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Abstract

We develop a flexible model-based procedure for clustetimgtfonal data. The technique can be
applied to all types of curve data but is particularly usefbken individuals are observed at a sparse set
of time points. In addition to producing final cluster assigts, the procedure generates predictions
and confidence intervals for missing portions of curves. &aproach also provides many useful tools
for evaluating the resulting models. Clustering can bessgskvisually via low dimensional represen-
tations of the curves, and the regions of greatest separiagitween clusters can be determined using a
discriminant function. Finally, we extend the model to hi@ndultiple functional and finite dimensional
covariates and show how it can be applied to standard finiteisional clustering problems involving
missing data.

Some key wordg$-unctional clustering; Discriminant functions; Curvéiestion; High dimensional data.

1 Introduction

Cluster analysis is the art of identifying groups in datacdh be thought of as the dual of discriminant
analysis, the key distinction being that in cluster analyise group labels are not knowarpriori. There are
many clustering methods, ranging from heuristic approacueh as k-means (Hartigan and Wong, 1978)
and linkage analysis (Kaufman and Rousseeuw, 1990) to noomeaf model-based procedures (Banfield
and Raftery, 1993). In this paper we present a model-basgagh for clustering functional data. The
method is particularly effective when the observationssparse, irregularly spaced, or occur at different
time points for each subject.

1.1 Model-based clustering

In model-based clustering it is assumed that the obsenstig. . . , X, are generated according to a mixture
distribution with G components. Ld(x|6x) be the density corresponding to tkié cluster, parameterized
by 6k, and letz; = (z1,...,zc) be the cluster membership vector for ii® observation wheray = 1 if x;

is a member of th&th cluster and 0 otherwise. Tlags are unknown and are generally treated in one of two
ways. In the “classification likelihood” approach, thé are viewed as parameters and the model is fit by
maximizing the likelihood

n
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Figure 1:(a) Measurements of spinal bone mineral densitic() for males (black) and females (grey) at various
ages, n=280. (b) Percentage change in GFR scores38ipatients with membranous nephropathy.

When fi(x|6k) is multivariate normal with the identity covariance mattiis approach produces the k-
means solution. Alternatively, the cluster membershipy betreated as missing data wheres multi-
nomial with parameterérm, ..., Tig) andT is the probability that an observation belongs toktiecluster.
Then the parameters are estimated by maximizing

n G
LM(el,...,GG;TT]_,...,TTg‘Xl,...,Xn) = I_l Z Tl’kfk(Xi’ek). (2)
i=1k=1

This is known as the “mixture likelihood” approach. Here tomultivariate normal distribution with mean
K, and variance&y has been used successfully in a wide range of applicatioasfi@d and Raftery, 1993;
Celeux and Govaert, 1995; Dasgupta and Raftery, 1998). tim d&ygproaches it is generally necessary to
use an iterative procedure, such as EM, to estimate theusaparameters. The key difference between the
classification and mixture approaches is that in the forraehoint is assigned to a unique cluster, while
in the latter each point is assigned a probability of origmgfrom each cluster and so influences all the
parameter estimates.

1.2 Classical approaches to clustering functional data

Although normal mixture models are fairly straightforwaoduse in finite dimensional clustering problems,
they are less easy to apply to infinite dimensional data saaueses. Most existing approaches for clus-
tering functional data can be categorized as eitbgularizationmethods filtering methods or hybrids of
the two. Regularization methods work by discretizationhef time interval. The resulting data vectors are
autocorrelated and high dimensional, leading to unstadtiemates of the within cluster covariance matri-
ces unless some form of regularization constraint is imgp@B&illo, 1976; Friedman, 1989; Banfield and
Raftery, 1993; Hastiet al, 1995). Filtering methods project each curve onto a finiteattisional basis,



{@u(x),....@p(x)}, and cluster the resulting basis coefficients.

The regularization and filtering approaches can work wekmvlvery curve has been observed over the
same fine grid of points. However, they break down if, as igrothe case in practice, the individual curves
are sparsely sampled. Consider the following two examplée first, illustrated in Figure 1(a), consists
of measurements of spinal bone mineral density for 280 naledsfemales taken at various ages and is a
subset of the data presented in Bachraichl. (1999). Even though, in aggregate, there are 860 obsengatio
taken over a period of almost two decades, there are only 2asurements for each individual covering no
more than a few years. None-the-less, we are interestedstecing this data to identify different patterns
of growth. For instance, Figure 1(a) suggests that there eayifferentiation based on gender, especially
in the early years. The second data set, illustrated in Eid(p), shows percentage changes in glomular
filtration rate (GFR) over a 6 year period, for a group of pagewith membranous nephropathy, an auto-
immune disease of the kidney. GFR is a standard measurerahkidnction. Clinical observations suggest
that patients fall into three categories, those that remaitively stable in terms of GFR, those that decline
slowly over time and those that deteriorate rapidly. Peoptbe latter group need aggressive treatment so
it is desirable to make an early prediction of cluster mersitiet

The regularization method can not be applied to these déddseause the curves are sampled at dif-
ferent times. The filtering method also has several prohleFisst, the variance of the estimated basis
coefficients is different for each individual because thevesi are measured at different time points. More
weight should be placed on the more accurately estimatdd basfficients which standard filtering does
not allow. More importantly, for sparse data sets many obtms coefficients would have infinite variance,
making it impossible to produce reasonable estimates. drspinal bone density data set there are so few
observations that it is not possible to fit a separate curwedoh individual using any reasonable common
basis. For data sets of this type a new approach is necessary.

