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Abstract

We explore different approaches for performing hypothesis tests on the shape of a mean function by
developing general methodologies both for the, often assumed, iid error structure case as well as for the
more general case where the error terms have an arbitrary covariance structure. The procedures work by
testing for patterns in the residuals after estimating the mean function and are extremely computationally
fast. In the iid case we fit a smooth function to the observed residuals and then fit similar functions to
the permuted residuals. Under the null hypothesis that the curve comes from a particular functional
shape, the permuted residuals should have a similar distribution to the unpermuted ones. So the fitted
curves will have the same distribution thus allowing significance levels to be computed very efficiently.
In the more general case when several curves are observed one can directly estimate the covariance
structure and incorporate this into the analysis. However, when only one curve is observed we adopt
a graphical approach where one plots the p-value for differing levels of potential complexity in the
covariance structure. This allows one to judge the degree of deviation from the assumed null distribution.
We demonstrate the power of these methods on an extensive set of simulations. We also illustrate the
approach on a data set of technology evolution curves which current theory suggests should have an
underlying S shape. The developed techniques have wide potential applications in empirical testing of
the shape of functional data.

Some key words: Functional hypothesis test, permutation, bootstrap.

1 Introduction

Suppose we observe curves or functions Y1(t), . . . ,YN(t), and wish to perform hypothesis tests on the shape
of their mean function, µ(t) = EY (t), when either one, or multiple curves are observed. In this paper we
develop general methodologies for performing these hypothesis tests.

First, we describe an application of the method that we will discuss in this paper. Consider the case of
a manager faced with the issue of detecting common patterns from prior information on the evolution of a
technology, and devising investment strategies for the future. The theory of S-curves from the technology
management literature (Foster, 1986; Sahal, 1981; Utterback, 1994) suggests that all technologies evolve in
the shape of an S-curve i.e. when plotted against time, the performance of a technology exhibits an initial
period of slow growth, followed by one of fast growth culminating in a plateau. The manager would be
interested in finding out whether their particular technology evolves as expected i.e. in the form of an S-
shaped curve. In Figure 1, we plot the evolution of three technologies over time (Sood and Tellis, 2004).
Figure 1(a) plots the evolution of incandescent lighting over a 123 year period along with the best fitting
S-curve. Though the monotonic growth in performance observed seems to roughly fit the expected S-shaped
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Figure 1: Plots of the evolutions of three different technologies over time along with the best fitting “S” curves
(dashed lines).

a) b) c)

growth, a number of deviations are observed, and it is unclear how best to quantify the departure from the
hypothesized shape. Similarly, Figures 1(b) and (c), plot the evolution curves for cathode ray tube (CRT)
display monitors and dot-matrix printers. While these plots also indicate some departures from the S-curve,
the disparities do not appear to be nearly as large as those for incandescent lighting. In addition, the curves
have been observed over a significantly shorter period of time, making it more difficult to assess whether the
deviations are statistically significant. This example highlights the need to develop techniques to perform
formal hypothesis tests on the shape of functional data. Some other examples where functional hypothesis
testing is useful include testing the average shape of human growth curves, product life cycle, sales growth
and new product diffusion curves, stock market returns or even weather patterns. We develop a set of
methods in this paper that allow one to answer these questions with a minimal set of general assumptions.

In the standard finite dimensional setting performing a hypothesis test on the mean of a population is
a well studied problem. However, the infinite dimensional functional case possesses additional difficulties.
Dealing with simple hypotheses, where the null is completely specified, is comparatively easier to handle
and offers many alternatives like Pearson’s chi-squared test of goodness of fit (refer Darling (1957) and
Johnson and Kotz (1970) for a survey of this field). However, the more common situation involving com-
posite hypotheses, where some or all of the parameters of the functional form are left unspecified, is more
challenging, and the existing methods pose many limitations. One option is to modify the classical Pearson
chi-square test of goodness of fit to this problem by estimating the unspecified parameters. However, the
assumed asymptotic chi-square distribution of the test statistic becomes questionable when the sample size
is small. Other options like using the Kolgomorov-Smirnov test statistic pose additional computational dif-
ficulties because of the use of Monte-Carlo techniques (Srinivasan, 1970). Moreover, it may not be possible
to adapt the test to some functional forms. Past research has also proposed semi-parametric forms of tests for
such hypotheses (Robinson, 1989). The advantage of these tests is that they can be extended to cases where
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the functional form is unspecified even under the null, and hence are quite general in nature. However, the
tests are dependent on a restrictive set of assumptions like stationarity of time series data, and pose serious
limitations like lack of parametric estimates, dimensionality problems and sample size problems. Still other
researchers have approached the problem from a Bayesian perspective (Bewley and Griffiths, 2001; Mont-
gomery and Bradlow, 1999). While these methods allow the inclusion of prior information especially when
the sample size is small, it is difficult to assess the confidence that may be placed on the assumed model for
the observed data.

