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ABSTRACT

Motivation: In systems like E. Coli, the abundance of sequence infor-
mation, gene expression array studies, and small scale experiments
allows one to reconstruct the regulatory network and to quantify the
effects of transcription factors on gene expression. However, this goal
can only be achieved if all information sources are used in concert.
Results: Our method integrates literature information, DNA
sequences, and expression arrays. A set of relevant transcription fac-
tors is defined on the basis of literature. Sequence data is used to
identify potential target genes and the results are used to define a
prior distribution on the topology of the regulatory network. A Baye-
sian hidden component model for the expression array data allows
us to identify which of the potential binding sites are actually used by
the regulatory proteins in the studied cell conditions, the strength of
their control, and their activation profile in a series of experiments.
We apply our methodology to 35 expression studies in E. Coli with
convincing results.

Availability: www.genetics.ucla.edu/labs/sabatti/software.html
Contact: csabatti@mednet.ucla.edu

1 INTRODUCTION

The complete sequencing of a large number of genomes, and the
growing amount of information stored in databases allows us to
identify genes, introns and exons, splice sites, binding sites for regu-
latory proteins, etc. As a consequence we can start tracing with some
accuracy a picture of the possibilities inscribed in DNA sequences
such as which proteins a cell could make, which transcription factors
may regulate the expression of which genes, which alternative forms
of a gene are possible. This complex collection of wiring systems
has been described by Davidson (Davidson et al., 2002) as a “view
from the genome” of the cell. This static picture describes the realm
of possibilities, rather than what actually happens in the cell.
Alternatively, one can talk about a “view from the nucleus”, that
offers a dynamic image capturing which genes are actually expres-
sed, under the control of which transcription factor at any moment.
Gene expression arrays, with all their limitations, by being a rela-
tively low cost, high throughput experiment, conducted in a wide
range of laboratories, offer a very important data source towards the
gathering of such dynamic pictures. Indeed, there is a growing lite-
rature documenting attempts to reconstruct biological networks by
applying statistical models to gene expression data. Many of these
attempts are exploratory in nature, in that very little prior informa-
tion on the structure of the network is assumed. While this line of
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Fig. 1. Transcription network reconstruction integrating DNA sequence and
gene expression information. Blue circles represent regulatory proteins and
red squares genes. An arrow connecting a circle to a square indicates that
the transcription factor controls the expression of the gene. When different
colors are used in depicting these arrows, they signify a different qualitative
effect of the TF on genes (repressor of enhancer). Finally, varying arrows
thickness signify different control strengths.

work is clearly very important to help formulate hypotheses regar-
ding yet unexplored mechanisms, in many cases enough information
has been accumulated to enable us to take a more confirmatory
approach. This paper describes such an approach with regard to the
very specific process of transcription regulation, which is perhaps
the first step linking the static information encoded in the genome
with the dynamic system of the cell life. Figure 1 gives a schema-
tic illustration of our approach: we reconstruct the structure and the
dynamic behavior of the regulatory network involving a group of
identified transcription factors (TF). We start with the analysis of
the sequence of up-stream transcription units, obtaining an initial
probability on the network topology. To then overcome the intrinsic
limitation of a reconstruction based only on sequence data (which
can provide, at best, a static description of the system), we turn to
the analysis of a series of array experiments. We are able to refine
our reconstruction of the network topology, as well as estimate chan-
ges in concentration of active form of TF, and the strength of their
control of gene expression. To carry out the program illustrated in
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Figure 1 we use a Bayesian framework to link sequence and array
data and a hidden component model to relate gene expression values
to the role of TF.

The paper is structured as follows. Section 2 describes how we use
sequence analysis to obtain an initial probabilization of the network
spaces. A model connecting expression values with information on
binding sites is given in Section 3, while Section 4 gives details of
our estimation strategy, from prior choices to design of the MCMC
used in posterior exploration. Section 5 provides illustrations of the
method on an E-coli data set. We conclude with a discussion.

