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Abstract

We develop a flexible model-based procedure for clustering functional data. The technique can be
applied to all types of curve data but is particularly usefulwhen individuals are observed at a sparse set
of time points. In addition to producing final cluster assignments, the procedure generates predictions
and confidence intervals for missing portions of curves. Ourapproach also provides many useful tools
for evaluating the resulting models. Clustering can be assessed visually via low dimensional represen-
tations of the curves, and the regions of greatest separation between clusters can be determined using a
discriminant function. Finally, we extend the model to handle multiple functional and finite dimensional
covariates and show how it can be applied to standard finite dimensional clustering problems involving
missing data.

Some key words: Functional clustering; Discriminant functions; Curve estimation; High dimensional data.

1 Introduction

Cluster analysis is the art of identifying groups in data. Itcan be thought of as the dual of discriminant
analysis, the key distinction being that in cluster analysis the group labels are not knowna priori. There are
many clustering methods, ranging from heuristic approaches such as k-means (Hartigan and Wong, 1978)
and linkage analysis (Kaufman and Rousseeuw, 1990) to more formal model-based procedures (Banfield
and Raftery, 1993). In this paper we present a model-based approach for clustering functional data. The
method is particularly effective when the observations aresparse, irregularly spaced, or occur at different
time points for each subject.

1.1 Model-based clustering

In model-based clustering it is assumed that the observationsx1, . . . ,xn are generated according to a mixture
distribution with G components. Letfk(x|θk) be the density corresponding to thekth cluster, parameterized
by θk, and letzi = (zi1, . . . ,ziG) be the cluster membership vector for theith observation wherezik = 1 if xi

is a member of thekth cluster and 0 otherwise. Thezi ’s are unknown and are generally treated in one of two
ways. In the “classification likelihood” approach, thezi ’s are viewed as parameters and the model is fit by
maximizing the likelihood

LC(θ1, . . . ,θG;z1, . . . ,zn|x1, . . .xn) =
n

∏
i=1

fzi (xi |θzi ). (1)
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Figure 1: (a) Measurements of spinal bone mineral density (g/cm2) for males (black) and females (grey) at various
ages, n= 280. (b) Percentage change in GFR scores for39patients with membranous nephropathy.

a) b)

When fk(x|θk) is multivariate normal with the identity covariance matrixthis approach produces the k-
means solution. Alternatively, the cluster memberships may be treated as missing data wherezi is multi-
nomial with parameters(π1, . . . ,πG) andπk is the probability that an observation belongs to thekth cluster.
Then the parameters are estimated by maximizing

LM(θ1, . . . ,θG;π1, . . . ,πG|x1, . . . ,xn) =
n

∏
i=1

G

∑
k=1

πk fk(xi |θk). (2)

This is known as the “mixture likelihood” approach. Here tooa multivariate normal distribution with mean
µk and varianceΣk has been used successfully in a wide range of applications (Banfield and Raftery, 1993;
Celeux and Govaert, 1995; Dasgupta and Raftery, 1998). In both approaches it is generally necessary to
use an iterative procedure, such as EM, to estimate the various parameters. The key difference between the
classification and mixture approaches is that in the former each point is assigned to a unique cluster, while
in the latter each point is assigned a probability of originating from each cluster and so influences all the
parameter estimates.

1.2 Classical approaches to clustering functional data

Although normal mixture models are fairly straightforwardto use in finite dimensional clustering problems,
they are less easy to apply to infinite dimensional data such as curves. Most existing approaches for clus-
tering functional data can be categorized as eitherregularizationmethods,filtering methods or hybrids of
the two. Regularization methods work by discretization of the time interval. The resulting data vectors are
autocorrelated and high dimensional, leading to unstable estimates of the within cluster covariance matri-
ces unless some form of regularization constraint is imposed (DiPillo, 1976; Friedman, 1989; Banfield and
Raftery, 1993; Hastieet al., 1995). Filtering methods project each curve onto a finite dimensional basis,
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{φ1(x), . . . ,φp(x)}, and cluster the resulting basis coefficients.
The regularization and filtering approaches can work well when every curve has been observed over the

same fine grid of points. However, they break down if, as is often the case in practice, the individual curves
are sparsely sampled. Consider the following two examples.The first, illustrated in Figure 1(a), consists
of measurements of spinal bone mineral density for 280 malesand females taken at various ages and is a
subset of the data presented in Bachrachet al.(1999). Even though, in aggregate, there are 860 observations
taken over a period of almost two decades, there are only 2-4 measurements for each individual covering no
more than a few years. None-the-less, we are interested in clustering this data to identify different patterns
of growth. For instance, Figure 1(a) suggests that there maybe differentiation based on gender, especially
in the early years. The second data set, illustrated in Figure 1(b), shows percentage changes in glomular
filtration rate (GFR) over a 6 year period, for a group of patients with membranous nephropathy, an auto-
immune disease of the kidney. GFR is a standard measure of kidney function. Clinical observations suggest
that patients fall into three categories, those that remainrelatively stable in terms of GFR, those that decline
slowly over time and those that deteriorate rapidly. Peoplein the latter group need aggressive treatment so
it is desirable to make an early prediction of cluster membership.

The regularization method can not be applied to these data sets because the curves are sampled at dif-
ferent times. The filtering method also has several problems. First, the variance of the estimated basis
coefficients is different for each individual because the curves are measured at different time points. More
weight should be placed on the more accurately estimated basis coefficients which standard filtering does
not allow. More importantly, for sparse data sets many of thebasis coefficients would have infinite variance,
making it impossible to produce reasonable estimates. In the spinal bone density data set there are so few
observations that it is not possible to fit a separate curve for each individual using any reasonable common
basis. For data sets of this type a new approach is necessary.