When dealing with functional data, one must generally use a finite number of observations to try to make
inferences about an infinite dimensional curve. Necessarily one must assume some form of finite dimen-
sional representation for the curves. Often this is achieved by placing a smoothness constraint on each curve
(James and Silverman, 2004). A significant additional difficulty with testing the mean of functions such as
those in Figure 1 involves the estimation of a covariance structure. One option often taken in the literature
involves assuming iid measurement errors at the observed time points e.g. Bewley and Griffiths (2001).
This assumption simplifies the problem considerably and we begin by exploring this model. However, often
in practice a more realistic model needs to allow for correlations in the error terms. We first develop an ap-
proach that assumes a general covariance structure and is applicable when several curves are observed from
the same mean function. We then extend this approach to the more difficult, but rather common, situation
where only one curve is observed. All three methods utilize permutation tests on the residuals between the
observed curve and the estimated mean function. The iid approach computes a test statistic on the observed
residuals and then permutes the residuals multiple times to compute a sample distribution under the null hy-
pothesis. The general correlation approach works in a somewhat similar manner but makes adjustments for
the estimated covariance structure. Our methods address the common difficulty of computational feasibility
with functional data, which often contain a large number of observations. All three methods are extremely
fast but have also demonstrated high power levels in simulation studies

In Section 2 we develop our methods for performing hypothesis tests on µ(t). The first involves the
situation where errors are assumed to be iid at the observation times. We call this approach “Functional IID
Tests of Shape” or FITS. The other two methods allow for a far more general covariance structure in the
errors and are called “Functional Arbitrary Covariance Tests of Shape” or FACTS. Different procedures are
required in the cases where multiple curves are observed (FACTSN) and the more difficult situation where
only one curve is sampled (FACTS1). The rest of the paper is organized as follows. Section 3 provides a
detailed simulation study where we evaluate the performance of these methods under a number of scenarios.
In particular we examine the significance levels of the methods under the null hypothesis and their power
under alternatives with varying levels of signal. These methods are then used to perform an empirical study
on a data set of 20 technology evolution curves (Sood and Tellis, 2004) in Section 4. Finally, a general
discussion of the methodology and their potential future extensions is provided in Section 5.

2 Methodology

Let Y1(t), . . . ,YN(t) represent the observed values of N separate curves where the ith curve is measured at
times ti1, . . . , tini . Suppose we wish to test the null hypothesis

H0 : EY (t) = µ0(t), for all t

versus the alternative
HA : EY (t) �= µ0(t), for at least one t.
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Then we begin by modeling each curve using

Yi(t) = µ(t)+ εi(t), i = 1, . . . ,N (1)

where Eε(t) = 0. In Section 2.1 we explore the FITS methodology for the simpler situation where the εi’s
are taken to be uncorrelated measurement errors so that

Cov(ε(s),ε(t)) =

{
σ2 s = t

0 s �= t
. (2)

In Sections 2.2 and 2.3 we extend these methodologies to the more general FACTS situation where the
εi’s are assumed to consist of a combination of smooth systematic deviations from the mean function and
uncorrelated measurement errors. In this case

Cov(ε(s),ε(t)) = Γ(s, t)+

{
σ2 s = t

0 s �= t
(3)

where Γ(s, t) is a suitably smooth function of s and t. Computer code for the FITS and FACTS procedures
can be obtained from www-rcf.usc.edu/∼gareth. It should be noted that none of the algorithms in this paper
require that the curves have been measured at the same time points.

2.1 Functional IID Tests of Shape (FITS)

Let Yi j =Yi(ti j), µi j = µ(ti j) and ei j = εi(ti j). Then under the restricted covariance structure given by (2), we
can express (1) in the form

Yi j = µi j + ei j, i = 1, . . . ,N (4)

where the ei j’s are iid with Eei j = 0 and Var(ei j) = σ2. Our approach to performing a hypothesis test is
based on the following heuristic argument. Let ri j =Yi j − µ̂0i j be the residual at time ti j where µ̂0i j is the best
estimate for µ(ti j) under the null hypothesis. Let s(t) = b(t)T θ be a q-dimensional function where b(t) is the
basis function and θ are the corresponding coefficients. We utilize a cubic B-spline basis which partitions
the interval into a series of cubic functions joined at “knot points” (Hastie et al., 2001, chapter 5). However,
in general we have found these types of methods to be robust to the exact choice of basis function. One
can use any finite dimensional basis provided it contains enough flexibility to model whatever pattern the
residuals may display. Suppose that we choose s(t) so as to provide the best fit, in the least squares sense,
to the residuals, ri j. Then under the null hypothesis it should be the case that s(t) ≈ 0 or correspondingly
that T = ∑θ2

l ≈ 0. In addition, under the null hypothesis, the residuals will be approximately iid. Hence if
we permute the ordering of the residuals, refit s(t) and compute the sum of the squared basis coefficients,
T (b), then it should be the case that T and T(b) will have approximately the same distribution. Alternatively,
if the null hypothesis is false there will be a systematic pattern in the residuals, causing T to increase but
having less effect on T(b) because of the randomizing of the residuals. Hence we reject H0 if T is larger than
a significant majority of the T(b)’s. Below we formally outline the algorithm.