2 PRIOR NETWORK TOPOLOGY

One of the goals of our analysis is the reconstruction of the net-
work topology. The network of interest is defined starting from a
set of transcription factors that are identified as important ones from
the literature. We consider only simple two layer networks: parent
nodes represent transcription factors, and descendent nodes regu-
lated genes. Edges are directed and connect only TF to genes, so
that we do not allow interactions between TFs or genes or feed-
back mechanisms. Such a simple network structure can be described
with a 0-1 matrix Z, with N rows, as many as the genes under
consideration, and L columns, where L is the number of trans-
cription factors. The element z;; is one if TF j regulates gene ¢,
and zero otherwise. We deduce our initial distribution on the space
of matrices Z from the analysis of the DNA sequence upstream of
the studied genes. In particular, we use our Vocabulon (Sabatti and
Lange (2002)) algorithm, as it is particularly well suited for this
genomewide investigation, but the choice of the most appropriate
methodology for this step is left to the investigators. Firstly, a group
of transcription factors that are documented to have an important
role in gene regulation of the system under study is selected. Prior
available information on the characteristics of the DNA sequence
motif they recognize informs the sequence analysis. We hence iden-
tify all the putative binding sites for these transcription factors in
the portion of the genome sequence that is likely to have a regula-
tory function. The results of this initial analysis are used to define
a prior distribution on the network topology as follows. We assume
independence between the entries z;;. Where there is documented
experimental evidence of a binding site for transcription factor j in
the promoter region of gene ¢, we set z;; = 1 (for a detailed descrip-
tion of how this was obtained, please see Sabatti and Lange (2002)).
Letting m;; = Pr(z;; = 1), we assign a positive value smaller
than 1 to the m;; whenever the sequence analysis detects a puta-
tive binding site for transcription factor j upstream of gene 7. The
remaining entries of Z are set to zero. Note that one can use diffe-
rent thresholds to decide when a binding site is detected; moreover
putative sites may have a varying degree of certainty that could be
reflected in the choice of 7;;. In our experience, however, the most
important issue is assuring that the prior is not excessively informa-
tive, allowing expression data to have a substantive contribution to
the posterior. We suggest using the value 7;; = 0.5 for all the detec-
ted binding sites: this choice limits the informativeness of the prior
distribution and we have found it to work well in practice.

The described prior distribution sets to zero the probability of a
large number of edges. Overall, this adequately represents the nature
of regulatory networks: the expression of every gene is affected only
by a small number of transcription factors. Restricting a priori which

edges are absent from the network results in computational advanta-
ges, greatly reducing the space of possible networks. However, note
that this is equivalent to assuming that the binding site detection
algorithm does not have false negatives. While this is clearly a limi-
tation, it is important to recall that false negatives are not typically
a serious problem for methods that identify the locations of binding
sites of a known profile. Moreover, the threshold for detection can be
lowered so to reduce the number of false negatives. Finally, note that
configurations of Z with one or more rows containing only zeroes
have positive probability according to the described distribution: the
corresponding gene is excluded from the network.

3 GENE EXPRESSION DATA

To take advantage of the information contained in gene expression
data, we need a model that links it to the network topology. For
this purpose, we use a linear model that has been proposed in Liao
et al. (2003) and Kao et al. (2004), and has elements of simila-
rity with a number of other contributions such as Bussemaker et al.
(2001), Keles et al. (2002), Conlon et al. (2003), Beal et al. (2005),
and Girolami and Breitling (2004). The central assumption is that
expression measurements can be thought of as determined by the,
unknown, concentrations of active forms of the transcription factors.
By log-transforming expression measurements, a linear model can
be postulated, so that e;s = Zle ai;jpjt+vit, where e;; represents
the expression of gene ¢ in experiment ¢; a;; the control strength of
transcription factor j on gene ¢; p;¢ is a proxy for the concentration
of active form of TF j in experiment ¢; and ~;; captures measure-
ment errors and biological variability. We assume that ~;; are ¢.7.d
according to N (0,0?) (we will indicate with o2 the vector of all
these variance parameters, and with > a diagonal matrix with dia-
gonal elements represented by o2.) It is useful to organize the model
terms in matrices and vectors. For example, with E we indicate the
matrix {eit}iv:’ffftzl , with M the total number of experiments analy-
zed. With e’ we indicate the ¢-th column of such matrix and with e;
the column vector corresponding to its ¢-th row. In matrix notation,
the model we described can be expressed as:

E=AP 4T, (1

where E represents the data and A and P unknowns. This formu-
lation clearly underscores the fact that the model we are presenting
is a factor analysis one (Anderson, 1984). Other hidden components
models have been proposed in the literature for the analysis of gene
expression data and we refer to the final section for a discussion of
their relation to the present contribution. There we will also discuss
the sense in which our linear model departs from others. Here it suf-
fices to notice that (1) the “factors” p” have a clear interpretation, as
they correspond to specific transcription factors; (2) we are intere-
sted in reconstructing the specific values of the p;:’s; (3) the matrix
A is known to contain a large number of zeroes, corresponding to
the sparsity of the network. These characteristics of the parameters
inform our estimation procedure.

4 RECONSTRUCTION ALGORITHM

The first difficulty encountered in estimating a model like (1) is a
lack of identifiability of A and P in a general setting. Given the
interpretation of the parameters that we have described previously,
a natural choice of constraints to achieve identifiability is restricting
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the number of a;; that are not equal to zero. The precise structure
of these constraints necessary to achieve identifiability is described
in Liao et al. (2003). Here we take a related, but substantially dif-
ferent approach. Liao et al. assume that the position of zeroes in
A——corresponding to one regulatory network—is known a priori;
the authors suggest checking if the defined model is identifiable and,
in case of negative answer, they suggest eliminating some TF from
the analysis. The present work does not assume a known regula-
tory network, but has as one of its main goals the reconstruction
of one from sequence and array data. Furthermore, we want to be
able to reconstruct a network, even if it does not satisfy the cons-
traints in Liao et al. (2003), as they are not entirely biologically
relevant. To carry out our program of network reconstruction and
relax the identifiability requirements, we use a Bayesian framework.
The sequence analysis described in Section 2 gives us a prior on the
network structure, so that we are left needing to define the prior on
A, P,o|Z. While the initial distribution we defined for Z is based
on biological information, and allows synergistic use of sequence
and array data, the role of the prior on A, P, and o is mainly one
of regularization. This function can be performed while keeping the
computational burden to a minimum by using conjugate-like priors.
In this spirit, we consider each p;; as a priori independent with a
Gaussian distribution p;; ~ N(0, O'g). The zero mean reflects the
fact that a priori we do not know if the activity of the transcrip-
tion factor j will be enhanced or reduced with respect to baseline in
experiment t. The independence a priori and the common variance
are useful for identifiability purposes and are related to the common
assumption of identity matrix as variance-covariance for factors in
frequentist factor models.

In a similar fashion, we assume that a;; = 0 if z;; = 0 and
a;j ~ N(0,02) otherwise, independently across i and j. The mean
is set to zero as a priori one does not know if a transcription factor
will act as a promoter or a repressor for a given gene. Note that choo-
sing different values for 012, (and o2) one can obtain non-informative
priors: we suggest an informative prior on P and a non informative
on A (for a more complete discussion of prior choices, please see
the supplementary material).

Note that the structure of some experiments may be such that p;;
and p;, are expected to be dependent (for example, ¢ and s indicate
two points in a time series). In such cases, it might be appropriate to
assume a prior distribution p’ ~ N (0,T"); this will lead to a poste-
rior distribution that is more complex than the one described in the
following, but can nevertheless be explored with a Gibbs Sampler
chain without substantially increased computational costs (see the
supplementary material for the derivation).

Finally, we model af , the variance of ~;+, as the inverse of a
gamma distribution with parameters «; and ;. The value of the
hyperparameters «; and (§; can be determined using information
derived from calibration slides or replicates of the array experi-
ments. Indeed, often, the vector e; is the average of the results of
multiple replicate experiments in which case their variance can be
adequately used to formulate a prior guess on the error variance.