1.3 An alternative functional clustering approach

In this paper we introduce a general approach to clustetingtional data that incorporates the best prop-
erties of the regularization and filtering methods whileidi their most serious drawbacks. As with the
filtering approach we convert the original infinite dimemsbproblem into a finite dimensional one using
basis functions. However, instead of treating the basifficmnts as parameters and fitting a separate spline
curve for each individual, we use a random effects modelHerdoefficients. This allows us to borrow
strength across curves, producing far superior results attemhow sparsely or irregularly the individual
curves are sampled, provided that the total number of obens is large enough. Furthermore, it automat-
ically weights the estimated spline coefficients accordmtheir variances and is highly efficient because
it requires fitting few parameters. Finally, it can be usegnoduce estimates of individual curves that are
optimal in terms of mean squared error.

The functional clustering model and an EM style fitting prahae are presented in Section 2. The model
is extremely flexible and many standard clustering tools lmamasily implemented with it. In Section 3
we demonstrate how to obtain low-dimensional represemtsitdf the curves so that the clusters may be
assessed visually. We also show how to compute estimateBdence intervals and prediction intervals
for individual curves. Model selection techniques, sucmathods for selecting the number of clusters and
the spline basis, are described in Section 4. Section 5 showdhe model can be generalized to include
multiple functional and finite dimensional variables. HyaSection 6 discusses how this model can be
used to cluster standard high dimensional data with misghges.



2 Modeling functional data

2.1 A general functional model

Since most functional data is longitudinal we adopt the eatien of parameterizing our models in terms of
t, time. However, our approach applies equally well in ottentexts. Leig(t) be the curve of a randomly
chosen individual. We will assume thgtt) follows a Gaussian process. dft) is a member of théth
cluster we write its expected value and covariance as

E{g(t)} = (t), Covg(t),g(t")} = wx(t,t)

In practice we do not obsengit) perfectly nor do we observe it at all time points. Detbe the vector
of observed values df(t) at timesty,...,t,. We assume that the measurement errors are independent and
normally distributed with mean zero and constant variastcso that

Y ~ N(My, Q+c?l)

where
Mk (t1) ox(ty,tr)  ox(ts,t2) -0 (s, tn)
Mk (tn) o (th,t1)  ox(tn,t2) - 0x(tn,tn)

The regularization and filtering approaches can both beedeas methods for estimating the parameters
in (3). The regularization approach obtains estimates @ andwx(t,t’) on a fine lattice of time points.
Generally no assumptions are made about the functional ébnm(t) but some restrictions are placed on
the structure ofx(t,t’). In the filtering methody(t) is represented in terms of@dimensional set of basis
functions@(t) = (@u(t),...,@p(t)), i.e. g(t) = @(t)n. Then’s are estimated separately for each individual
using least squares. The estimated coefficient vectorhanectustered and the resulting cluster means are
multiplied by @(t) to obtain estimates of the(t)'s. Estimates of thex(t,t’)’s are obtained in a similar
manner.

2.2 The functional clustering model

We now present a version of the general functional model ihappropriate for clustering all types of
functional data. Leg;(t) be the true value for thih individual or curve at time¢, and letg;,Y; andg;
be, respectively, the corresponding vectors of true valoleserved values and measurement errors at times
ti1,....tin,. Then

Yi=gi+¢g, i=1...,n

wheren is the number of individuals. The measurement errors anenasd to have mean zero and to be
uncorrelated with each other aggl Note that this involves an implicit assumption that the hseved
time points are missing at random. Since there are a finitdosuwf observations it is necessary to impose
some structure on the individual curves. Like the filterippmach, our method modedg(t) using basis
functions. We chose natural cubic splines because theydesieable mathematical properties, are easy to
implement, and require a relatively minimal number of pagtitia assumptions (de Boor, 1978; Green and
Silverman, 1994). We let



wheres(t) is a p-dimensional spline basis vector angdis a vector of spline coefficients. Thg's are
modeled using a Gaussian distribution,

ni:uzi+yi> yNN(Ovr)> (4)

wherez; denotes the unknown cluster membership.
There is a further parameterization of the cluster meanswilh prove useful for producing low-
dimensional representations of the curves. Notejthaan be rewritten as

W = Ao+ Ao, 5)

wherelg andoy are respectively- andh-dimensional vectors, amilis ap x h matrix withh < min(p,G —
1). Whenh= G -1, (5) involves no loss of generality while< G — 1 implies that the means lie in a
restricted subspace. With this formulation the functiariastering model (FCM) can be written as

Yi=SAo+Aaz;+V)+e, i=1...n, (6)

& ~N(O,R), vy, ~N(0,I),

where§ = (s(ti1), . ..,S(tin, )T is the spline basis matrix for thth curve. As with finite dimensional models,
two different forms of the FCM can be obtained depending oetiwr thez;’s are treated as parameters or
missing data. There are many possible formsR@ndr", the covariances of thg’s, and they;’s. For now
we useR = 0l and a commoi for all clusters because we are interested in sparse datéosethich it is
desirable to use a small number of parameters. Other chaieesxplored in Section 5.2. Note that, A
anday are confounded if no constraints are imposed. Thereforeeguaine that

de =0 (7)
and NSz isn=| (8)

whereSis the basis matrix evaluated over a fine lattice of time aindt encompasses the full range of the
data and= = 0?1 + S°S". The restriction in (7) means thaft)" Ao may be interpreted as the overall mean
curve. There are many possible constraints that could lweglan/. The reason for the particular form
used in (8) will become apparent in Section 3.1.

