probabilities independently and fitting a global transition matrix for the entire
model. Longitudinal data are required to fit such a model, as multiple transitions need to be observed during
each interval.

Our findings reinforce and extend those of Sugaret al. (2004) who analyzed the same data set using
a health state model based onk-means clustering. Sugaret al. fit a six state model with states very close
to those in the bottom row of Figure 3, but with states 1 and 2 merged. Section 4.1 notes the differences
between the states fit by the HMM and thek-means model, but they are similar enough to see a rough
correspondence. Sugaret al. observe longitudinal effects similar to our Figure 6. However, the HMM
approach offers several advantages over thek-means approach. Cluster based methods involve assuming that
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Figure 7: Boxplots illustrating the posterior distributions of the difference between the proportions of clozapine
patients and haloperidol patients in each state at each time.

each observation’s health state membership is known ratherthan estimated, introducing potential bias into
the analysis. By contrast HMM parameters estimated using Bayesian methods automatically incorporate
all sources of uncertainty, conditional on the model being correct. In addition Bayesian methods provide
automatic measures of uncertainty even for complicated functions of the parameters like the differences
between stationary distributions in Figure 7. As part of their model checking Sugaret al. performed a
hypothesis test for inhomogeneity and found no evidence to reject a homogeneous model. However, through
the use of shrinkage factors, our hierarchical model actually supports the discrete time homogeneous model
rather than simply failing to provide evidence against it. Finally, by allowing varying covariance matrices
and multivariatet distributions HMMs provide a more flexible fit to the data thanthek-means procedure.

HMMs allow the health states and longitudinal effects to be simultaneously estimated borrowing strength
from both. HMMs also allow the classification of an individual to a health state to depend on the state they
belonged to in the previous time period. Moreover, uncertainty estimates for the HMM are not conditional
on hard assignments of subjects to clusters. We see a few potential drawbacks to the HMM fit in this article,
relative to the approach of Sugaret al.(2004). First, a potential issue in convincing people in health services
research to adopt this approach is the way that health statesare defined using HMM. Typically, medical
doctors define health states via the boundaries of a partition of the space of patient characteristics. In the
HMM a health state is a latent class, and people in different classes can have similar characteristics. From a
medical perspective this approach involves treating the state as a genotype and the characteristics as a phe-
notype where the traditional approach would define the genotype via an individual’s characteristics. While
the HMM health state definition is reasonable, and in some ways more natural, there may be some resis-
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tance to its adoption. Second, if the model were applied injudiciously it is possible that the larger number of
parameters required to fit each state (relative tok-means) could lead to overfitting. Weak but proper priors
for Σs centered on the identity matrix can help reduce this risk. Finally, the lack of widely available software
for fitting HMMs has prevented their widespread adoption. However, examples of generally useful HMM
code are beginning to appear in online libraries. We expect this to hasten the implementation of HMMs for
health state modeling.

A Interpretation of health states

While it is not possible to form an exact ranking of the statesin terms of severity of symptoms it appears
that NSE represents the patents with fewest symptoms followed, in no clear order, by the patients in MSE,
MAK and MTD. The patients in EPS and AMA are in yet worse shape and those patients in SSE exhibit the
worst disorders.

No side effects (1: NSE)These patients are below average on almost all the side effects questions so they
are relatively speaking in good shape.

Mild side effects (2: MSE) These patients are somewhat below average on the tardive dyskinesia and
akathesia questions and slightly above average on items relating to extrapyramidal symptoms.

Mild akathesia (3: MAK) These patients have scores comparable to the NSE group on allquestions except
the akathesia scale where they are worse than average.

Mild tardive dyskinesia (4: MTD) These patients have average scores on the Simpson-Angus andbelow
average scores on the akathesia questions. However, they have high scores on several of the AIMS
questions corresponding to tardive dyskinesia.

Extra-pyramidal syndromes (5: EPS) These patients are close to average in every area except the first
eight Simpson-Angus questions on which they are significantly worse than average. The Simpson-
Angus Scale deals with syndromes of pseudo-parkinsonism, involuntary tremors and stiffness of mus-
cles, and salivation.

Abnormal movements and akathesia (6: AMA) These patients have more severe akathesia problems than
the MAK group and high scores on several of the AIMS questionscorresponding to abnormal move-
ments.

Severe side effects (7: SSE)These patients have well above average scores on almost all the questionnaire
items and have significant side effects disorders.