In order to write out the relevant posterior densities of our para-
meters with compactness, we introduce some notation. If x and y
are two r dimensional vectors, we denote by z¥ the product of all
the components of the first vector raised to the power of the cor-
responding components of the second i.e. ¥ = []i_, «¥". If z is
a vector of zeros and ones, and a a vector of the same dimension,
we indicate with a[z] the vector of elements of a corresponding to

ones in z. Similarly, if P is a matrix that has as many rows as z,
P|z] is the submatrix obtained by selecting the rows of P that cor-
respond to ones in z. Moreover, if A has the same dimension as Z,
Az indicates a matrix identical to A, except with all its elements
corresponding to a zero in Z set to zero.

To explore the posterior distribution of the parameters, and per-
form inference, we use a Markov Chain Monte Carlo algorithm.
Given the structure of our problem a collapsed Gibbs sampler is
particularly convenient. There are four parameter groups Z, A, P
and o, and there is some conditional independence structure within
each of these groups. The fact that we opted for conjugate-like priors
guarantees that the full conditional distribution of the majority of
the parameters have a known form, which makes it easier to run a
Gibbs sampler. A detailed derivation of the algorithm can be found
in the supplementary material. Here we describe the conditional
distributions used in the algorithm:

P(='|P,0%) o ') (1 — ') 7 /gl x @)

det(Pz'|P[2] Jo? + I ,i /%)% x

1 I Z',PZiPZi/ Izi _ i1 i
exp{yrpet P (PEIEEL | Jety i praigery
ai|P, Z,0° ~ N(34, Plzi)e' /o7, Za,) (3)
pi|A, Z,0° ~ N(Zp, Az er, 5y, ) )
1 5 ~
?‘A7 Z: P~ Gamma(aiyﬂi)a (5)

where [, indicates an identity matrix of rank », X,, =
(PP [0 + 120y/02) ™1 By, = (AGD T Az + 11 foy) ™,
a; = Oé¢+M/2, and Bl = ﬂl+sz\i1 (eit —Zjl.lzl ai]'pjt)Q/Z. One
iteration of our algorithm consists of sampling z; fori = 1,... N
from (2), sampling a; with ¢ = 1,... N from (3), p; with ¢t =
1,...M from (4), and 02,7 = 1,... N from (5).

The posterior probability (2) is unconditional on A (this is the
collapsing step). Its value needs to be calculated for all possible z°
to sample from the appropriate multinomial probability. This is a
potentially heavy computational burden. However, in general this
will not be a problem because of the large number of zeros in Z i.e.
for each gene, the number of potential binding sites is rather limited
and this controls the dimension of the space of possible values of z*.

The number of required iterations to reach convergence is typi-
cally unknown in MCMC on continuous state spaces like the present
one. There are however a number of diagnostics that one can
run on the chain in order to empirically assess if convergence
has been achieved (see for example (Cowles and Carlin, 1995),
and their implementation in the CODA R-package available from
http://www-fis.iarc.fr/coda/). In our case this is slightly complicated
by the fact that our posterior distribution is defined on a very high
dimensional space. By monitoring autocorrelation of the chains,
likelihood values, and using the Geweke and Hidelberger statistics
we concluded that, with mildy informative priors, 11000 iterations
with 1000 burn-in appear to guarantee convergence for the problem
we describe (see supplementary material for details). The use of
non informative priors makes the posterior multimodal and results
in longer convergence times. Smaller size problems are likely to
require fewer iterations; moreover, the chains seem to converge rat-
her quickly to a region of high probability according to the posterior
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and the large number of iterations is mainly necessary to explore the
region around these quickly gathered modal values.

A significant advantage of our approach is the ease with which
missing data in the expression matrix, E, can be handled. We
simply add a fifth step to the Gibbs sampling algorithm described
above where we impute any missing values. From (1) the distribu-
tion of e;¢|a’, p; is Gaussian with mean Zle a;jp;¢ and variance
o?. Hence, each iteration of the sampler is augmented to include
sampling of e;;.