Notice that our functional clustering model (6) is a specé&de of the model of Section 2.1 witl(t) =
s(t) T = s(t)T (Ao + Aak) andux(t,t') = s(t)Trs(t’). Although similar in structure, the FCM differs from
the filtering approach in two key respects. The first diffeeeis in the handling of the basis coefficients.
In the filtering approach thg;’s are treated as parameters or fixed effects and are estirdaeetly using
only the values obtained from that individual. In the FCM ths are treated as random effects and need
not be estimated directly. This allows strength to be boewwacross curves, providing superior results for
data containing a large number of sparsely sampled curvhs. sécond major difference in the FCM is
the additional parameterization of the cluster means u&ngrhis formulation has two advantages. First,
allowing h < G — 1 reduces the number of parameters to be estimated whictesah in a superior fit for
sparse data. Second, as we show in Section 3.1, this parazatte leads to a simple low-dimensional
representation of the individual curves that allows fophiaal assessment of clustering.
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Figure 2:a) A linear discriminant plot for the bone mineral densitytalab) An illustration of the decomposition of
the distance between two curves and two cluster centers.

2.3 Fitting the model

Fitting the FCM involves estimatinio, A, ay, I ando?. This is achieved by maximizing either the classifi-
cation likelihood given by (1) or the mixture likelihood g by (2), noting that under (6), conditional on
theith curve belonging to thkth cluster,

Yi NN(S(?\o—I—/\CXk),Zi) (9)

wheres; = 62l + SrS'. In both cases this involves an iterative procedure. Cuavedirst either assigned
to a cluster (classification) or assigned a probability adbging to a cluster (mixture). Then the parameters
are estimated given the current assignments and the piiscepgated. Details of the algorithm are provided
in Appendix A.

3 Functional clustering tools

Next we discuss three important ways in which our procedarebe used to study clustering of functional

data. Section 3.1 describes how to obtain low-dimensioluds f curve data sets, enabling one to visually
assess clustering. In Section 3.2 we show how to constractitiinant functions to identify the regions of

greatest separation between clusters. Finally, in Se@ti®mve develop optimal methods for estimating the
entire curve for an individual, along with pointwise confide and prediction intervals.

3.1 Low-dimensional graphical representations

One of the chief difficulties in high-dimensional clusteriis visualization of the data. Plotting functional
data is easier because of the continuity of the dimensiomsveier, it can still be hard to see the clusters
since variations in shape and the location of time-point&ariaidifficult to assess the relative distances
between curves. These problems are exacerbated when tes eue fragmentary, as in Figure 1(a). In this
section we develop a set of graphical tools for use with fonel data. Our method is based on projecting
the curves into a low-dimensional space so that they candieglas points, making it much easier to detect
the presence of clusters.



Figure 2(a) shows the bone mineral curves projected ontoeadonensional space. The horizontal
axis represents the projected cureg, while the vertical axis gives the average age of obsemato
each individual. Points to the left of zero are assignedustel 1 and the remainder to cluster 2. Squares
represent males and circles females. The dotted lireegsatda, correspond to the projected cluster centers.
Notice that while there is a significant overlap, most malkdeig to cluster 1 and most females to cluster
2 even though the model was fit without using gender labelg pibt shows that the clustering separates
the genders most strongly for those younger than 16 yearfactn74% of such individuals matched the
majority gender of their cluster compared with only 57% aofgé older than 16. This is because girls
typically begin their growth spurt before boys.

Figure 2(b) illustrates the procedure by which &his are derived using a two cluster, two curve example.
First, Y is projected onto th@-dimensional spline basis to get

= (85 '9) 95y (10)

Secondjj; is projected onto thi-dimensional space spanned by the maarts getAo + Ad; where
~ _ -1 _ A
ai = (ATSTZISA) "ATSTEIS(; — Mo). (11)

Thus, 0; is the h-dimensional projection o¥; onto the mean space after centering. Notice that in this
exampler), is closest tqu, in Euclidean distance but after projection onto the meanesjids closest tqy
and will be assigned to cluster 1.

Theorem 1 shows that there is a direct relationship betweemposterior probability of theh curve
belonging to thekth cluster and the squared distance betwgesnday.

Theorem 1 For Y; drawn from the FCM

0Pz = 1¥1) = C(Yi) +log(1h) — 2 G — a2, -+
where QY;) is a constant with respect to k and
Cov(@i) = (ATSTZISA) (12)
Hence. argmasP(zic = 1Y) = argmin( || — a2, 5, -+ — 21007 (13)

A proof of this result can be found in Appendix B. From (13) &&yes rule we note that cluster assignments
based on thei;’s will minimize the expected number of misassignments. sTha clustering information

is lost through the projection of; onto the lower dimensional space. We call thés functional linear
discriminants because they are exact analogues of the iloerdional representations used to visualize
data in linear discriminant analysis (LDA). In the finitesd#nsional setting the linear discriminants all have
identity covariance so separation between classes canskssasl visually using the Euclidean distance
metric. In the functional clustering settif@p\(a;) is given by (12). When all curves are measured at the
same time points constraint (8) will guaranteev(d;) = | for all i, again allowing the Euclidean metric to
be used. When curves are measured at different time poirgat possible to impose a constraint that
will simultaneously caus€ov(a;) = | for all i. However, when the cluster means lie in a one dimensional
subspacel(= 1), assuming equal priors, (13) simplifies to

. 1
a- N 7.~
£ nllanar(ai)

which yields the same assignments as if @iys all had the same variance. In this situation it is useful to

(@i —ay)* =arg min(@; — ak)?,



plot the functional linear discriminants versus their siual deviations to indicate not only to which cluster
each point belongs but also the level of accuracy with whiblag been observed. Note that for a two cluster
modelh must be 1. However, it will often be reasonable to assume thanslie approximately in one
dimension even when there are more than two clusters.