FITS Algorithm

1. Compute µ̂0, the least squares estimate of µ under the null hypothesis.

2. Compute the residuals ri j = Yi j − µ̂0i j.
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Figure 2: Plots of FITS methodology applied to three different simulated data sets.

a)

b)

c)

d)

e)

f)

g)

h)

i)

3. Fit s(t) = b(t)T θ to the residuals via least squares θ̂ = (XT X)−1XT r where X is a basis matrix with rows
corresponding to b(ti j)T .

4. Compute the test statistic T = ∑q
l=1 θ̂2

l .

5. Pool the residuals over all curves, randomize the r i j’s and refit s(t) to the permuted residuals to obtain θ̂(b)
.

6. Compute T (b) = ∑q
l=1 θ̂(b)2

l .

7. Repeat Steps 5 and 6 to obtain T (1), . . . ,T (B).

8. The estimated p-value corresponds to 1
B ∑B

b=1 I(T ≤ T (b)).

Note that the FITS algorithm can be applied to either a single curve or to multiple curves. Figure 2
illustrates the various components of this procedure, using a null hypothesis that µ(t) corresponds to a
logistic curve, on three different simulated data sets. The first column relates to data generated from the
hypothesized logistic curve plus iid error sampled at 200 time points. Figure 2(a) plots the raw data along
with the true mean that they were generated from. Figure 2(b) shows a plot of the residuals. The grey line
through the center is the least squares fit of a smooth regression spline to the residuals while the five black
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lines are the corresponding fits resulting from permuting the ordering of the residuals five times. Notice that
the curves are all close to zero. Figure 2(c) plots the values of T(b) generated from 500 random permutations
of the residuals along with a grey horizontal line which corresponds to the observed value of T . As we
would hope, T is near the middle of the T(b)’s with a p-value of approximately 70%. There is no evidence
here to reject the null hypothesis. The second column contains data that has been very slightly perturbed
from a logistic curve between times 1 and 20. Even though the perturbation is slight, the fitted spline in
Figure 2(e) contains significantly more pattern than most of those generated from the permuted residuals.
This difference is evident in Figure 2(f) where T is significantly increased from Figure 2(c) giving a p-value
around 5%. Finally, the last column further increases the perturbation, which induces a value of T larger
than all 500 T(b)’s. Notice that the perturbations have no noticeable effect on the T(b)’s but cause T to
increase rapidly. Ultimately the usefulness of a hypothesis test depends on its ability to correctly specify the
significance level under the null hypothesis and to produce high power under the alternative. In Section 3
we demonstrate that the FITS method fulfills both criteria.

2.1.1 Adjustment for Correlation in Residuals

The FITS algorithm does not account for the correlation in the residuals that may exist even if the under-
lying error terms are independent. For example, in a standard linear regression the residuals are generally
correlated with each other as a consequence of the least squares fitting procedure. Hence, the permuted and
unpermuted residuals may have slightly different distributions even if the null hypothesis is correct. A sim-
ple addition can be made to the algorithm to adjust for this effect. We replace step 8 in the FITS algorithm
by the following :

8a. Generate pseudo errors according to an iid Gaussian distribution with mean zero and standard deviation esti-
mated from the observed residuals.

8b. Fit a simple linear regression to the pseudo errors and record the resulting pseudo residuals.

8c. Calculate the test statistic Tp based on fitting a spline to the pseudo residuals.

8e. Randomize the pseudo residuals to calculate T (b)
p and record the difference d (b) = Tp −T (b)

p .

8f. Repeat steps 8a. through 8e. B times and let d̄ = ∑b d(b)/B.

8g. The estimated p-value corresponds to 1
B ∑B

b=1 I(T − d̄ ≤ T (b)).

This addition estimates the average increase in T over T(b) i.e. d̄, that one might expect as a result of
correlation in the residuals. The observed value of T is then reduced byd̄ to adjust for any correlation effect.
We induce correlation in the residuals using a simple linear regression because it can be computed extremely
efficiently. However, one could also generate pseudo observations and reestimate the entire mean curve to
produce the residuals. In practice we have found that the correlation effect is too low to cause problems
unless the function is sparsely observed.

2.2 Functional Arbitrary Covariance Tests of Shape : Multiple Curves (FACTSN)

The iid error model given by (2) provides a simple and often effective means to test for a given mean
structure. However, an iid assumption may be unrealistic in a number of real world situations because
functions observed over time tend to have correlated error structures. A few examples include the evolution
of technologies as discussed in the introduction, product life cycle, sales growth and new product diffusion
curves as well as human growth curves. In this section we develop an approach that assumes a general
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covariance structure and uses the observations from N different curves, all assumed to have common mean,
to estimate the covariance effect. In Section 2.3 we deal with the situation where only one curve is observed.
Let γ1(t), . . . ,γN(t) be a sequence of random curves with Eγ(t) = 0 and Cov(γ(s),γ(t)) = Γ(s, t). Then under
the general covariance structure given by (3), we can express (1) in the form

Yi j = µi j + γi j + ei j, i = 1, . . . ,N (5)

where γi j = γi(ti j) and the ei j’s are iid with Eei j = 0 and Var(ei j) = σ2. When using this model, the FITS
approach where the residuals are permuted makes little sense because even under the null hypothesis the
covariance structure is not preserved. Instead we use an alternative test statistic. Namely

T =
� (

µ̂0(t)− µ̂(t)
)2

dt

where µ̂0(t) is the least squares estimate of µ under the null hypothesis and µ̂(t) is also a smooth estimate
of µ but without the constraint of the null hypothesis on its shape. To test the significance of T we use a
bootstrap approach (Efron and Tibshirani, 1993). We first estimate the γi’s and compute ri j = Yi j − µ̂i j − γ̂i j.