1.3 An alternative functional clustering approach

In this paper we introduce a general approach to clustering functional data that incorporates the best prop-
erties of the regularization and filtering methods while avoiding their most serious drawbacks. As with the
filtering approach we convert the original infinite dimensional problem into a finite dimensional one using
basis functions. However, instead of treating the basis coefficients as parameters and fitting a separate spline
curve for each individual, we use a random effects model for the coefficients. This allows us to borrow
strength across curves, producing far superior results no matter how sparsely or irregularly the individual
curves are sampled, provided that the total number of observations is large enough. Furthermore, it automat-
ically weights the estimated spline coefficients accordingto their variances and is highly efficient because
it requires fitting few parameters. Finally, it can be used toproduce estimates of individual curves that are
optimal in terms of mean squared error.

The functional clustering model and an EM style fitting procedure are presented in Section 2. The model
is extremely flexible and many standard clustering tools canbe easily implemented with it. In Section 3
we demonstrate how to obtain low-dimensional representations of the curves so that the clusters may be
assessed visually. We also show how to compute estimates, confidence intervals and prediction intervals
for individual curves. Model selection techniques, such asmethods for selecting the number of clusters and
the spline basis, are described in Section 4. Section 5 showshow the model can be generalized to include
multiple functional and finite dimensional variables. Finally, Section 6 discusses how this model can be
used to cluster standard high dimensional data with missingvalues.
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2 Modeling functional data

2.1 A general functional model

Since most functional data is longitudinal we adopt the convention of parameterizing our models in terms of
t, time. However, our approach applies equally well in other contexts. Letg(t) be the curve of a randomly
chosen individual. We will assume thatg(t) follows a Gaussian process. Ifg(t) is a member of thekth
cluster we write its expected value and covariance as

E{g(t)} = µk(t), Cov{g(t),g(t ′)} = ωk(t, t
′)

In practice we do not observeg(t) perfectly nor do we observe it at all time points. LetY be the vector
of observed values ofg(t) at timest1, . . . , tn. We assume that the measurement errors are independent and
normally distributed with mean zero and constant varianceσ2 so that

Y ∼ N(M k,Ωk + σ2I)

where

M k =





µk(t1)
µk(t2)

...
µk(tn)



 , Ωk =





ωk(t1, t1) ωk(t1, t2) · · · ωk(t1, tn)
ωk(t2, t1) ωk(t2, t2) · · · ωk(t2, tn)

...
...

. . .
...

ωk(tn, t1) ωk(tn, t2) · · · ωk(tn, tn)



 (3)

The regularization and filtering approaches can both be viewed as methods for estimating the parameters
in (3). The regularization approach obtains estimates ofµk(t) andωk(t, t ′) on a fine lattice of time points.
Generally no assumptions are made about the functional formof µk(t) but some restrictions are placed on
the structure ofωk(t, t ′). In the filtering methodg(t) is represented in terms of ap-dimensional set of basis
functionsφ(t) = (φ1(t), . . . ,φp(t)), i.e. g(t) = φ(t)η. Theη’s are estimated separately for each individual
using least squares. The estimated coefficient vectors are then clustered and the resulting cluster means are
multiplied by φ(t) to obtain estimates of theµk(t)’s. Estimates of theωk(t, t ′)’s are obtained in a similar
manner.

2.2 The functional clustering model

We now present a version of the general functional model thatis appropriate for clustering all types of
functional data. Letgi(t) be the true value for theith individual or curve at timet, and letgi ,Y i and εi

be, respectively, the corresponding vectors of true values, observed values and measurement errors at times
ti1, . . . , tini . Then

Y i = gi + εi , i = 1, . . . ,n

wheren is the number of individuals. The measurement errors are assumed to have mean zero and to be
uncorrelated with each other andgi . Note that this involves an implicit assumption that the unobserved
time points are missing at random. Since there are a finite number of observations it is necessary to impose
some structure on the individual curves. Like the filtering approach, our method modelsgi(t) using basis
functions. We chose natural cubic splines because they havedesirable mathematical properties, are easy to
implement, and require a relatively minimal number of parametric assumptions (de Boor, 1978; Green and
Silverman, 1994). We let

gi(t) = s(t)T ηi
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wheres(t) is a p-dimensional spline basis vector andηi is a vector of spline coefficients. Theηi ’s are
modeled using a Gaussian distribution,

ηi = µzi
+ γi , γ ∼ N(0,Γ), (4)

wherezi denotes the unknown cluster membership.
There is a further parameterization of the cluster means that will prove useful for producing low-

dimensional representations of the curves. Note thatµk can be rewritten as

µk = λ0 + Λαk, (5)

whereλ0 andαk are respectivelyp- andh-dimensional vectors, andΛ is ap×h matrix withh≤ min(p,G−
1). Whenh = G− 1, (5) involves no loss of generality whileh < G− 1 implies that the means lie in a
restricted subspace. With this formulation the functionalclustering model (FCM) can be written as

Y i = Si(λ0 + Λαzi + γi)+ εi, i = 1, . . .n, (6)

εi ∼ N(0,R), γi ∼ N(0,Γ),

whereSi = (s(ti1), . . . ,s(tini ))
T is the spline basis matrix for theith curve. As with finite dimensional models,

two different forms of the FCM can be obtained depending on whether thezi ’s are treated as parameters or
missing data. There are many possible forms forR andΓ, the covariances of theεi ’s, and theγi ’s. For now
we useR= σ2I and a commonΓ for all clusters because we are interested in sparse data sets for which it is
desirable to use a small number of parameters. Other choicesare explored in Section 5.2. Note thatλ0, Λ
andαk are confounded if no constraints are imposed. Therefore we require that

∑
k

αk = 0 (7)

and ΛTSTΣ−1SΛ = I (8)

whereS is the basis matrix evaluated over a fine lattice of time points that encompasses the full range of the
data andΣ = σ2I +SΓST . The restriction in (7) means thats(t)Tλ0 may be interpreted as the overall mean
curve. There are many possible constraints that could be placed onΛ. The reason for the particular form
used in (8) will become apparent in Section 3.1.