Once a sample from the posterior distribution is obtained, one can
summarize it by calculating expected values and credibility inter-
vals for each of the parameters. The combination of restrictions on
A and or choices for the prior distributions, allow us to obtain a
posterior distribution that is easy to deal with, except for an indeter-
minacy in the signs of A and P i.e. one can obtain identical results
by flipping the sign on the jth column of A and the jth row of P.
For the purpose of data analysis we defined the following quantities
that are independent from rescaling and changes of signs and have
interesting biological interpretations:

_ 24 isPit

and au = T,

L D@Dt
P it =0)

Dj¢ is the average effect of each transcription factor on the genes it
regulates (regulon expression), and a;; the average control strength
over all experiments. These quantities are directly related to the
expression values of genes in a regulon and for this reason we prefer
them when conducting descriptive data analysis.

5 DATA ANALYSIS

We illustrate the applicability of our method with the analysis of 35
microarray experiments of E. Coli that are either publicly availa-
ble or were carried out in the laboratory of Professor James C. Liao
at UCLA. The experiments consist of Tryptophan timecourse data
(1-12) (Khodursky et al., 2000), glucose acetate transition data (13-
19) (Oh et al., 2000, 2002), UV exposure data (20-24) (Courcelle
etal.,2001) and a protein overexpression timecourse dataset (25-35)
(Oh and Liao, 2000). To reduce spurious effects due to the inhomo-
geneity of the data collection, we standardized the values of each
experiment, so that the mean across all genes in each experiment is
zero and the variance one. Merging these different datasets we have
expression measurements on 4289 genes across 35 experiments. In
general terms, biological knowledge of the nature of the microar-
ray experiments suggests that the TrpR regulon should be activated
in the Tryptophan timecourse, the LexA regulon should be activa-
ted in the UV experiments, and the RpoH regulon in the protein
overexpression.

To define the network and our prior on the connectivity structure,
we relied, as described previously, on literature knowledge and the
results of a genomewide investigation for binding sites using a dic-
tionary model (Sabatti et al., 2004). We categorized a location as a
potential binding site if the Vocabulon algorithm assigned it a proba-
bility higher than 0.5. By merging these potential binding sites with
the known sites from the literature, and with the expression data, we
obtained a set of 1433 genes, potentially regulated by at least one
of 37 transcription factors and on which expression measurements
were available (missing values in the array data were allowed). Our
prior on Z suggested a great deal of sparsity. For example, 14 of
the transcription factors were only expected to regulate 20 or fewer

genes and 34 of the 37 TFs were expected to regulate at most 120
genes. The notable exception was CRP, which potentially regulated
over 500 genes. Let us note that without adopting our Bayesian fra-
mework, we would not be able to study this transcription network,
simply because the number of experiments (35) is smaller than the
number of TF considered (37): the use of priors regularizes the pro-
blem and enable us to see, a posteriori, that a number of the TF are
not involved in this experiment.

The hyperparameters of the gamma distribution for error varian-
ces were all equal with « = .7 and § = .3, leading to a weak
prior. We experimented with the use of non-informative priors for
A and P, by using 0, = 100 and/or o, = 100. Not surprisin-
gly, using an uninformative prior on both components leads to slow
convergence and a multimodal posterior. When we regularized P
by setting o, = 1 we obtained satisfactory and comparable results
both when setting o, = 1 as well as when setting o, = 100. Using
a non-informative prior on A, increases the number of a;; evaluated
as equal to 0 a posteriori, leading to simpler final models. All the
analysis presented below is run with hyperparameter values o, = 1
and o, = 100.