B MCMC fitting procedures

This Section defines the MCMC algorithm used to sample fromp(θ|dobs) by alternately sampling from
p(dmis|dobs,θ) andp(θ|dobs,dmis). We sample the latent data fromp(h,w,κ|θ,dobs) directly, without break-
ing it into multiple MCMC components. The forward-backwardrecursions for HMMs (see Scott, 2002, for
a review) are employed to drawh from p(h|θ,dobs), averaging over(w,κ). Then(w,κ) are drawn from
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p(w,κ|θ,dobs,h) = p(w|θ,dobs,h)p(κ|θ,dobs,h). Sampling(w,κ) is particularly easy because the elements
of w are independent inp(w|θ,dobs,h), as are the elements ofκ in p(κ|θ,dobs,h). The full conditional
distribution forwit is p(wit |hit = s, ·) = Ga((νs + p)/2,(νs + ∆it )/2) where p is the dimension ofyit and
∆it = (yit − µs)

TΣ−1
s (yit − µs). The full conditional distribution forκit concentrates onkit andkit−1 with

p(κit = kit |·) = p1it /(p1it + p2it ) wherep1it = αit qkit (hit−1,hit ) andp2it = (1−αit )qkit−1(hit−1,hit ). Most of
the timeαit = 1 in which caseκit = kit with probability 1.

For the homogeneous model, all parameters exceptνs have closed form full conditional distributions
which are independent acrosss. We update these parameters using Gibbs draws from their full conditional
distributions. Letw+

s = ∑it wit I(hit = s) andy+
s = ∑it wit yit I(hit = s). Thenp(µs|·)= N

{

A−1
(

Ω−1
s ms+ Σ−1y+

s

)

,A−1
}

with A = (Ω−1
s + w+

s Σ−1). Let V+
s = ∑it wit (yit −µs)(yit −µs)

T I(hit = s) andns = ∑it I(hit = s). The full
conditional forΣ−1

s is p(Σ−1
s |·) = W (DFs+ns,SSs+V+

s ). The rows ofQk are independent across states and
treatments withp(Qk(r, ·)|·) = D(Nk

r +nk(r, ·)). Similarly, p(πk
0|·) = D(Nk

0 +nk) wherenk is a vector with
elementsnk

rs = ∑i I(hi1 = r)I(ki1 = k).
We employ the Metropolis Hastings algorithm (Metropoliset al., 1953; Hastings, 1970; Chib and Green-

berg, 1995) to sampleνs from p(νs|·) using proposals based on an approximation top(logνs|·). Let m
andv denote the mean and variance of the asymptotic normal approximation to p(logνs|·) derived in Ap-
pendix C.1. We propose deviates from logν∗s ∼ f (logν∗s|·) = T (m,v,3) and accepts them according to a
standard Hastings probability. Thet distribution with 3 degrees of freedom provides a proposal distribution
with heavier tails than the target distribution, which helps prevent the sampler from becoming trapped in
low probability regions (Mengersen and Tweedie, 1996).

The sampling algorithm for the inhomogeneous model differsfrom the homogeneous model in three
respects, two of which require only trivial modifications. First, Qk

t replacesQk when constructingqit in the
forward-backward recursions. Second, the inhomogeneous model has more transition probabilities which
must be sampled from their full conditional distributions (given in Section 3.2). Third, an MCMC compo-
nent must be added to sample fromp(Nk

r |·).
Recall ak

r = ∑sNk
rs and φk

r = Nk
r /ak

r . Let δk
r1 = logak

r , let δk
rs = log(Nk

rs/Nk
r1) for s > 1, and letδk

r =

(δk
rs). There is a one-to-one correspondence betweenNk

r andδk
r with φk

rs = [Is1 + (1− Is1)exp(δk
rs)]/(1+

∑S
s′=2exp(δk

rs′)). Let M andV denote the mean vector and variance matrix of the multivariate normal ap-
proximation top(δk

r |·) developed in Appendix C.2. A proposal deviate is generated as (δk
r )

∗ ∼ T (M,V,3).
The deviate is either promoted according to a Metropolis-Hastings probability or elseNk

r remains unchanged
during the current iteration.

Care must be taken when sampling(Q,N) becauseQk
t (r,s) = 0 is an absorbing state. That is, there can

be pairs of states within a treatment for whichnk
t (r,s) = 0 for somet in a given iteration of the sampler. The

zero count leads to a draw ofQk
t (r,s) ≈ 0, which is a problem because the sufficient statistic forp(Nk

r |·)
is the geometric mean ofQk

2(r, ·), . . . ,Qk
T(r, ·). For anyt, Qk

t (r,s) = 0 has infinite weight in the geometric
mean, and thus inp(Nk

r |·). ThusQk
t (r,s) ≈ 0 forcesNk

rs → 0, which increases the probability mass near
zero for allQk

2(r,s), . . . ,Q
k
T(r,s) and exacerbates the problem on the next iteration. The absorbing state can

be eliminated by truncating the support ofp(Nk
r ) to enforceNk

rs > N0 for all s. In practice, truncating the
support of the prior equates to simply rejecting Hastings proposals with anyNk

rs ≤ N0. We setN0 = 1 so that
the “worst case” prior forQk

t (r, ·) is the uniform prior.
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C Approximations

C.1 Approximating p(logνs|·)

Supposew1, . . . ,wn
iid∼ Ga(ν/2,ν/2) andp(ν) = z0/(z0 + ν)2. Let w+ = ∑i wi, u = ∑i logwi, andη = logν.