Notice that our functional clustering model (6) is a specialcase of the model of Section 2.1 withµk(t) =
s(t)Tµk = s(t)T(λ0 + Λαk) andωk(t, t ′) = s(t)TΓs(t ′). Although similar in structure, the FCM differs from
the filtering approach in two key respects. The first difference is in the handling of the basis coefficients.
In the filtering approach theηi ’s are treated as parameters or fixed effects and are estimated directly using
only the values obtained from that individual. In the FCM theηi ’s are treated as random effects and need
not be estimated directly. This allows strength to be borrowed across curves, providing superior results for
data containing a large number of sparsely sampled curves. The second major difference in the FCM is
the additional parameterization of the cluster means using(5). This formulation has two advantages. First,
allowing h < G−1 reduces the number of parameters to be estimated which can result in a superior fit for
sparse data. Second, as we show in Section 3.1, this parameterization leads to a simple low-dimensional
representation of the individual curves that allows for graphical assessment of clustering.
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Figure 2:a) A linear discriminant plot for the bone mineral density data. b) An illustration of the decomposition of
the distance between two curves and two cluster centers.

2.3 Fitting the model

Fitting the FCM involves estimatingλ0,Λ,αk,Γ andσ2. This is achieved by maximizing either the classifi-
cation likelihood given by (1) or the mixture likelihood given by (2), noting that under (6), conditional on
the ith curve belonging to thekth cluster,

Y i ∼ N(Si(λ0 + Λαk),Σi) (9)

whereΣi = σ2I +SiΓST
i . In both cases this involves an iterative procedure. Curvesare first either assigned

to a cluster (classification) or assigned a probability of belonging to a cluster (mixture). Then the parameters
are estimated given the current assignments and the processis repeated. Details of the algorithm are provided
in Appendix A.

3 Functional clustering tools

Next we discuss three important ways in which our procedure can be used to study clustering of functional
data. Section 3.1 describes how to obtain low-dimensional plots of curve data sets, enabling one to visually
assess clustering. In Section 3.2 we show how to construct discriminant functions to identify the regions of
greatest separation between clusters. Finally, in Section3.3 we develop optimal methods for estimating the
entire curve for an individual, along with pointwise confidence and prediction intervals.

3.1 Low-dimensional graphical representations

One of the chief difficulties in high-dimensional clustering is visualization of the data. Plotting functional
data is easier because of the continuity of the dimensions. However, it can still be hard to see the clusters
since variations in shape and the location of time-points make it difficult to assess the relative distances
between curves. These problems are exacerbated when the curves are fragmentary, as in Figure 1(a). In this
section we develop a set of graphical tools for use with functional data. Our method is based on projecting
the curves into a low-dimensional space so that they can be plotted as points, making it much easier to detect
the presence of clusters.
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Figure 2(a) shows the bone mineral curves projected onto a one-dimensional space. The horizontal
axis represents the projected curve,α̂i , while the vertical axis gives the average age of observation for
each individual. Points to the left of zero are assigned to cluster 1 and the remainder to cluster 2. Squares
represent males and circles females. The dotted lines atα1 andα2 correspond to the projected cluster centers.
Notice that while there is a significant overlap, most males belong to cluster 1 and most females to cluster
2 even though the model was fit without using gender labels. The plot shows that the clustering separates
the genders most strongly for those younger than 16 years. Infact, 74% of such individuals matched the
majority gender of their cluster compared with only 57% of those older than 16. This is because girls
typically begin their growth spurt before boys.

Figure 2(b) illustrates the procedure by which theα̂i ’s are derived using a two cluster, two curve example.
First,Y i is projected onto thep-dimensional spline basis to get

η̂i = (ST
i Σ−1

i Si)
−1ST

i Σ−1
i Y i. (10)

Second,̂ηi is projected onto theh-dimensional space spanned by the meansµk to getλ0 + Λα̂i where

α̂i =
(
ΛTSi

TΣ−1
i SiΛ

)−1ΛTSi
TΣ−1

i Si(η̂i −λ0). (11)

Thus, α̂i is the h-dimensional projection ofY i onto the mean space after centering. Notice that in this
exampleη̂2 is closest toµ2 in Euclidean distance but after projection onto the mean space it is closest toµ1
and will be assigned to cluster 1.

Theorem 1 shows that there is a direct relationship between the posterior probability of theith curve
belonging to thekth cluster and the squared distance betweenα̂i andαk.

Theorem 1 For Y i drawn from the FCM

logP(zik = 1|Y i) = C(Y i)+ log(πk)−
1
2
||α̂i −αk||

2
Cov(α̂i)

−1

where C(Y i) is a constant with respect to k and

Cov(α̂i) =
(
ΛTSi

TΣ−1
i SiΛ

)−1
. (12)

Hence, argmax
k

P(zik = 1|Y i) = argmin
k

(
||α̂i −αk||

2
Cov(α̂i)

−1 −2logπk

)
(13)

A proof of this result can be found in Appendix B. From (13) andBayes rule we note that cluster assignments
based on thêαi ’s will minimize the expected number of misassignments. Thus no clustering information
is lost through the projection ofY i onto the lower dimensional space. We call theα̂i ’s functional linear
discriminants because they are exact analogues of the low-dimensional representations used to visualize
data in linear discriminant analysis (LDA). In the finite-dimensional setting the linear discriminants all have
identity covariance so separation between classes can be assessed visually using the Euclidean distance
metric. In the functional clustering settingCov(α̂i) is given by (12). When all curves are measured at the
same time points constraint (8) will guaranteeCov(α̂i) = I for all i, again allowing the Euclidean metric to
be used. When curves are measured at different time points itis not possible to impose a constraint that
will simultaneously causeCov(α̂i) = I for all i. However, when the cluster means lie in a one dimensional
subspace (h = 1), assuming equal priors, (13) simplifies to

argmin
k

1
Var(α̂i)

(α̂i −αk)
2 = argmin

k
(α̂i −αk)

2,

which yields the same assignments as if theα̂i ’s all had the same variance. In this situation it is useful to
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plot the functional linear discriminants versus their standard deviations to indicate not only to which cluster
each point belongs but also the level of accuracy with which it has been observed. Note that for a two cluster
modelh must be 1. However, it will often be reasonable to assume the means lie approximately in one
dimension even when there are more than two clusters.