Linear discriminant plots have other useful features. Nb& the functional linear discriminant for a
curve observed over the entire grid of time points used tmf8will have identity covariance. Thus, the
Euclidean distance between tbg's gives the number of standard deviations separating tistezi means
for a fully observed curve. The degree to which the variarareah individual curve is greater than 1
indicates how much discriminatory power has been lost duaking observations at only a subset of time
points. This has implications for experimental design &t ihsuggests how to achieve minimum variance,
and hence optimal cluster separation, with a fixed numbeina points. For instance the cluster means
in Figure 2(a) are 2 standard deviations apart, indicating that the groupsbeafairly well separated if
curves are measured at all time points. The overlap betwsivb groups is due to the extreme sparsity of
sampling, resulting in thai’s having standard deviations up t®3.

Plots for the membranous nephropathy data, given in Figyreo8ide an example in which the differing
covariances of th@i’s must be taken into account more carefully. Nephroloyestperiences suggest that
patients with this disease fall into three groups, eitheénéawell, deteriorating gradually or collapsing
quickly. Hence we fit a three cluster model whose mean curkeslzown in Figure 3(a). The issue of
identifying the optimal number of clusters is addressedarfimmally in Section 4.1. With three clusters the
means must lie in a plane. Figure 3(b) shows a two-dimenklovear discriminant plot with solid circles
indicating cluster centers. To circumvent the problem edusy the unequal covariances, we use different
symbols for members of different clusters. Note that whitestpatients fall in the cluster corresponding to
their closest cluster in Euclidean distance, there arergkileat do not. In this example the cluster centers
lie essentially on a straight line so it is sufficient to fit eeedfimensional modeh(= 1). The corresponding
plots are shown in Figure 3(c) and (d). The basic shapes ofien curves are reassuringly similar to
those in 3(a), but are physiologically more sensible in ightrtail. Figure 3(d) plots one dimensional
0;'s versus their standard deviations. We see that the clostéhe right is very tight while the other two
are not as well separated. Figures 3(e) and (f) show respbcthe overall mean curves(t) "\ and the
functions(t)TA. The latter, when multiplied bwy, gives the distance betwegg(t) and the overall mean
curve. From Figure 3(e) we see that on average the patiemigesha decline in renal function. The primary
distinction lies in the speed of the deterioration. For epkenthe fact that Figure 3(f) shows a sharp decline
in the first two years indicates that patients in the thirgty which has a highly positives, experience a
much sharper initial drop than average. In fact all patiamtduster 3 eventually required dialysis.

3.2 Discriminant functions

In the membranous nephropathy example we saw that plotEilikee 3(f) provide useful information about
the traits that distinguish one cluster from another. Is Haction we more formally present a set of curves
that identify the dimensions, or equivalently time poimtEmaximum discrimination between clusters and
trace their connection to classical discriminant functiomtuitively, the dimensions with largest average
separation relative to their variability will provide theegtest discrimination. Average separation can be
determined by examinin§\ while variability is calculated using the covariance matli = S°S" + o2l.
These two quantities can work in opposite directions, ngakimifficult to identify the regions of greatest
discrimination. Consider, for example, Figure 4 whichsthates the covariance and correlation functions
for the bone mineral density data. From Figure 4(a) it isrdeat the relationship between a person’s bone
mineral density before and after puberty is weak but the oreasents after puberty are strongly correlated
with each other. Figure 4(b) has a sharp peak in the earlyrpuears corresponding to the period of
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Figure 3:Assessment plots for the membranous nephropathy data.lds$teranean curves and linear discriminant
plots for a fit with h= 2 are shown in (a) and (b). The equivalent plots for a fit with-H are given in (c) and (d).
Finally, (e) shows the overall mean curve and (f) the chagdstic pattern of deviations about the overall mean.

greatest variability. However, this is also the period @ajest distance between the cluster mean curves.
The dimensions of maximum discrimination must also be thesahat are most important in deter-
mining cluster assignment. When observations are madétahalpoints, the spline basis matrix is S, and
equations (11) and (13) imply that curves should be assigased solely on the Euclidean distance between
a=ATS'z71(Y —9S\g) and theay’s. Thus
ATS 51 (14)

gives the optimal weights to apply to each dimension formieiting cluster membership. Dimensions with
low weights contain little information about cluster memdtep and therefore do little to distinguish among
groups, while dimensions with large weights have high disicratory power. Notice that this set of weights
fits with the intuitive notion that dimensions with high diggination should have large average separation,
SA, relative to their variabilityx.