The results from our analysis of the 35 experiments suggested that
a significant portion of the potential binding sites should be discar-
ded. For example, the posterior distribution on Z now contained 26
TFs that were expected to regulate 20 or fewer genes and 34 of the
37 TFs were expected to regulate at most 60 genes. Even CRP, went
from over 500 potential binding sites in the prior to approximately
300 in the posterior. To better interpret the differences between the
prior and posterior network, it is useful to underscore some charac-
teristics of the process that lead us to the formulation of the prior.
The search for binding sites carried out by Vocabulon is based uni-
quely on sequence information: it is quite possible that a portion of
the E. Coli genome sequence looks just like a binding site for a TF,
resulting in a high probability as estimated by our algorithm, but is
actually not used by the protein in question. Moreover, the search
for binding sites in the regulatory region of each gene is carried out
by inspecting 600bp upstream of the start codon: given the size of
E. Coli genes, this often results in investigating the same region for
multiple (close together and short) genes. If a binding site is loca-
ted in such a sequence portion, it will be recorded for all of the
genes whose “transcription region” covers it. It is quite reasonable
to assume that only one of the genes is actually regulated by the TF
in question. In particular, one could decide in favor of the closest
gene. However, such a choice is arbitrary. We have used the output
of Vocabulon in a non-curated form for our prior, preferring to rely
on array data to make such choices.

Figure 2 illustrates the regulon activities as reconstructed by
our model: green dots indicate the posterior expected value and
horizontal bars the confidence intervals for the activity levels of
transcription factors in each experiment (experiments are organized
along the vertical axis). The majority of the analyzed regulons are
not perturbed by any of the experiments. This is to be expected,
in that any shock induces a relatively small number of changes in
the expression pathways. We repeated the analysis of the dataset,
including only the transcription factors that appear to experience
some changes in activation, and the genes that they regulate, and
we obtained (for these TF) results entirely comparable to the ones
shown here. This is not a surprise, given the sparsity of the connec-
tivity, which makes it highly unlikely that one gene is regulated
by more than one transcription factor. Another global observation
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Fig. 2. Representation of regulons activities (57) for the 37 transcription factors in the study. Each graphical display refers to one transcription factor, whose
name is reported on the top. Experiments are organized along the vertical axis, from bottom to top. Dashed horizontal lines separate the experiment groups for
ease of identification. A green dot indicates, for each experiment, the posterior expected value of the transcription factor activity in that experiment. Horizontal

bars provide posterior confidence intervals for the same parameters.

is that the location of the posterior distribution, and sometimes its
spread, seems to vary across sets of experiments, even when the
expected value of the regulon is not different from zero. This sug-
gests that, despite our initial standardization, there may be residual
differences in the noise levels of different experiments, which may
be worth modeling. Additionally, one can notice the variability in
the spread of the posterior distribution: this is inversely proportio-
nal to the number of genes attributed to the regulon. We conducted
the same analysis using only binding sites documented in the litera-
ture (please see the appendix for details): in both cases we obtained
wider confidence bands, underscoring the advantages of our metho-
dology. Our results, instead, did not change appreciably when we
changed our prior on Z to include a larger number of putative bin-
ding sites, defined by lowering the detection threshold. Most of the
additional network edges where not supported by array data, leading
to a reconstruction of regulon activities similar to the one described
in Figure 2.

Focusing on the regulons that are activated in some of the expe-
riments, we notice that our framework successfully brings to the
attention of the researcher the regulons that are known to be affec-
ted by the type of shock experienced by the cell. We start looking
at the first set of experiments, represented in the lower portion of
the displays, from bottom up. The first 8 experiments (Khodursky
et al., 2000) are two 4-point time courses of tryptophan starvation.
The absence of tryptophan induces the de-repression of the genes
regulated by trpR, and a clear increase in expression for this regu-
lon can be observed. The experiments 9-12, instead, consider the
effect of providing the cells with extra tryptophan, leading to oppo-
site expectation for the trpR regulon: the posterior expected value
is lower than zero, but the difference is not statistically significant.
Additionally, it has been previously reported that addition of trpR