To preserve the covariance structure in our bootstrapped sample we then take a sample,γ̂(b)
1 , . . . , γ̂(b)

N , permute

the residuals, r∗i j, and let Y (b)
i j = µ̂i j + γ̂(b)

i j + r∗i j. Under the null hypothesis the Y(b)
i j should have a similar

distribution to the observed data. The bootstrapped test statistics are then computed using

T (b) =
� (

µ̂(t)− µ̂(b)(t)
)2

dt

where µ̂(b)(t) is a smooth estimate of µ based on the Y(b)
i j ’s. Under the null hypothesis, µ̂(t) will be similar

to µ̂0(t) and T (b) will have approximately the same distribution as T . Finally, we compare T(1), . . . ,T (B) to
T to obtain a p-value. Below we provide details of the algorithm.

FACTSN Algorithm

1. Compute µ̂0, the least squares estimate of µ under the null hypothesis, using all N curves Y1, . . . ,YN .

2. Estimate µ̂ using a single smooth fit to Y1, . . . ,YN . Note that H0 is not assumed to calculate µ̂.

3. Calculate T =
�
(µ̂0(t)− µ̂(t))2dt.

4. Estimate the functions γ̂i(t) using smooth fits to Yi j − µ̂i j for i = 1, . . .N where µ̂i j = µ̂(ti j).

5. Estimate the residuals ri j = Yi j − µ̂i j − γ̂i j where γ̂i j = γ̂i(ti j).

6. Resample the γ̂i’s with replacement to produce the bootstrapped sample γ̂(b)
1 , . . . , γ̂(b)

N .

7. Permute the residuals to produce r∗i j .

8. Let Y (b)
i j = µ̂i j + γ̂(b)

i j + r∗i j.

9. Calculate T (b) =
�
(µ̂(t)− µ̂(b)(t))2dt where µ̂(b)(t) is a smooth fit to the Y (b)

i j ’s.

10. Repeat steps 6 through 9 B times to obtain T (1), . . . ,T (B).

11. The estimated p-value corresponds to 1
B ∑B

b=1 I(T ≤ T (b)).
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Figure 3: Plots of FACTSN methodology applied to three different simulated data sets.

a)

b)

c)

d)

e)

f)

Note that in step 9 we use µ̂(t) rather than µ̂0(t) because otherwise when H0 is false T (b) would still
have a similar value to T and hence the test would have no power. To implement this algorithm in practice
we approximate the integrals in steps 3 and 9 by evaluating the integrands over a fine grid of time points
ranging from the smallest to the largest t under consideration. Both µ̂(t) and theγ̂i(t)’s are estimated using
smoothing splines (Hastie et al., 2001, chapter 5) which are high dimensional cubic splines that have been
regularized using a penalty term on the squared second derivative.

Figure 3 illustrates this approach on three simulated data sets with non independent covariance struc-
tures. Each data set contains ten curves sampled from a common mean function plus curve specific γi’s and
iid measurement error. All three data sets have the same covariance structure. The curves in Figure 3(a) were
generated from a common logistic mean function which is shown in grey. The covariance structure induced
by the γi’s means that each of the individual curves differs in shape from a logistic. However, the average
over all curves does have the correct form so the null hypothesis is satisfied for this data. Figure 3(b) illus-
trates the value of the test statistic in grey along with 500 values of T(b). As we would hope, given the null
hypothesis is true, there is no evidence to reject H0 with a p-value of only 0.414. Alternatively, Figure 3(c)
illustrates data generated from a mean function that has been slightly perturbed from a logistic, as shown
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by the grey curve. Here the null hypothesis is false but the signal is fairly low relative to the covariance in
the γi’s. Despite the low signal to noise ratio the test statistic, T , illustrated by the grey line in Figure 3(d),
has increased markedly and the corresponding p-value has declined to 0.05. Finally, Figures 3(e) and (f)
illustrate a slightly higher signal to noise ratio. The p-value for this data is zero. Notice that in all three
cases the distribution of the T(b)’s is very similar but the value of T increases with larger departures from
the logistic mean curve.

2.3 Functional Arbitrary Covariance Tests of Shape : One Curve (FACTS1)

The methodology outlined in the previous section works well when there are enough curves that one can
reasonably hope to produce an accurate estimate of the underlying covariance structure using a bootstrap
analysis. However, for certain types of data one may wish to infer the underlying shape of the mean func-
tion based on observing only one curve. An example of this situation are the technology evolution curves
illustrated in Figure 1. In this case a bootstrap analysis of the γi’s must fail because one can estimate at
most one covariance term. One option involves the approach taken in Section 2.1 where we assumed an iid
covariance structure but, as mentioned previously, such an assumption may be overly simplistic. Of course
when only one curve is observed there is a fundamental identifiability problem between the mean curve, µ,
and the covariance, γ. Consider for example the data in Figure 2(g). This data clearly suggests a deviation
from a logistic curve for the early time periods. However, based on one curve we cannot identify whether
this effect is caused by the mean curve or whether it is simply a result of the covariance structure as in
Figure 3. In other words, if we had observed multiple curves perhaps the difference from a logistic curve
would have evened out.