When then’s are one dimensionaf\" S" =1 is a vector and the weights can be plotted as a single curve,
as illustrated by Figure 5 for the bone density and membnephropathy examples. For the bone mineral
data the highest absolute weights occur in the puberty yeandirming our earlier interpretation from the
linear discriminant plot, Figure 2(a). For the membranoaphmopathy data most of the discrimination
between clusters occurs in the early and late stages ofsdis@he difference between patients in the later
time periods is not surprising. However, the discriminatoower of the early periods is encouraging since
one of the primary goals of this study was to predict diseasgrpssion based on entry characteristics.

For a two cluster model the vectdr' S'2~1 is equivalent to the classical discriminant function for a
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Figure 4:Estimated (a) correlation and (b) covariance oftg) with gi(to).

Gaussian mixture. Recall that for a Gaussian mixture thghteiplaced on each dimension by the discrim-
inant function are

(W — )T E (15)

whereZ is the within group covariance matrix. In the FCM tkidn cluster mean i$(Ao + Aak) so (15)
becomes

(9\01 — 9\02)1—2_1 = ((X]_ — (Xz)T/\TSTZ_l (16)

which is equal to (14) up to the multiplicative temm — a». In a two cluster model they’s are scalars and
so do not effect the relative weight placed on each dimensiofact as long as they’s are one dimensional

(14) and (16) will give the same relative weighting for anyrfd clusters. In general, (14) will produde
distinct sets of weights wheteis the dimension of they’s.

0.4

a) b)
10 15 20 25 ¥0 1 2 3 4 5

Age Year
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Nephrology Discriminant
-0.8-0.6-0.4-0.2 0.0 0.2

Bone Mineral Density Discriminant

Figure 5:Discriminant curves for (a) the bone mineral density datd ém) the membranous nephropathy data with
h=1.

3.3 Curve estimation

Another major advantage of the functional clustering pdoee is that it can accurately predict unobserved
portions ofg;(t), the true curve for théh individual, even in situations where the regularizatow filtering

10



methods break down. When using a basis representation rhegtimate fog;(t) is i (t) = s(t)"fj;, where
fi; is a prediction fom;. The filtering method takef- = (§''S) 'SY, provided that the inverse exists.
Theorem 2 gives the optimal procedure for compufingnder the FCM:

Theorem 2 Under the FCM (6) the prediction of @) with minimum mean squared error,
En(Gi(t) —ai(t)% isGi(t) = st)TE(n;| Yi).

A proof of this result can be found in Appendix C. When the miigtlikelihood is used thg’s are treated
as missing data, yielding

G G
fim, = E(MilYi) =Ro+A Y o + (r1+5s) S (Yi -S <?\0+/\ > Gk"ki)) 17)
k=1 k=1
where
f(ylzx = )Tk

Z?:l f(ylzj = 1)m

and f(y|zx = 1) is given by (9). Alternatively, under the classificationelikkood thez’s are treated as
parameters, yielding

Ty = P(zx = 1]Yi) =

(18)

i = EMilYi) = Ao+ Az + (02T 1+ §S) " (Yi— § (ho+Aaz)) (19)

wherez; = argmax f (y|zx = 1). In general, the functional mixture approach producesifsigmt improve-
ments over the filtering method wheR is very large, the components bfare very small, 0f' S is close to
singular. In fact, wher§' S is singular the filtering approach breaks down completeljleathe functional
clustering method can still produce reliable predictions.

Itis also important to obtain a measure of the uncertaintyuinpredictions of the individual curves. We
achieve this through pointwise confidence and predictioervals. For example, using the mixture likeli-
hood, the distribution of); givenY; is a mixture of normals whodagh component has mixture probability
T, and mean and covariance

E(NilYi,zk = 1) = Ao+ Adk + (02r71+§5)71§ (Yi—=S (Ao+Aay)),
andCov(n;|Yi,zk = 1) = (F—1+STS/02)71. Hence, conditional og andY;

Gi(t) ~ N [s(t)TE(;| Y,z = 1),s(t)TCoumn;|Yi,zk = Ds(t)] .

Thus, if the cluster membershipwere known then

{cla(t).Cia()} = sOTE(Mi|Yi,zx = 1) £ ¢((1+T)/2)_1\/S(t)TCO\'(ﬂi\Yi,Zk = 1)s(t),

where® is the standard normal cdf, would ba @ointwise confidence interval f@;(t). Since the cluster
memberships are unknown, a highly conservative approaciovioe to use the interval

{mincia 0.maxcia ) . (20)
The following two step procedure is superior. First, find sheallest collection of clusters with total prob-

ability at leastt; of having generated the curve in question. Second, constswmnfidence intervals for
gi(t) conditional on membership in each of these clusters andttekpointwise extremes. If the clusters
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Figure 6:Curve estimates, confidence intervals, and predictiomals for two subjects from the bone density study.

are ordered from largest to smalleg};, this procedure producesta= 1,1, pointwise confidence interval
with bounds
f T2 T2

{k:z'fr?;r?i <1 alt): k:z‘fg]?tj)‘i(al Gt } .
This interval will, in general, be narrower than that given(B0) because it ignores the clusters with low
posterior probability which are also the ones furthest friw@ predicted curve. Figure 6 illustrates this
approach for two subjects from the bone density study. Foh gdot, the two solid grey lines give the
cluster mean curves, the curve fragment gives the obseme@s/for a single individual, and the dashed
line gives the corresponding prediction. The dotted limgsesent 95% confidence and prediction intervals.
Note that the confidence interval provides bounds for theedyithg functiong;(t) while the prediction
interval bounds the observed valuegpft). As usual, the prediction interval is produced by addifdo the
variance used in the confidence interval.