Linear discriminant plots have other useful features. Notethat the functional linear discriminant for a
curve observed over the entire grid of time points used to form Swill have identity covariance. Thus, the
Euclidean distance between theαk’s gives the number of standard deviations separating the cluster means
for a fully observed curve. The degree to which the variance for an individual curve is greater than 1
indicates how much discriminatory power has been lost due totaking observations at only a subset of time
points. This has implications for experimental design in that it suggests how to achieve minimum variance,
and hence optimal cluster separation, with a fixed number of time points. For instance the cluster means
in Figure 2(a) are 2.4 standard deviations apart, indicating that the groups canbe fairly well separated if
curves are measured at all time points. The overlap between the two groups is due to the extreme sparsity of
sampling, resulting in thêαi ’s having standard deviations up to 2.05.

Plots for the membranous nephropathy data, given in Figure 3, provide an example in which the differing
covariances of thêαi ’s must be taken into account more carefully. Nephrologists’ experiences suggest that
patients with this disease fall into three groups, either faring well, deteriorating gradually or collapsing
quickly. Hence we fit a three cluster model whose mean curves are shown in Figure 3(a). The issue of
identifying the optimal number of clusters is addressed more formally in Section 4.1. With three clusters the
means must lie in a plane. Figure 3(b) shows a two-dimensional linear discriminant plot with solid circles
indicating cluster centers. To circumvent the problem caused by the unequal covariances, we use different
symbols for members of different clusters. Note that while most patients fall in the cluster corresponding to
their closest cluster in Euclidean distance, there are several that do not. In this example the cluster centers
lie essentially on a straight line so it is sufficient to fit a one-dimensional model (h = 1). The corresponding
plots are shown in Figure 3(c) and (d). The basic shapes of themean curves are reassuringly similar to
those in 3(a), but are physiologically more sensible in the right tail. Figure 3(d) plots one dimensional
α̂i ’s versus their standard deviations. We see that the clusteron the right is very tight while the other two
are not as well separated. Figures 3(e) and (f) show respectively the overall mean curve,s(t)Tλ0 and the
function s(t)T Λ. The latter, when multiplied byαk, gives the distance betweenµk(t) and the overall mean
curve. From Figure 3(e) we see that on average the patients showed a decline in renal function. The primary
distinction lies in the speed of the deterioration. For example, the fact that Figure 3(f) shows a sharp decline
in the first two years indicates that patients in the third cluster, which has a highly positiveα3, experience a
much sharper initial drop than average. In fact all patientsin cluster 3 eventually required dialysis.

3.2 Discriminant functions

In the membranous nephropathy example we saw that plots likeFigure 3(f) provide useful information about
the traits that distinguish one cluster from another. In this section we more formally present a set of curves
that identify the dimensions, or equivalently time points,of maximum discrimination between clusters and
trace their connection to classical discriminant functions. Intuitively, the dimensions with largest average
separation relative to their variability will provide the greatest discrimination. Average separation can be
determined by examiningSΛ while variability is calculated using the covariance matrix, Σ = SΓST + σ2I .
These two quantities can work in opposite directions, making it difficult to identify the regions of greatest
discrimination. Consider, for example, Figure 4 which illustrates the covariance and correlation functions
for the bone mineral density data. From Figure 4(a) it is clear that the relationship between a person’s bone
mineral density before and after puberty is weak but the measurements after puberty are strongly correlated
with each other. Figure 4(b) has a sharp peak in the early puberty years corresponding to the period of
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Figure 3:Assessment plots for the membranous nephropathy data. The cluster mean curves and linear discriminant
plots for a fit with h= 2 are shown in (a) and (b). The equivalent plots for a fit with h= 1 are given in (c) and (d).
Finally, (e) shows the overall mean curve and (f) the characteristic pattern of deviations about the overall mean.

greatest variability. However, this is also the period of greatest distance between the cluster mean curves.
The dimensions of maximum discrimination must also be the ones that are most important in deter-

mining cluster assignment. When observations are made at all time points, the spline basis matrix is S, and
equations (11) and (13) imply that curves should be assignedbased solely on the Euclidean distance between
α̂ = ΛTSTΣ−1(Y −Sλ0) and theαk’s. Thus

ΛTSTΣ−1 (14)

gives the optimal weights to apply to each dimension for determining cluster membership. Dimensions with
low weights contain little information about cluster membership and therefore do little to distinguish among
groups, while dimensions with large weights have high discriminatory power. Notice that this set of weights
fits with the intuitive notion that dimensions with high discrimination should have large average separation,
SΛ, relative to their variability,Σ.

When theαk’s are one dimensional,ΛTSTΣ−1 is a vector and the weights can be plotted as a single curve,
as illustrated by Figure 5 for the bone density and membranous nephropathy examples. For the bone mineral
data the highest absolute weights occur in the puberty years, confirming our earlier interpretation from the
linear discriminant plot, Figure 2(a). For the membranous nephropathy data most of the discrimination
between clusters occurs in the early and late stages of disease. The difference between patients in the later
time periods is not surprising. However, the discriminatory power of the early periods is encouraging since
one of the primary goals of this study was to predict disease progression based on entry characteristics.

For a two cluster model the vectorΛTSTΣ−1 is equivalent to the classical discriminant function for a
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Figure 4:Estimated (a) correlation and (b) covariance of gi(t1) with gi(t2).