Nevertheless, one can still ask “How complicated would the covariance structure need to be to explain
this large a deviation from a logistic curve?” For example, it may be the case that for a given curve using,
for example, the iid FITS methodology it is possible to reject a logistic curve hypothesis. But that after
including a very simple covariance structure in the model it is no longer possible to reject the null hypothesis.
In this situation one could not state with a high level of confidence that the mean curve differed from a
logistic. Alternatively, if you were still able to reject the null hypothesis even after allowing for a complicated
covariance structure one would state with more confidence that the mean curve seemed to differ from a
logistic.

We use the following approach to implement this strategy. We first compute µ̂0, the least squares es-
timate of µ under H0. We then obtain a “low complexity” estimate of the covariance by fitting a smooth
function, γ, with a given “equivalent degrees of freedom” (edf) (Green and Silverman, 1994) to Yj − µ̂0 j.
(Note we have dropped the subscript i because here N = 1.) The concept of edf was developed to measure
the flexibility of a given functional form. It is easy to measure the flexibility of simple functions such as an
nth degree polynomial which has n + 1 parameters and hence n + 1 degrees of freedom (dof). In this case
the edf and the dof coincide. However, directly calculating dof of more complicated functions such as a
smoothing spline (which involves many parameters but also a penalty term to ensure smoothness) is more
difficult. In these cases we use edf which gives the same answer as dof in simple cases but generalizes to
more complicated situations. We calculate the residuals by subtracting the estimated values of µ and γ from
the observed data. Then we calculate a p-value by using the FITS procedure applied to the residuals we have
just computed. This entire procedure is repeated for increasingly complex covariance structures. Finally,
we plot the different p-values versus the equivalent degrees of freedom of γ. A curve that has low p-values
even for high degrees of freedom in γ strongly suggests a true deviation from the null hypothesis. However,
one that does not have any low p-values or only low values for very simple γ curves provides no significant
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Figure 4: Three different simulated data sets and their corresponding p-value curves for different levels of flexibility
in the covariance structure. The black lines in (a), (c) and (e) correspond to the best fitting logistic function. The grey
lines illustrate the least flexible γ curve that would explain the deviations from a logistic curve.

a)

b)

c)

d)

e)

f)

evidence of a deviation from the null hypothesis. Below we provide details of the algorithm.

FACTS1 Algorithm

1. Compute µ̂0, the least squares estimate of µ under the null hypothesis.

2. Select a possible range of equivalent degrees of freedom for γ, edf 1, . . . , edfK .

3. Estimate γ̂(edfl) by fitting a smooth function with equivalent degrees of freedom no greater than edf l to Yj − µ̂0 j.

4. Compute the residuals r j = Yj − µ̂0 j − γ̂(edfl)
j

5. Perform steps 3 through 8 of the FITS algorithm to obtain the p-value, p l .

6. Repeat steps 3 through 5 for l = 1, . . . ,K to obtain p1, . . . , pK .

7. Plot p versus edf.

As with the FACTSN algorithm we estimate γ̂ using a smoothing spline. We illustrate the algorithm
on three simulated data sets in Figure 4. The data in Figure 4(a) was generated from a logistic curve plus
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iid errors. In Figure 4(b) we have plotted the p-values as a function of the various different equivalent
degrees of freedom (edf) used to generate the γ curves. Here zero edf corresponds to the FITS procedure
from Section 2.1 while two edf corresponds to a fit involving a γ curve that is restricted to be linear. As we
would hope, given that this data was generated from a logistic curve with iid errors, there is no evidence
to reject the null hypothesis for any value of edf. The data in Figure 4(c) is generated from a mean curve
with a slight perturbation from a logistic. We now see in Figure 4(d) that there is clear evidence to reject
the null hypothesis when edf equals zero (the iid case). However, the p-value increases rapidly even with
relatively little flexibility in the γ curve. The grey line in Figure 4(c) illustrates the mean curve plus the least
flexible γ such that we can no longer reject the null at the 5% significance level. Notice that only a very
slight adjustment to the mean curve is required to explain the deviation from a logistic. This all suggests that
even a relatively simple covariance structure accounts for the observed effect. In other words the evidence
to reject a logistic distribution is weak. Finally, the data in Figure 4(e) exhibits significant deviation from
a logistic function. Correspondingly, Figure 4(f) shows very low p-values even for complicated covariance
structures which suggests strong evidence that the data does not have a logistic mean function.

3 Simulation Study

In this section we present results from an extensive set of simulations designed to test the true significance
levels, under the null, and power, under the alternative, of the three methodologies from Section 2.