downregulates several genes controlled by tyrR—and indeed, we
notice a similar phenomenon. The patterns of argR and fliA regulon
also correspond to previous literature observation (Khodursky et al.,
2000). Figure 2 also suggests other effects (on the rpoH, narL, lexA
regulon) that warrant further investigation. Experiments 20-24 are a
comparison of wild type E. Coli cells with cells that were irradia-
ted with ultraviolet light, which results in DNA damage. (The data
points corresponding to this set are between the second and third
horizontal dashed lines from the bottom of the displays.) Many of
the DNA damaged-genes are known to be regularly repressed by
lexA (Courcelle et al. (2001)). Indeed, according to our reconstruc-
tion, the lexA regulon experiences an increase in expression during
these five experiments. Finally, we notice activation of a few regu-
lons in the protein overexpression data. In particular, notice that
rpoH2 and rpoH3 present the same profile across experiments (and
increased expression in the last dataset): this is reassuring, since
these two really represent the same protein, and are distinct here
because they correspond to two different types of binding sites of
the TF. Overall, it appears that our algorithm successfully captures
the activation dynamics of the studied transcription factors. The fact
that a considerable number of TF, however, do not seem to expe-
rience any change in the experiments, must significantly limit our
ability to refine information on their binding sites and especially on
the strength of their control.

As arguably the inference on the values of A is rather meaningless
for those regulators that do not experience change in activity in any
of the experiments, we focus our analysis on those which do. And
for brevity, we give details only on the trpR regulon (some details
on the lexA regulon are given in the supplementary material).

Figure 3 presents information on Z and a for the trpR regulon.
There were 4 genes known to be regulated by trpR and an additional
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Fig. 3. The trpR regulon: connectivity and control strength information.
Each row corresponds to one gene that can be potentially regulated by trpR.
Genes are indicated by their “b-numbers.” The first column represents the
initial probability with which trpR is thought to regulate the target genes.
The second column gives the corresponding posterior probability. The third
column gives the histogram of sampled values of @ ; for the considered gene.

3 imputed ones. Actually, the binding site suggesting the potential
regulation of these three additional genes, is the same as that in the
transcription region of two of the known genes, that is we have
a couple of cases of the overlapping regulatory regions described
above. The b-numbers, chosen to identify the genes, roughly cor-
respond to their genomic location, so it is easy to see that the top
three genes in the table are adjacent, and so are the bottom two. In
the case of b1264, b1265, b1266, the last two genes appear to not be
regulated by trpR: the posterior probabilities of a binding sites are
very low. Thus it is possible to use our model to rule out the regu-
lation of two genes by trpR, that are within a reasonable distance
from a trpR real binding site. The case of the last gene in the list is
similar. In summary, the analysis of the expression data helped us
identify these three spurious binding sites, even ignoring that they
were really multiple counts of the same site, which regulates only
one gene. We would now like to point the reader’s attention to the
fact that genes b1264 (head of the trpR operon) and b4393—which
are both known to be regulated by trpR, have very different a;;
values: this is reflected by the fact that in our dataset the first gene
had much higher differential expression than the second one (see
supplementary material) and different control strengths are needed
to explain this variability.

To assess on a more general level the performance of our model
and its ability to predict expression, as well as to compare it with
a model that does not consider variable control strengths we con-
ducted the following experiment. We randomly selected 12% of the
expression values in E and set them to unknown (thus doubling the
missing rate in our original dataset). We then ran our model on the

remaining E' values (training set) and used the estimated parame-
ters to reconstruct the ones we blacked out (test set). We carried out
the same experiment using a multivariate linear regression model
for each experiment (as described in (Bussemaker et al., 2001)),
using as regressor our matrix of putative binding sites. The pre-
diction error achieved with our model was half the prediction error
obtained with the regression model. This is beacuse the regression
model does not take into account variable control strength and does
not evaluate posterior probabilities of existence of the binding sites.
This suggests that the additional flexibility in our model is useful in
capturing variation in gene expression.