The log posterior density is

logp(η|w) = K +
nν
2

log(ν/2)−nlogΓ(ν/2)+ (ν/2−1)u−w+ν/2+ logz0−2log(z0 + ν)+ logν

whereK is a normalizing constant, and the extra logν at the end is the log of the Jacobiandν/dη = ν.
Standard asymptotic theory (e.g. Le Cam and Yang, 2000) implies p(η|w) ≈ N (η̂,−1/h(η̂)), whereη̂ =

argmaxlogp(η|w) and h(η) = ∂2 log p(η|w)/∂η2. Basing the approximation onη rather thanν speeds
convergence to normality. The derivatives of logp(η|w) with respect toη, which are useful in obtaininĝη,
are most easily computed using the chain rule. Let

g∗ =
∂ logp(η|w)

∂ν
=

n
2

[

log(ν/2)+1−ψ(ν/2)+
u−w+

n

]

− 2
z0 + ν

+1/ν

h∗ =
∂2 logp(η|w)

∂ν2 =
n
2

[

1
ν
− 1

2
ψ′(ν/2)

]

+
2

(z0 + ν)2 −1/ν2.

Then by the chain rule∂ logp(η|w)/∂η = g∗ν andh = (h∗ν+g∗)ν.

C.2 The Posterior Distribution of Dirichlet Parameters

Supposeq = (q1, . . . ,qn) with qi
iid∼ D(N) whereqi is anSdimensional probability vectorqis,s∈ S , andN

is anS−vector of positive real elementsNs interpretable as counts. Leta = ∑sNs, andφs = Ns/a. Define
δ1 = loga, δs = log(φs/φ1) for s> 1, and letδ = (δ1, . . . ,δS). The Dirichlet likelihood function is

p(q|δ) =
n

∏
i=1

D(qi|N) = Γn(a)
S

∏
s=1

TNs−1
s

Γn(Ns)

whereTs = ∏n
i=1qis are sufficient statistics. The prior distribution forδ is p(δ) = p(N(δ))|detJ|. The term

|detJ| is the absolute value of the determinant of the Jacobian matrix ∂N/∂δ, with elements

Jrs =
∂Ns

∂δr
= Ns[Ir1+(1− Ir1)(Irs−φr)] = NsKrs(φr), (6)

where Irs = 1 if r = s, and Irs = 0 otherwise. Notice thatKrs(φr) is a linear function ofφr . One may
write logp(δ|q) = C + logp(q|N(δ)) + log p(N(δ)) + log|detJ| whereC is a normalizing constant. As
n→ ∞, p(δ|q) → N (δ̂,−H−1) whereδ̂ = argmaxlogp(δ|q) andH = ∂2 log p(δ|q)/∂δ∂δT . Derivatives of
logp(δ|q) are useful for obtaininĝδ. It is easiest to differentiate the first two terms with respect to N,
then transform the derivatives using the chain rule. Letf (N) = logp(q|N)+ logp(N), g∗ = ∂ f/∂N, and
H∗ = ∂2 f /∂N∂NT. Theng= ∂ f/∂δ = Jg∗. The Hessian matrix with respect toδ can be computed fromH∗,
g∗, J, and the second order JacobianJ(2), a triply indexed array with elements

J(2)
rsm =

∂2Nm

∂δr∂δs
=

∂Jsm

∂δr
. (7)
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Substituting (6) into (7) yieldsJ(2)
rsm = JrsKsm(φm)+NsKsm(Drm), whereDrm = ∂φm/∂δr = φr(1− Ir1)(Irm−

φm) = φrLrm(φm). The Hessian matrix with respect toδ is

H0 =
∂ f

∂δ∂δT = JH∗JT +J(2) ·g∗

whereJ(2) · g∗ is a matrix whose(r,s) element is∑S
m=1J(2)

rsmg∗m. The final set of derivatives involve dif-
ferentiating|detJ| with respect toδ, which can be accomplished according to formulas given by Harville
(1997), Section 15.9, equation 9.3. The formula for computing the Hessian of|detJ| requires the third order
Jacobian

J(3)
irsm =

∂Jrsm

∂δi
= J(2)

irs Ksm(φm)+JrsKsm(Dim)+JisKsm(Drm)+NsKsm(D(2)
irm) (8)

whereD(2)
irm = ∂Drm/∂δi = Dir Lrm(φm)+ φrLrm(Dim).
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