4 Model selection

In Appendix A we outline an EM procedure for fitting the furoetal clustering model. However, there are
several model selection questions that are worth disogissigreater detail. In particular one must choose
how many clusters to fit, the number of knots to use in the sfisis and the dimension of the mean space.

4.1 Choice of number of clusters

Most clustering procedures require one to choose the nuoflgoups prior to fitting. This is one of the
most difficult problems in cluster analysis. A popular clgoin model-based clustering is to use Bayes
factors (Kass and Raftery, 1995), which are difficult to akdte exactly but can be approximated using BIC
(Schwarz, 1978). One disadvantage of this method is thagitires fitting the model for each potential
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Figure 7:(a) A mixture of four highly overlapping Gaussian clustenslgb) the associated jump plot. (c) The jump
plot for the bone mineral density data.

number of clusters. We utilize an alternative approach esiggl by Sugar and James (2003). Their method
is based on the “distortion function”,

de == min E( ) T —c) (21)
p ¢tk

where the);’s are the spline coefficients in the functional clusteringdel. The distortiongl, is the average
Mahalanobus distance between eggland its closest cluster centey. Consider Figure 7(a) which plots
a mixture of four highly overlapping Gaussian clusters. rrasual inspection it is not clear that the data
consist of four clusters. However, Figure 7(b), which pltblejumpdgl — dg}l from K =1 to 10, shows
a clear spike aK = 4. Sugar and James (2003) show, both theoretically and Emlpir that for a large
class of mixture distributions the largest jump will alway@rrespond to the correct number of mixture
components. Their key theorem is summarized below.

Theorem 3 Suppose that the distribution of tig's is a mixture of G p-dimensional clusters with equal
priors. Furthermore, assume that the clusters are idetifiadistributed with covariancé , and finite fourth
moments in each dimension. Then, under suitable condjtiberse exists a set of real valued numbers 9
such that the jump,d — di ¥, will be maximized when K G.

The conditions under which this result will hold relate te #eparation between cluster means relative to
the entropy of each cluster. Further details as well as & fotheorem 3 can be found in Sugar and James
(2003). Itis clear from the simulation example that thisrapgh can identify the correct number of mixture
components even for highly overlapping clusters. Figu® Zbows the corresponding jump plot for the
bone mineral density data. It appears th& 2 or 5 are all possible choices for the number of clusters and
each has a reasonable interpretation. One would simplgatelihat there is no strong clustering in the data.
Two clusters correspond to a breakdown along gender lintgis.dkta consisted of four ethnic groups, black,
asian, white and hispanic, but the white and hispanic graugus indistinguishable (James and Hastie, 2001)
so a three cluster fit may well correspond to the differemietties. Finally, the five cluster fit could indicate
clustering into different gender-ethnicity combinationce the number of clusters is not clear cut, which
of these four possible choices produced the largest jumprikgal on the exact choice ¥f Theorem 3
does not specify the optimal choice ¥f Sugar and James (2003) give results suggesting that omddsho
setY equal to half of the “effective” number of dimensions in thegal For the bone mineral example, the
n;'s varied mostly along one dimension with a small amount ofality in a second dimension. Hence we
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estimated the effective dimension to b& &nd set = 0.75. A similar approach applied to the membranous
nephropathy data provided no statistical evidence of mmaa two distinct clusters. Thus the clinician’s
supposition of three clusters is not supported by the davaveder, from Figure 3(d) there is evidence of at
least two clusters.

In practice we estimatédk by first predicting then;’s via (17) and then using the k-means algorithm
to approximate the distortion. Sugar and James (2003) hatetlie jump approach produces reasonable
answers when one substitutEs= 1 into (21) so we have followed this convention. The jump mdtho
has the advantage that it only requires the functional ety procedure to be fit once. Since the k-means
algorithm is significantly faster than the EM-based funadilcclustering procedure this produces a significant
reduction in computation.

4.2 Other model selection problems

Another important issue is the selection of the spline badst procedures use equally spaced knots which
reduces the problem to one of selecting the correct numhbee. matural approach is to take the dimension
of the basisp, to corresponding to the largest cross-validated likelth@amest al, 2000). This works
well but is generally computationally expensive. An altgive approach is to calculate the likelihood once
for each value opb and apply a penalty term involving the number of parametéis the data. AIC and
BIC are two such methods that have worked well on models eftife (Rice and Wu, 2001). In practice
the final clustering appears to be fairly robust to any reaBtennumber of knots.

Finally one must choosk, the dimension of the cluster mean space. For the data kstisated in this
article, the choice oh was not a serious problem because only a small number otcustere involved.
Recall that settingh = G — 1 results in no restriction on the mean space. For the merabsamephropathy
data withG = 3 clusters it was clear upon fitting the model with= 2 that theay's lay approximately on
a line implying that one should sét= 1. This approach can be applied in general by fitting the model
with h= G — 1, calculating thex’s, testing whether the cluster centers appear to lie in ataimensional
plane and then refiting the model withset to this new dimension. Methods such as principal commene
analysis can be used to determine whether the means lie \mea thmensional space.