Gaussian mixture. Recall that for a Gaussian mixture the weights placed on each dimension by the discrim-
inant function are

(µ1−µ2)
TΣ−1 (15)

whereΣ is the within group covariance matrix. In the FCM thekth cluster mean isS(λ0 + Λαk) so (15)
becomes

(SΛα1−SΛα2)
TΣ−1 = (α1−α2)

TΛTSTΣ−1 (16)

which is equal to (14) up to the multiplicative termα1−α2. In a two cluster model theαk’s are scalars and
so do not effect the relative weight placed on each dimension. In fact as long as theαk’s are one dimensional
(14) and (16) will give the same relative weighting for any pair of clusters. In general, (14) will produceh
distinct sets of weights whereh is the dimension of theαk’s.
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Figure 5:Discriminant curves for (a) the bone mineral density data and (b) the membranous nephropathy data with
h = 1.

3.3 Curve estimation

Another major advantage of the functional clustering procedure is that it can accurately predict unobserved
portions ofgi(t), the true curve for theith individual, even in situations where the regularizationand filtering
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methods break down. When using a basis representation a natural estimate forgi(t) is ĝi(t) = s(t)T η̂i , where
η̂i is a prediction forηi . The filtering method takeŝηFi

= (ST
i Si)

−1SiYi , provided that the inverse exists.
Theorem 2 gives the optimal procedure for computingη̂i under the FCM:

Theorem 2 Under the FCM (6) the prediction of gi(t) with minimum mean squared error,
Eη(ĝi(t)−gi(t))2, is ĝi(t) = s(t)TE(ηi|Y i).

A proof of this result can be found in Appendix C. When the mixture likelihood is used thezi ’s are treated
as missing data, yielding

η̂Mi = E(ηi |Y i) = λ0 + Λ
G

∑
k=1

αkπk|i +
(
σ2Γ−1 +ST

i Si
)−1

ST
i

(
Y i −Si

(
λ0 + Λ

G

∑
k=1

αkπk|i

))
(17)

where

πk|i = P(zik = 1|Y i) =
f (y|zik = 1)πk

∑G
j=1 f (y|zi j = 1)π j

(18)

and f (y|zik = 1) is given by (9). Alternatively, under the classification likelihood thezi ’s are treated as
parameters, yielding

η̂Ci = E(ηi|Y i) = λ0 + Λαzi +
(
σ2Γ−1 +ST

i Si
)−1

ST
i (Y i −Si (λ0 + Λαzi )) (19)

wherezi = argmaxk f (y|zik = 1). In general, the functional mixture approach produces significant improve-
ments over the filtering method whenσ2 is very large, the components ofΓ are very small, orST

i Si is close to
singular. In fact, whenST

i Si is singular the filtering approach breaks down completely while the functional
clustering method can still produce reliable predictions.

It is also important to obtain a measure of the uncertainty inour predictions of the individual curves. We
achieve this through pointwise confidence and prediction intervals. For example, using the mixture likeli-
hood, the distribution ofηi givenY i is a mixture of normals whosekth component has mixture probability
πk|i , and mean and covariance

E(ηi |Y i,zik = 1) = λ0 + Λαk +
(
σ2Γ−1+ST

i Si
)−1

ST
i (Y i −Si (λ0 + Λαk)) ,

andCov(ηi |Y i,zik = 1) =
(
Γ−1 +ST

i Si/σ2
)−1

. Hence, conditional onzi andY i

gi(t) ∼ N
[
s(t)TE(ηi|Y i ,zik = 1),s(t)TCov(ηi |Y i,zik = 1)s(t)

]
.

Thus, if the cluster membershipzi were known then

{cτ
ik1(t),c

τ
ik2(t)} = s(t)TE(ηi|Y i ,zik = 1)±Φ((1+ τ)/2)−1

√
s(t)TCov(ηi |Y i ,zik = 1)s(t),

whereΦ is the standard normal cdf, would be aτ pointwise confidence interval forgi(t). Since the cluster
memberships are unknown, a highly conservative approach would be to use the interval

{
min

k
cτ

ik1(t),max
k

cτ
ik2(t)

}
. (20)

The following two step procedure is superior. First, find thesmallest collection of clusters with total prob-
ability at leastτ1 of having generated the curve in question. Second, construct τ2 confidence intervals for
gi(t) conditional on membership in each of these clusters and takethe pointwise extremes. If the clusters
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Figure 6:Curve estimates, confidence intervals, and prediction intervals for two subjects from the bone density study.

are ordered from largest to smallestπk|i , this procedure produces aτ = τ1τ2 pointwise confidence interval
with bounds {

min
k:∑k−1

j=1 π j|i<τ1

cτ2
ik1(t), max

k:∑k−1
j=1 π j|i<τ1

cτ2
ik2(t)

}
.

This interval will, in general, be narrower than that given by (20) because it ignores the clusters with low
posterior probability which are also the ones furthest fromthe predicted curve. Figure 6 illustrates this
approach for two subjects from the bone density study. For each plot, the two solid grey lines give the
cluster mean curves, the curve fragment gives the observed values for a single individual, and the dashed
line gives the corresponding prediction. The dotted lines represent 95% confidence and prediction intervals.
Note that the confidence interval provides bounds for the underlying functiongi(t) while the prediction
interval bounds the observed value ofgi(t). As usual, the prediction interval is produced by addingσ2 to the
variance used in the confidence interval.

4 Model selection

In Appendix A we outline an EM procedure for fitting the functional clustering model. However, there are
several model selection questions that are worth discussing in greater detail. In particular one must choose
how many clusters to fit, the number of knots to use in the spline basis and the dimension of the mean space.