3.1 FITS Results

For the FITS simulation we generated data sets using the iid error distribution illustrated in Figure 2. These
data come from a mean function which is a logistic curve of the form

µL(t) = a+
b

1+ exp(−c(t −d))
(6)

where a = b = 1,c = 0.5 and d = 50 plus a perturbation of the form At(20− t),0 ≤ t ≤ 20. For A = 0 this
gives a pure logistic while as A increases the deviation from a logistic curve becomes more pronounced. In
addition Gaussian noise with a standard deviation of 0.05 was added to each measurement. A total of 200
observations from 100 equally spaced time points between 1 and 100 were generated for each data set. To
perform the simulation we chose a range of values for A starting at zero. For each value of A, 200 data sets
were generated. We then applied the FITS procedure from Section 2.1 to each of the data sets to calculate
a p-value. An important part of this approach is the choice of the basis for s(t), the curve that is fit to the
residuals. We used three different B-spline bases with five, eight and fourteen degrees of freedom. Larger
degrees of freedom correspond to more knots and hence greater flexibility.

The results are summarized in Figure 5. Figures 5(a) through (c) are plots of the proportion of p-values
less than 1%, 5% and 10% respectively as a function of the signal to noise (SN) ratio. We calculated the
SN ratio by taking the average deviation over time of the mean curve from a logistic function divided by
the standard deviation of the error terms after adjusting for the fact that there are multiple observations at
each time. A signal to noise ratio of zero corresponds to the null hypothesis so, ideally the curves should
respectively take on values around 1%, 5% or 10% at this point but then rapidly increase towards one
for larger ratios. In fact we see that, for all three basis choices, at zero the methodology is if anything
producing slightly conservative p-values. However, the power increases rapidly as the signal increases with,
for example, the power with a basis of five degrees of freedom and significance level of 5% reaching 1 with
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Figure 5: Plots of power as a function of signal to noise ratio using the FITS methodology. (a) through (c) respectively
illustrate 1%,5% and 10% significance levels corresponding to fits using bases with 5 (—-), 8 (−−), and 14 (· · · )
degrees of freedom. (d) illustrates the average power for the 1% (—-), 5% (−−), and 10% (· · · ) significance levels.
Grey horizontal lines plot the corresponding 1%,5% or 10% values.

a) b) c) d)

a signal to noise ratio of only 0.4. All three bases exhibit a similar pattern but it is clear that the basis with
five degrees of freedom dominates those with eight and fourteen. It is interesting to note that the increased
power is not at the expense of a misspecified significance level under the null. The other two bases gave
similar performance to each other. Figure 5(d) plots the average power over the three bases for each of the
three different significance levels to provide a direct comparison of the effect of significance on power.

3.2 FACTSN Results

To test the performance of the FACTSN approach we generated data from the distribution illustrated in
Figure 3. The data consisted of a logistic curve given by (6) with a = b = 1,c = 0.2 and d = 50 plus
perturbations of the form At(20− t),0 ≤ t ≤ 20 and −At(100− t),81 ≤ t ≤ 100. In addition Gaussian noise
with standard deviation 0.01 was added to each measurement. For each data set we generated ten curves
with a different, random, value of A for each one. The A’s were generated from a Gaussian distribution
with mean m and a variance of one. Data sets with m = 0 corresponded to the null hypothesis because the
average over all curves had a logistic shape. Alternatively, as m grew there was an increasing deviation from
a logistic mean curve. One key component of the FACTSN approach is the flexibility of the unconstrained
estimate of the mean function. We used smoothing splines with equivalent degrees of freedom of eight,
ten and twelve on each data set to test the sensitivity of the results to this parameter. As with the previous
simulation we generated 200 data sets for each one of a range of values for m, beginning with m = 0.

The results are summarized in Figure 6. Figures 6(a) through (c) are plots of the proportion of p-values
less than 1%, 5% and 10% respectively as a function of the signal to noise ratio. The SN ratio was calculated
in a similar fashion to that for the previous FITS simulation. Note that the SN ratio is measuring signal per
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Figure 6: Power plots using the FACTSN methodology. (a) through (c) respectively illustrate 1%,5% and 10%
significance levels corresponding to fits using smoothing splines with equivalent degrees of freedom of 8 (—-), 10
(−−), and 12 (· · · ). (d) illustrates the average power for the 1% (—-), 5% (−−), and 10% (· · · ) significance levels.

a) b) c) d)

curve rather than total signal over all N curves. This makes the results comparable to those for FITS and
FACTS1. The first point we note is that there is very little difference between the fits using eight, ten or
twelve effective degrees of freedom with all three curves almost identical. This is comforting because it
suggests a low sensitivity of the results to any reasonable fit for the mean function. Secondly, the true
significance levels under the null hypotheses, i.e. when the SN ratio is zero, are equal to the nominal 1%
significance level and slightly conservative for the 5% and 10% levels. As with the FITS methodology
considered in the previous simulation, there is a steady increase in power as the SN ratio increases. It is
noticeable that the FACTSN SN ratio needs to be approximately four times as large as the corresponding
FITS SN ratio to achieve the same level of power. This difference is not surprising given that the general
case requires estimation of the γ’s i.e. the covariance structure while the iid case does not. However, it does
provide useful information about the increased strength in the signal that may be needed before one can
remove the iid assumption and still reasonably hope to obtain significant results. Finally, Figure 6(d) gives
a direct comparison of the power levels for the three different significance levels.