6 DISCUSSION

While the number of studies that attempt reconstruction of gene net-
works from array data is large, the biological relations implied in
these networks are very diverse. For example genes may be connec-
ted with an edge if they are coregulated, or if they belong to the same
signaling or metabolic pathway, etc. We have focused on the much
more specific domain of transcription regulation networks. Other
contributions in this direction can be found in Liao et al. (2003)
Beer and Tavazoie (2004), Segal et al. (2003), Gao et al. (2004),
and Gardner et al. (2003). In these networks the activity of transcrip-
tion factors is determined by the concentration of their active form,
which depends largely on post-translational mechanisms. Hence,
changes in mRNA levels for transcription factors are unlikely and
are not necessary to cause substantial changes in their activity
levels. Typically one has to augment the data on expression values
with information on transcription factors derived from other sources
(sequence analysis, ChIP-Chip data, experimental measurements on
TF levels, literature knowledge, etc.) and/or model changes in the
activity levels of transcription factors as hidden components. A few
studies have been able to use measurements of transcription levels
of regulatory proteins (see for example, Segal et al. (2003)); this
strategy, however, is appropriate for only a relatively small fraction
of transcription factors. For this reason, we assume that changes in
TF activities are unobserved and we use sequence analysis to guide
our reconstruction of these hidden factors.

One of the characteristics of our work is that a genomewide
sequence analysis precedes and informs the interpretation of array
experiments. Other studies start with the analysis of sequences by
identifying a long list of putative regulatory elements and then refine
these results by looking at expression values. In particular, Busse-
maker et al. (2001), Keles et al. (2002), and Conlon et al. (2003)
use a regression approach, which also resembles our linear model,
to identify significant motifs, but their intentions differ substantially
from ours. Their contributions aim to identify novel binding sites,
not to quantify the extent of the control of a known regulatory pro-
tein on a gene. Additionally, they focus on the analysis of one array
experiment.

We are not the first to use hidden components methodology to
analyze gene expression data. Starting from Alter et al. (2000) there
have been a number of applications of principal components or SVD
to microarray data. The goals of these studies are mainly dimensio-
nality reduction. There have also been a number of efforts to pursue
more biologically minded analysis, using factor-like models. Per-
haps the earliest work in this direction is West (2003), who suggests
factor models to reduce the dimension of expression data to be used
in linear models, paying particular attention to the development of
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sparse models, in order to achieve a biologically realistic represen-
tation. Note that this same principle is reflected in our prior on Z.
A very recent contribution is Girolami and Breitling (2004), where
the authors focus on methods for factor analysis when distributi-
ons other then Gaussian appear appropriate. In Beal et al. (2005)
a Bayesian version of state-space models is used to capture dyna-
mical changes in gene expression in time series experiments as a
function of unobserved biological changes, that can include activity
levels of TFs. The substantial difference between our work and the
approaches briefly quoted is that, in our scheme, hidden components
correspond to identified TFs, instead of being objects defined purely
on statistical grounds. Our results are immediately interpretable by
referring back to the TFs that are represented in our study.

The contributions closest to ours are Beer and Tavazoie (2004)
and Liao et al. (2003). Our contribution differs from Liao et al.
(2003) in that we do not require complete prior knowledge of the
network topology, but we reconstruct it in the course of the inve-
stigation. Moreover, adopting a Bayesian framework, we greatly
relax the identifiability conditions as well as providing an easy
mechanisim for evaluation of estimate variability. When the net-
work topology is completely known our algorithm and the one in
Liao et al. (2003) are equivalent. In contrast to the vast majority of
the approaches outlined above, Beer and Tavazoie (2004) do not rely
on a linear model for gene expression, but use a Bayesian network
that allows them to capture non-linear effects. These authors’ results
suggest the presence of non-linear regulatory control and should
motivate further investigation in this direction. Models like the one
considered in this contribution, while not incorporating interaction
effects between transcription factors, offer complementary infor-
mation with respect to Beer and Tavazoie (2004). Consider, for
example, how Beer and Tavazoie (2004) do not provide a predic-
tion of the expression level for each gene in each experiment, but,
for a given gene, simply predict to which cluster of expression pro-
files it belongs; clusters are defined with a preliminary data-analysis
and based on correlation. This implies, for example, that differen-
tial behavior such as the ones of genes b1264 and b4393 described
in the previous section cannot be accounted for. Furthermore, our
model allows us to obtain a posterior probability of presence of bin-
ding sites for regulatory proteins in the gene up-stream regions, and
to quantify different control strengths—an important departure from
linear models such as, for example, the one described in Bussemaker
etal. (2001).
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