4.1 Choice of number of clusters

Most clustering procedures require one to choose the numberof groups prior to fitting. This is one of the
most difficult problems in cluster analysis. A popular choice in model-based clustering is to use Bayes
factors (Kass and Raftery, 1995), which are difficult to calculate exactly but can be approximated using BIC
(Schwarz, 1978). One disadvantage of this method is that it requires fitting the model for each potential

12
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Figure 7:(a) A mixture of four highly overlapping Gaussian clusters and (b) the associated jump plot. (c) The jump
plot for the bone mineral density data.

number of clusters. We utilize an alternative approach suggested by Sugar and James (2003). Their method
is based on the “distortion function”,

dK =
1
p

min
c1,...,cK

E(ηi −czi )
TΓ−1(ηi −czi ) (21)

where theηi ’s are the spline coefficients in the functional clustering model. The distortion,dK , is the average
Mahalanobus distance between eachηi and its closest cluster centerczi . Consider Figure 7(a) which plots
a mixture of four highly overlapping Gaussian clusters. From visual inspection it is not clear that the data
consist of four clusters. However, Figure 7(b), which plotsthe jumpd−1

K −d−1
K−1 from K = 1 to 10, shows

a clear spike atK = 4. Sugar and James (2003) show, both theoretically and empirically, that for a large
class of mixture distributions the largest jump will alwayscorrespond to the correct number of mixture
components. Their key theorem is summarized below.

Theorem 3 Suppose that the distribution of theηi ’s is a mixture of G p-dimensional clusters with equal
priors. Furthermore, assume that the clusters are identically distributed with covarianceΓp and finite fourth
moments in each dimension. Then, under suitable conditions, there exists a set of real valued numbers Y> 0
such that the jump d−Y

K −d−Y
K−1 will be maximized when K= G.

The conditions under which this result will hold relate to the separation between cluster means relative to
the entropy of each cluster. Further details as well as a proof of Theorem 3 can be found in Sugar and James
(2003). It is clear from the simulation example that this approach can identify the correct number of mixture
components even for highly overlapping clusters. Figure 7(c) shows the corresponding jump plot for the
bone mineral density data. It appears that 1,2,3 or 5 are all possible choices for the number of clusters and
each has a reasonable interpretation. One would simply indicate that there is no strong clustering in the data.
Two clusters correspond to a breakdown along gender lines. This data consisted of four ethnic groups, black,
asian, white and hispanic, but the white and hispanic groupswere indistinguishable (James and Hastie, 2001)
so a three cluster fit may well correspond to the different ethnicities. Finally, the five cluster fit could indicate
clustering into different gender-ethnicity combinations. Since the number of clusters is not clear cut, which
of these four possible choices produced the largest jump depended on the exact choice ofY. Theorem 3
does not specify the optimal choice ofY. Sugar and James (2003) give results suggesting that one should
setY equal to half of the “effective” number of dimensions in the data. For the bone mineral example, the
ηi ’s varied mostly along one dimension with a small amount of variability in a second dimension. Hence we
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estimated the effective dimension to be 1.5 and setY = 0.75. A similar approach applied to the membranous
nephropathy data provided no statistical evidence of more than two distinct clusters. Thus the clinician’s
supposition of three clusters is not supported by the data. However, from Figure 3(d) there is evidence of at
least two clusters.

In practice we estimatedK by first predicting theηi ’s via (17) and then using the k-means algorithm
to approximate the distortion. Sugar and James (2003) note that the jump approach produces reasonable
answers when one substitutesΓ = I into (21) so we have followed this convention. The jump method
has the advantage that it only requires the functional clustering procedure to be fit once. Since the k-means
algorithm is significantly faster than the EM-based functional clustering procedure this produces a significant
reduction in computation.

4.2 Other model selection problems

Another important issue is the selection of the spline basis. Most procedures use equally spaced knots which
reduces the problem to one of selecting the correct number. One natural approach is to take the dimension
of the basis,p, to corresponding to the largest cross-validated likelihood (Jameset al., 2000). This works
well but is generally computationally expensive. An alternative approach is to calculate the likelihood once
for each value ofp and apply a penalty term involving the number of parameters fit to the data. AIC and
BIC are two such methods that have worked well on models of this type (Rice and Wu, 2001). In practice
the final clustering appears to be fairly robust to any reasonable number of knots.

Finally one must chooseh, the dimension of the cluster mean space. For the data sets illustrated in this
article, the choice ofh was not a serious problem because only a small number of clusters were involved.
Recall that settingh = G−1 results in no restriction on the mean space. For the membranous nephropathy
data withG = 3 clusters it was clear upon fitting the model withh = 2 that theαk’s lay approximately on
a line implying that one should seth = 1. This approach can be applied in general by fitting the model
with h = G−1, calculating theαk’s, testing whether the cluster centers appear to lie in a lower dimensional
plane and then refiting the model withh set to this new dimension. Methods such as principal components
analysis can be used to determine whether the means lie in a lower dimensional space.

5 Extensions of the functional clustering model

5.1 Incorporating multiple curves and covariates

In this section we extend our model to allow multiple functional variables per subject as well as finite
dimensional covariates with possibly missing values. LetY i j represent the vector of observations of thejth
curve for theith individual at timesti j1, . . . ti jn i j and letX i be the vector of finite dimensional covariates. The
functional clustering model of Section 2.2 generalizes to

Y i j = Si j ηi j + εi j , εi j ∼ N(0, Iσ2
j ), j = 1, . . . ,J

whereηi j = µzi j + γi j and we allow a different variance for each curve’s error vector. To model the finite
dimensional covariates,X i, the spline basis is replaced by the identity, yielding

X i = Iixηix + εix, εix ∼ N(0, Iσ2
x)

whereηix = µzix+γix. As before, we assume thatγi = (γi1, . . . ,γiJ,γix)∼N(0,Γ) andµk = (µk1, . . . ,µkJ,µkx) =
λ0 + Λαk. Note that when we letY i = (Y i1, . . .Y iJ,X i), εi = (εi1, . . . ,εiJ,εix) andSi be the block diagonal
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matrix formed bySi1, . . .SiJ andIix, then

Y i = Si(λ0 + Λαzi + γi)+ εi , εi ∼ N(0,R), γi ∼ N(0,Γ), (22)

which is identical to the formulation of the standard functional clustering model. Hence (22) can be fit using
the same EM procedure. This model is extremely flexible and can handle an arbitrary number of functional
variables. In addition, covariates with missing observations can easily be included. For example, if theith
individual is missing thejth observation one would simply remove thejth row of Iix before fitting the model.
Despite the added complexity it is still possible to represent the individual data points in a low-dimensional
subspace by taking advantage of the projection onto the space of cluster mean coefficients. Furthermore,
standard high-dimensional clustering problems with missing data can simply be viewed as a special case of
our model in which there are no functional covariates.