5 Extensions of the functional clustering model

5.1 Incorporating multiple curves and covariates

In this section we extend our model to allow multiple funoab variables per subject as well as finite
dimensional covariates with possibly missing values. Ygtrepresent the vector of observations of fkie
curve for theith individual at timeg;j1, . . .tijn;; and letX; be the vector of finite dimensional covariates. The
functional clustering model of Section 2.2 generalizes to

Yij=Sjni;+&;, & ~N(@Old?), j=1...J

wheren;; = [,;; +;; and we allow a different variance for each curve’s error mecfo model the finite
dimensional covariate;, the spline basis is replaced by the identity, yielding

Xi = lixNix +€ix, &x ~ N(0,102)

wheren;, = W, + Vi As before, we assume that= (yq, ..., V3, Yix) ~ N(O,I") andpy = (Kyq, - - - b3, Mix) =
Ao+ Aag. Note that when we leY; = (Yi1,...Yi3,Xi), & = (&i1,---,&i3,€x) andS be the block diagonal
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matrix formed byS1,...S; andlix, then
Yi:S(A0+AGZi+yi)+Si7 SiNN(OvR)v leN(0>r)a (22)

which is identical to the formulation of the standard fuantl clustering model. Hence (22) can be fit using
the same EM procedure. This model is extremely flexible ancheadle an arbitrary number of functional
variables. In addition, covariates with missing obseoratican easily be included. For example, if tte
individual is missing thgth observation one would simply remove tfib row oflix before fitting the model.
Despite the added complexity it is still possible to repn¢slee individual data points in a low-dimensional
subspace by taking advantage of the projection onto theesplacluster mean coefficients. Furthermore,
standard high-dimensional clustering problems with migsiata can simply be viewed as a special case of
our model in which there are no functional covariates.

5.2 Alternative covariance structures

To this point we have used a common covariance mdtifor all clusters and have také?) the covariance

of theg;’s, to be a multiple of the identity matrix. These assumgiomay be inappropriate for some data
sets. For example, the differing variability in tiog's of Figure 3(d), suggest that, for the membranous
nephropathy data, a model that allows an alternative caweei structure may be more appropriate.

Any covariance matrix| x, may be reparameterized &g = OkaOI where © is a matrix whose
columns consist of the eigenvectorsigfandDy is a diagonal matrix whose elements are the eigenvalues.
The standard FCM force®x and Dg to be the same for each cluster, in analogy with linear disoant
analysis (LDA). Allowing both®y and Dy to vary overk, as in quadratic discriminant analysis (QDA),
gives greater flexibility but, like QDA, this model tends terform poorly unless all groups have a large
number of observations (Wald and Kronmal, 1977). Numerauspromises between the LDA and QDA
frameworks have been proposed. The simplest of thesd fateebe a multiple of the identity i.elx = dl
or My = ol (Ward, 1963; Banfield and Raftery, 1993; Celeux and GovaéAa5). Although these models
do not require large amounts of data, they are often ovesirictive because they assume independence
between coordinates. As a compromise various authors hagested classes of models in whi€i
is allowed to vary ovek but Dy remains fixed. Two examples afg = 30xDO] and 'y = &GxDO]
(Murtagh and Raftery, 1984; Banfield and Raftery, 1993; @ebnd Govaert, 1995). With these structures,
each cluster has the same shape but variable orientati@ugehof shrinkage estimators is another strategy
that has been highly successful in poorly-posed inversblgms (Titterington, 1985; O’Sullivan, 1985).
For example, regularized discriminant analysis (Friedm&89) works by simultaneously shrinking the
estimated covariance matrix towards both the identity atnd towards the common sample covariance
matrix.

Many covariance structures are also possible foretise For example, one may believe that there is a
linear relationship between time and variance an&Ie¢ diagonal withvar(g;(t)) = Bo+ Bit. Alternatively,
since the data being modeled are often time dependent, elatoyn structure between the error terms may
be appropriate. For example, one may choose to assume amoostrelation between adjacent error terms
from the same individual i.ecor(gj(t),&i(t + 1)) = p. Such a structure seems more plausible for equally
spaced time points and so may not be appropriate in settigds &s the bone mineral density study. All
of these approaches for modeling the covariance structizesasily be incorporated into the functional
clustering procedure.
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Figure 8:Two dimensional representations of an eight dimensiontd dat using (a) principal components and (b)
the functional clustering procedure.

6 Discussion

The main goal of this paper was to develop a general procdduotustering functional data. Our approach
performs particularly well compared to other methods farsply sampled curves. However, the models
presented in Sections 2 and 5 provide an extremely flexiatadmwork that can easily be adapted to a variety
of situations. For example we noted in Section 5.1 that cépdathe spline basis matrix with the identity
matrix yields a method for clustering finite dimensionaladttat can handle missing observations. Figure 8
provides a comparison of this approach with a more standarcedure. In high dimensional settings it
is common to first reduce the number of dimensions, for igdry using principal components analysis
(PCA), and then to cluster in the lower dimensional spaces ddnger is that one may inadvertently lose
any discrimination between clusters in the process. Fi§(@@e provides just such an example. Here we
have plotted the first two principal components of an eightatisional simulated data set. The data were
generated by sampling twenty observations from each oéttlesters. The clusters had different means in
the first dimension but were otherwise identically disttédsli The second and third dimensions had a large
degree of variability while the remaining five dimensionsl lkmmparatively little. When PCA is run the
first two components explain over 90% of the variability. @eally this would be considered an adequate
representation of the data. However, when these two conmpeaee plotted in Figure 8(a), with a different
symbol for each cluster, it is clear that all discriminatgrgwer has been lost. Alternatively, when the
FCM is fit to this data and a two-dimensional linear discriamtplot is produced as in Figure 8(b) perfect
separation is achieved. We did not incorporate missingegaluthis example because principal components
can not readily be applied to such data. However, the FCMagmbrwould have coped with ease by simply
leaving out the appropriate rows of the identity matrix As with most EM procedures, initialization of the
algorithm is an important consideration. For the data ofiFéd we found that the FCM procedure worked
best wherl” was initialized with high variance in the second and thintheinsions and low variance in other
dimensions. This is not an unreasonable starting poinesincexamination of the sample covariance matrix
for the raw data reveals that most of the variability is instheimensions.
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A The fitting algorithm