3.3 FACTS1 Results

Finally, we tested the performance of the FACTS1 methodology where a general covariance structure is
assumed but only a single curve is observed. The data sets were generated in an almost identical fashion to
those illustrated in Figure 4 and described for the previous simulation. The only differences were that one
rather than ten curves was generated, a standard deviation of 0.02 was used for the measurement error and
A was chosen as a fixed rather than random value. As in the previous simulations, a grid of values for A was
chosen and 200 data sets were generated for each value. The FACTS1 methodology was then applied to each
data set. As with the first simulation three different bases were tested for s(t) corresponding to splines ,with
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q = 5,8 and 14 degrees of freedom. For each data set we recorded whether there was significant evidence
to reject the null at the 1%,5% and 10% significance levels as well as the least flexible γ such that we could
no longer reject the null at each significance level.

The results are summarized in Figure 7. Figures 7(a) through (c) respectively give the fraction of data
sets for which the null hypothesis was rejected for at least one choice of edf on the γ’s for significance levels
of 1%,5% and 10%. As with the other simulations, the observed significance levels are approximately the
same as the nominal ones and the power increases rapidly with the SN ratio. For any particular SN ratio
the power is slightly lower than that for FITS but considerably higher than for FACTSN. In addition, for
this data, the q = 5 and q = 8 curves both give similar power while the q = 14 curve is clearly inferior. The
relatively superior performance of the methodology with q = 8 is likely a result of the added complexity of
the deviations of curves from a logistic in this data relative to that in the first simulation (compare Figure 2
with Figure 4). This suggests that ideally one should use more flexible bases for s(t) when the underlying
curves have a more complicated structure to them. Figure 7(d) provides the average power level as a function
of SN ratio for the three different significance levels.

Figures 7(e) through (h) provide identical information to (a) through (d) except they plot the average
minimum degrees of freedom for the γ curve, among all data sets with a significant p-value, such that the
null hypothesis was no longer rejected for each significance level. For example, a value of ten would indicate
that a γ curve with at least ten degrees of freedom was required to explain the departure from a logistic curve.
Even after the power levels have reached 100% the minimum degrees of freedom continue to rise with the
SN ratio. Interestingly the highest degrees of freedom are obtained with q = 8 rather than q = 5 providing
further evidence for the need for a somewhat more flexible spline s(t) when the underlying curves are more
complicated.

4 Empirical Study

In this section we revisit the application problem discussed in Section 1 regarding testing whether technolo-
gies evolve in the shape of S-curves. Frequently, in firms from high-technology industries, managers are
involved in making decisions regarding allocation of funds for research and development on various existing
and emerging technologies. In such cases, they need to understand the patterns of technological evolution
in order to predict the future growth of existing and new technologies to maximize their competitive ad-
vantage and return on investments. As stated in the introduction, theory from the technology management
literature suggests that all technologies evolve in the shape of an S-curve. If true, this theory provides a
good benchmark for estimating the ultimate decline of existing technologies, and for predicting the growth
pattern of emerging technologies. However, in reality, some technologies seem to evolve through irregular
step improvements instead of a continuous S-shape, and the problem is to test whether an observed pattern
is from an S curve.

Sood and Tellis (2004) test this theory on 20 technologies from six markets - external lighting, desktop
memory, display monitors, desktop printers, data transfer and analgesics. Using historical analysis tech-
niques, they plotted the improvement in performance of all these technologies from the year they were first
introduced in commercial applications. Their research cast doubt that these curves evolved according to a
single S curve, instead suggesting a series of irregular step functions may more accurately reflect the true
structure. However, Sood and Tellis did not use formal hypothesis tests. Instead they computed the MSE
from a fit of a logistic function to a subset of the observations versus the MSE from a fit to all the observa-
tions and concluded that an S curve fit better over a subset rather than the full data if the latter value was
greater. We are interested here in reexamining their data using our more formal hypothesis testing method-
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Figure 7: (a)-(d) Power plots using the FACTS1 methodology and (e)-(h) corresponding plots of degrees of freedom.
(a)-(c) and (e)-(g) respectively illustrate 1%,5% and 10% significance levels corresponding to fits using bases with 5
(—-), 8 (−−), and 14 (· · · ) degrees of freedom. (d) and (f) illustrate overall averages for the 1% (—-), 5% (−−), and
10% (· · · ) significance levels.

a) b) c) d)

e) f) g) h)

ology. A logistic curve of the form given by (6) was used to model the S curve in Sood and Tellis (2004)
where the parameters a,b,c and d were estimated from the data using non-linear least squares. We take the
same approach so our null hypothesis is that µ(t) = µL(t) with an alternative that µ(t) �= µL(t). Since a single
curve was observed for each technology we applied the FACTS1 approach to each of the 20 technologies.
We wish to choose q so as to maximize the power of our hypothesis tests. In general, as q increases one can
detect finer departures from the null hypothesis and hence increase the power. However, for curves sam-
pled at a small number of time points using a large value of q will tend to overfit the data and can actually
decrease the power. After some experimentation we opted to use q = 5 for technologies measured at 30 or
fewer points, q = 12 for those measured at 70 or more points and q = 8 for all others.