5.2 Alternative covariance structures

To this point we have used a common covariance matrix,Γ, for all clusters and have takenR, the covariance
of the εi ’s, to be a multiple of the identity matrix. These assumptions may be inappropriate for some data
sets. For example, the differing variability in thêαi ’s of Figure 3(d), suggest that, for the membranous
nephropathy data, a model that allows an alternative covariance structure may be more appropriate.

Any covariance matrix,Γk, may be reparameterized asΓk = ΘkDkΘT
k whereΘk is a matrix whose

columns consist of the eigenvectors ofΓk andDk is a diagonal matrix whose elements are the eigenvalues.
The standard FCM forcesΘk andDk to be the same for each cluster, in analogy with linear discriminant
analysis (LDA). Allowing bothΘk and Dk to vary overk, as in quadratic discriminant analysis (QDA),
gives greater flexibility but, like QDA, this model tends to perform poorly unless all groups have a large
number of observations (Wald and Kronmal, 1977). Numerous compromises between the LDA and QDA
frameworks have been proposed. The simplest of these takeΓk to be a multiple of the identity i.e.Γk = δI
or Γk = δkI (Ward, 1963; Banfield and Raftery, 1993; Celeux and Govaert,1995). Although these models
do not require large amounts of data, they are often overly restrictive because they assume independence
between coordinates. As a compromise various authors have suggested classes of models in whichΘk

is allowed to vary overk but Dk remains fixed. Two examples areΓk = δΘkDΘT
k and Γk = δkΘkDΘT

k
(Murtagh and Raftery, 1984; Banfield and Raftery, 1993; Celeux and Govaert, 1995). With these structures,
each cluster has the same shape but variable orientation. The use of shrinkage estimators is another strategy
that has been highly successful in poorly-posed inverse problems (Titterington, 1985; O’Sullivan, 1985).
For example, regularized discriminant analysis (Friedman, 1989) works by simultaneously shrinking the
estimated covariance matrix towards both the identity matrix and towards the common sample covariance
matrix.

Many covariance structures are also possible for theεi ’s. For example, one may believe that there is a
linear relationship between time and variance and letRbe diagonal withvar(εi(t)) = β0+β1t. Alternatively,
since the data being modeled are often time dependent, a correlation structure between the error terms may
be appropriate. For example, one may choose to assume a constant correlation between adjacent error terms
from the same individual i.e.cor(εi(t),εi(t + 1)) = ρ. Such a structure seems more plausible for equally
spaced time points and so may not be appropriate in settings such as the bone mineral density study. All
of these approaches for modeling the covariance structurescan easily be incorporated into the functional
clustering procedure.
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Figure 8:Two dimensional representations of an eight dimensional data set using (a) principal components and (b)
the functional clustering procedure.

6 Discussion

The main goal of this paper was to develop a general procedurefor clustering functional data. Our approach
performs particularly well compared to other methods for sparsely sampled curves. However, the models
presented in Sections 2 and 5 provide an extremely flexible framework that can easily be adapted to a variety
of situations. For example we noted in Section 5.1 that replacing the spline basis matrix with the identity
matrix yields a method for clustering finite dimensional data that can handle missing observations. Figure 8
provides a comparison of this approach with a more standard procedure. In high dimensional settings it
is common to first reduce the number of dimensions, for instance by using principal components analysis
(PCA), and then to cluster in the lower dimensional space. The danger is that one may inadvertently lose
any discrimination between clusters in the process. Figure8(a) provides just such an example. Here we
have plotted the first two principal components of an eight dimensional simulated data set. The data were
generated by sampling twenty observations from each of three clusters. The clusters had different means in
the first dimension but were otherwise identically distributed. The second and third dimensions had a large
degree of variability while the remaining five dimensions had comparatively little. When PCA is run the
first two components explain over 90% of the variability. Generally this would be considered an adequate
representation of the data. However, when these two components are plotted in Figure 8(a), with a different
symbol for each cluster, it is clear that all discriminatorypower has been lost. Alternatively, when the
FCM is fit to this data and a two-dimensional linear discriminant plot is produced as in Figure 8(b) perfect
separation is achieved. We did not incorporate missing values in this example because principal components
can not readily be applied to such data. However, the FCM approach would have coped with ease by simply
leaving out the appropriate rows of the identity matrixIix. As with most EM procedures, initialization of the
algorithm is an important consideration. For the data of Figure 8 we found that the FCM procedure worked
best whenΓ was initialized with high variance in the second and third dimensions and low variance in other
dimensions. This is not an unreasonable starting point since an examination of the sample covariance matrix
for the raw data reveals that most of the variability is in these dimensions.

Acknowledgments

We would like to thank Brian Myers and members of his lab at theStanford University School of Medicine
for providing us with the Membranous Nephropathy data and the referees and editors for useful comments

16



and suggestions.