We first outline the procedure for fitting the mixture likedibd (2). The classification likelihood fitting
procedure follows with only minor modifications. The stamtlapproach to fitting a mixture likelihood

is to treat the unknown cluster membershgpss missing data and to use the EM algorithm. Note that
since thez’s andy;'s are assumed independent of one another the complete dataution factors as
f(Y,z,y) = f(Y|z,y)f(2) f(y). Given that thez;’s are multinomial{), they;’s areN(0,I") and theY;’s are
conditionalN[S (Ao + Aak +Y;),0?] the complete data log likelihood, up to additive constaists,

®

I, T.0% Mo Aai) = 5 zklog (i) (23)
1

[log|I'|+y T~ 1y] (24)

LM LMZTF

1
24
:_; i [ni|090'2+éHYi—S()\O+/\ak+yi)Hz] (25)

The EM algorithm consists of iteratively maximizing the egfed values of (23), (24) and (25) givépand
the current parameter estimates. Since all three partdvengeparate parameters they can be maximized
independently of each other. The expected value of (23) ismmized by setting

_ %Z"“ (26)

whererTy; is given by (18). Next the expected value of (24) is maximiagdetting

1 n - 1 n G
=R 2 E V=13 5 v Y = 1] (@7)
which can be calculated using the fact that
VilYi,zik =1~ N((0’T "+ §'S) 7' (Yi — Sho— SAai), (T +§5/0%) 7). (28)

In the final step we maximize the expected value of (25). Trislves an iterative procedure whexgthen
ak and finally the columns o are repeatedly optimized while holding all other paransetieed. First we

set
n 1 G
Ao = (;3@) i;aT (Yi —k;ﬂkus (/\ak+\7ik)> (29)

where{y = E |v;|zk = 1,Y;] which is calculated using (28). Next, thg's are calculated using

n I
o = (Z%ATSFS/\) 3 TATS] (Yi—Sho— S (30)

17



Finally, each column of\ is optimized holding all others fixed using

n G 1hnoe
Am = (i;kzlmiaEmSTS) i;k;Tfk\inmST <7i — > auSN _SVik> (31)

I£m

whereln, is themth column ofA, ayy, is themth component of, andY; = Y; — SAo. We iterate through
(29), (30) and (31) until all parameters have converged lwhipically occurs rapidly. The final step is to
set

1 n G

O = o>y WE (Y- SAa- SY)T(Yi - Shak- Sy IYi zc=1] @)
1 08 _ o A
= Z_n N 21 Z T |:(Y| —SAog— Syik)T (YI — SAG— Sylk)
=171 i=1k=1

+tr (SCoviyi|Yi,zk = 1] SIT)}

The algorithm iterates through (26),(27),(29), (30), (&8&yl (32) until all the parameters have converged.
When fitting the classification likelihood the only altedatito this procedure is that, for eaghr; is
set to 1 itk equals

arg rEin| IYi =S Ao+ Ak )|l (021 45rsT)1

and 0 otherwise.

B Proof of Theorem 1

Recall that
Yilzk = 1~ N[S, Zi]

wherepy, = Ao+ Aoy andZ; = o?l + sTFS. Hence, using Bayes rule,
1
logP(zx = 1|Y;) = log(Tk) — EHYi — S ];,1 + constant (33)
Furthermore||Y; — SllkHél can be decomposed into three parts,

I1Yi— SIJkHZi—l =Yi— Sﬁi”zrl + IR —Ao— /\aiH(Z;ov(ﬁi)—l + @i — akHéo\(aiyh (34)
whereRj; and@; are given by (10) and (11) in the paper. The first term of (34hé squared distance
between the observed and its best cubic spline representation and serves as araedshe adequacy of
the spline basis. The second term gives the squared didtetween the optimal spline coefficient vecipr
and its projection onto the subspace spanned by the clusi@n goefficients. The final term is the squared
distance between this projected coefficient vectorgnar, equivalently, betweea; andayg. All distances
are measured relative to the appropriate covariancescéNibtat the first two terms of (34) are constant with
respect tk so the theorem is proved.
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C Proof of Theorem 2

Letg(t) be a predictor that depends gft) only throughY and letg{t) = s(t)"E,[n|Y]. Then
Eq[6(t) — 9(t)]* = Ev[En[§(t) — 9()]?[Y].
Note that
Eq[(G(t) — 9(1))?Y] = En[(G(t) — §(t))?Y] + En[(6(t) — 9() Y]+ 2En[(6(t) — §(t))(6(t) —a(t))[Y]

The cross-product term drops out because, conditional,djft) — §(t) is a constant and the expected value
of §(t) —g(t) = s(t)TE(n|Y) — s(t)n is zero. Hence

Eq[(8(t) — 9(1))?] = Eq[8(t) — 9(t)]* — En[(G(t) — §(t))?]

sos(t)TE(n|Y) minimizes the mean squared error among all predictors iz om only throughy .
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