Using this approach eight of the technologies showed significant departures from an S curve at 1% or
5% significance levels. We have summarized the results for these eight technologies in Table 1. The values
in the table correspond to the minimum degrees of freedom required in the γ curve, used to generate the
covariance structure, such that the null hypothesis was no longer rejected at the given significance level. A
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p-values
Market Technology 0.01 0.05 0.1 0.2

Lighting Incandescent 15.2 16.0 16.7 17.8
Arc-discharge NA 4.6 6.4 7.5
Gas-discharge 5.7 10.5 10.8 11.9
LED 5.7 7.9 8.3 8.6

Display monitors Cathode ray tube 6.4 9.0 10.5 12.3
Printers Inkjet NA 4.0 5.0 5.9
Data Transfer Copper NA 2.0 4.9 6.0

Wireless 5.3 6.0 7.2 7.5

Table 1: Average minimum equivalent degrees of freedom for γ required before we fail to reject the hy-
pothesis of an S shaped mean curve for each the eight technology evolution curves that showed significant
departures from the null hypothesis.

value of NA indicates the null hypothesis was not rejected for any level of degrees of freedom. Notice that
certain markets appear to exhibit stronger departures from an S curve than others. Four of the five lighting
technologies and two of the three data transfer technologies showed strong evidence that they did not come
from an S curve. However, only one each of the display monitor and printer technologies and none of the
desktop memory or analgesics technologies showed significant departures from an S curve even at a 10%
significance level. The incandescent lighting shows the most significant departures from the null hypothesis
with p-values less than 1% for all edf up to 15. Figure 8(a) illustrates the incandescent lighting data. The
grey line indicates the least complicated γ curve for which we would no longer reject the null hypothesis
at the 1% significance level. Figure 8(b) plots the corresponding p-values vs edf. Based on Figures 8(a)
and (b) there is strong evidence for a step function shape rather than a single S curve. In comparison the
arc-discharge lighting data, illustrated in Figure 8(c), while still significant for low edf, has p-values which
climb rapidly towards 1 beginning at about 5 edf (see Figure 8(d)). This indicates that the departures from
an S curve could be explained using a moderately simple covariance structure. We also provide the data for
the crt monitors, Figure 8(e), (moderate evidence) and dot-matrix printers, Figure 8(g), (weak evidence) for
comparison.

In comparing with the results of Sood and Tellis (2004) we find that twelve of the twenty technologies
produced identical conclusions. Seven of the remaining eight technologies differed in that Sood and Tellis
concluded that an S curve did not fit the data while our FACTS1 approach failed to reject this hypothesis.
The differences are not surprising since our formal hypothesis test requires a stronger standard of evidence
to reject the null than the more exploratory approach of Sood and Tellis. Most of the data sets for which
differences in the two methods were noted contained relatively few years of observations, less than 30,
making it more difficult to prove statistical significance.

5 Discussion

We have developed three alternative but related methods to perform formal hypothesis tests on the shape
of functional means. We see several advantages to our approach over those suggested previously. First, it
allows one to place different levels of restriction on the covariance term. One can adopt either the FITS
approach which imposes an iid restriction on the covariance function but has high power even for low
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Figure 8: Plots for (a-b) incandescent lighting, (c-d) arc-discharge lighting, (e-f) cathode ray tube display monitors
and (g-h) dot-matrix desktop printers. The top row provides the technology evolution curves (black dots), the best
fitting S curve (black line) and the minimum covariance structure that would need to be assumed to explain the
deviation from an S curve (gray line). The second row gives the corresponding plots of p-value vs edf.

a) c) e) g)

b) d) f) h)

signal to noise ratios or use the FACTS approach which imposes few assumptions on the underlying model.
Second, even though we have concentrated on a null hypothesis of a logistic mean function, the methodology
is completely general to any hypothesized form. Third, the permutation procedure we use is extremely
computationally efficient which can be an important consideration when dealing with high dimensional data
sets. Finally, in the case of a single curve with a general covariance structure, one can not only calculate
statistical significance levels but also observe how complicated the covariance structure would need to be to
explain the observed deviation from the null hypothesis.

There are several areas for future research. One involves the choice of q, the dimension of the basis for
s(t). The simulations in Section 3 suggest that, while any reasonable value for q gives the correct significance
level, certain values provide higher power than others. In general it seems that the optimal value of q
increases with the number of observations and complexity of the underlying curves. One promising solution
would be to perform the tests for several values of q and then apply a correction to the p-value to account for
multiple testing. In addition, we have used regression splines both to model s(t) and γ. Potentially, one may
wish to use an automated procedure to adjust the basis that is used to maximize power for a given data set.
Another possible extension involves the p-value plots illustrated, for example, in Figure 8. Here the p-values
are plotted as a function of the degrees of freedom of γ which we are using as a proxy for the complexity
of Γ. However, there are other possible ways to measure this quantity which may also provide meaningful
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insights. Finally, we have only dealt with one dimensional functional data. However, the methodology could
be easily extended to perform tests on the shape of multidimensional data. In this situation the computational
advantages would become even more pronounced.
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