A The fitting algorithm

We first outline the procedure for fitting the mixture likelihood (2). The classification likelihood fitting
procedure follows with only minor modifications. The standard approach to fitting a mixture likelihood
is to treat the unknown cluster membershipszi as missing data and to use the EM algorithm. Note that
since thezi ’s and γi ’s are assumed independent of one another the complete data distribution factors as
f (Y,z,γ) = f (Y|z,γ) f (z) f (γ). Given that thezi ’s are multinomial(πk), theγi ’s areN(0,Γ) and theY i ’s are
conditionalN[Si(λ0 + Λαk + γi),σ2] the complete data log likelihood, up to additive constants,is

l(πk,Γ,σ2,λ0,Λ,αi) =
n

∑
i=i

G

∑
k=1

zik log(πk) (23)

−
1
2

n

∑
i=1

[
log|Γ|+ γT

i Γ−1γi

]
(24)

−
1
2

n

∑
i=1

G

∑
k=1

zik

[
ni logσ2+

1
σ2

∣∣∣
∣∣∣Y i −Si (λ0 + Λαk + γi)

∣∣∣
∣∣∣
2
]

(25)

The EM algorithm consists of iteratively maximizing the expected values of (23), (24) and (25) givenY i and
the current parameter estimates. Since all three parts involve separate parameters they can be maximized
independently of each other. The expected value of (23) is maximized by setting

πk =
1
n

n

∑
i=1

πk|i (26)

whereπk|i is given by (18). Next the expected value of (24) is maximizedby setting

Γ =
1
n

n

∑
i=1

E
[
γiγ

T
i

∣∣Y i
]
=

1
n

n

∑
i=1

G

∑
k=1

πk|iE
[
γiγ

T
i

∣∣Y i,zik = 1
]

(27)

which can be calculated using the fact that

γi |Y i,zik = 1∼ N
(
(σ2Γ−1+ST

i Si)
−1ST

i (Y i −Siλ0−SiΛαi),(Γ−1 +ST
i Si/σ2)−1) . (28)

In the final step we maximize the expected value of (25). This involves an iterative procedure whereλ0 then
αk and finally the columns ofΛ are repeatedly optimized while holding all other parameters fixed. First we
set

λ0 =

(
n

∑
i=1

ST
i Si

)−1
n

∑
i=1

ST
i

(

Y i −
G

∑
k=1

πk|iSi (Λαk + γ̂ik)

)

(29)

whereγ̂ik = E
[
γi

∣∣zik = 1,Y i
]

which is calculated using (28). Next, theαk’s are calculated using

αk =

(
n

∑
i=1

πk|iΛTST
i SiΛ

)−1 n

∑
i=1

πk|iΛTST
i (Y i −Siλ0−Si γ̂ik) . (30)
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Finally, each column ofΛ is optimized holding all others fixed using

λm =

(
n

∑
i=1

G

∑
k=1

πk|iα2
kmST

i Si

)−1 n

∑
i=1

G

∑
k=1

πk|iαkmST
i

(
Y i − ∑

l 6=m

αklSiλl −Si γ̂ik

)
(31)

whereλm is themth column ofΛ, αkm is themth component ofαk andYi = Y i −Siλ0. We iterate through
(29), (30) and (31) until all parameters have converged which typically occurs rapidly. The final step is to
set

σ2 =
1

∑n
i=1ni

n

∑
i=1

G

∑
k=1

πk|iE
[
(Y i −SiΛαk−Siγi)

T(Y i −SiΛαk−Siγi)|Y i,zik = 1
]

(32)

=
1

∑n
i=1ni

n

∑
i=1

G

∑
k=1

πk|i

[
(Y i −SiΛαk−Si γ̂ik)

T(Y i −SiΛαk−Si γ̂ik)

+tr
(
SiCov[γi|Y i ,zik = 1]ST

i

)]

The algorithm iterates through (26),(27),(29), (30), (31)and (32) until all the parameters have converged.
When fitting the classification likelihood the only alteration to this procedure is that, for eachi, πk|i is

set to 1 ifk equals
argmin

k∗
||Y i −Si(λ0 + Λαk∗)||(σ2I+SiΓST

i )−1

and 0 otherwise.

B Proof of Theorem 1

Recall that
Y i|zik = 1∼ N [Siµk,Σi ]

whereµk = λ0 + Λαk andΣi = σ2I +ST
i ΓSi. Hence, using Bayes rule,

logP(zik = 1|Y i) = log(πk)−
1
2
||Y i −Siµk||

2
Σ−1

i
+constant. (33)

Furthermore,||Y i −Siµk||
2
Σ−1

i
can be decomposed into three parts,

||Y i −Siµk||
2
Σ−1

i
= ||Y i −Siη̂i||

2
Σ−1

i
+ ||η̂i −λ0−Λα̂i ||

2
Cov(η̂i)

−1 + ||α̂i −αk||
2
Cov(α̂i)

−1, (34)

whereη̂i and α̂i are given by (10) and (11) in the paper. The first term of (34) isthe squared distance
between the observedY i and its best cubic spline representation and serves as a measure of the adequacy of
the spline basis. The second term gives the squared distancebetween the optimal spline coefficient vectorη̂i
and its projection onto the subspace spanned by the cluster mean coefficients. The final term is the squared
distance between this projected coefficient vector andµk or, equivalently, between̂αi andαk. All distances
are measured relative to the appropriate covariances. Notice that the first two terms of (34) are constant with
respect tok so the theorem is proved.
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C Proof of Theorem 2

Let g̃(t) be a predictor that depends ong(t) only throughY and letĝ(t) = s(t)TEη[η|Y]. Then

Eη[g̃(t)−g(t)]2 = EY[Eη[g̃(t)−g(t)]2|Y].

Note that

Eη[(g̃(t)−g(t))2|Y] = Eη[(g̃(t)− ĝ(t))2|Y]+Eη[(ĝ(t)−g(t))2|Y]+2Eη[(g̃(t)− ĝ(t))(ĝ(t)−g(t))|Y]

The cross-product term drops out because, conditional onY, g̃(t)− ĝ(t) is a constant and the expected value
of ĝ(t)−g(t) = s(t)TE(η|Y)−s(t)Tη is zero. Hence

Eη[(ĝ(t)−g(t))2] = Eη[g̃(t)−g(t)]2−Eη[(g̃(t)− ĝ(t))2]

sos(t)TE(η|Y) minimizes the mean squared error among all predictors that depend onη only throughY.
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