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CURVE ALIGNMENT BY MOMENTS1

BY GARETH M. JAMES

University of Southern California

A significant problem with most functional data analyses is that of mis-
aligned curves. Without adjustment, even an analysis as simple as estima-
tion of the mean will fail. One common method to synchronize a set of
curves involves equating “landmarks” such as peaks or troughs. The land-
marks method can work well but will fail if marker events can not be identi-
fied or are missing from some curves. An alternative approach, the “continu-
ous monotone registration” method, works by transforming the curves so that
they are as close as possible to a target function. This method can also perform
well but is highly dependent on identifying an accurate target function. We
develop an alignment method based on equating the “moments” of a given set
of curves. These moments are intended to capture the locations of important
features which may represent local behavior, such as maximums and mini-
mums, or more global characteristics, such as the slope of the curve averaged
over time. Our method works by equating the moments of the curves while
also shrinking toward a common shape. This allows us to capture the advan-
tages of both the landmark and continuous monotone registration approaches.
The method is illustrated on several data sets and a simulation study is per-
formed.

1. Introduction. The fundamental paradigm of functional data analysis
(FDA) involves treating the entire curve or function as the unit of observation
rather than individual measurements from the curve [Ramsay and Silverman
(2005)]. As FDA has become more common, many statistical analysis techniques
have been adapted to the paradigm. The analysis of functional data possess a num-
ber of problems not generally encountered with more classical data. One of the
most important is that of misaligned curves. Figure 1 provides a real world illustra-
tion of this difficulty using the acceleration curves of ten boys from the Berkeley
growth curve study [Tuddenham and Snyder (1954)] where the heights of indi-
viduals were recorded at regular intervals until age 18. Figure 1(a), which plots
smoothed versions of the observed acceleration curves, shows a clear trend of
positive and then negative acceleration during the teenage years. However, the on-
set times, and spread, of these growth spurts can differ by several years so the
curves can be considered to be misaligned or “unsynchronized.” The dashed line,
which represents the cross-sectional mean based on the observed curves, clearly
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FIG. 1. Ten acceleration curves from the Berkeley growth curve study, (a) unsynchronized curves
and (b) after alignment. The dashed lines represent the cross-sectional mean based on the observed
curves while the gray solid line corresponds to the mean from the synchronized data.

fails to capture the height of the peaks and troughs and underestimates the rate of
change in the acceleration curve during the puberty years. Figure 1(b) plots the
corresponding curves after synchronization using the approach developed in this
paper. Now one can much more clearly discern the general shape of the curves
and the gray line, which represents the mean from the synchronized curves, shows
that the true peaks and troughs are considerably more extreme than was previ-
ously apparent. Computing the mean of a set of curves is only one example of the
many applications for which proper alignment of the curves is an essential com-
ponent. For example, functional principal components analysis [James, Hastie and
Sugar (2000) and Rice and Wu (2001)], regression with both functional responses
[Zeger and Diggle (1994)] and functional predictors [Ferraty and Vieu (2002) and
James and Silverman (2005)], functional linear discriminant analysis [James and
Hastie (2001) and Ferraty and Vieu (2003)] and functional clustering [James and
Sugar (2003) and Bar-Joseph et al. (2003)] all assume that the starting curves are
correctly aligned on the x-axis.

The problem of realigning such curves has been studied under different names
in several fields. In the statistics literature it is referred to as curve registration
[Silverman (1995) and Ramsay and Li (1998)] or, in the context of computing an
average curve, structural averaging [Kneip and Gasser (1992)]. It is also called
curve alignment in biology and time warping in engineering [Sakoe and Chiba
(1978)]. Any set of curves can be decomposed into “amplitude” functions, which
measure differences in the y-axis, and “warping” functions, which measure differ-
ences in location on the x-axis. Synchronization requires estimation of the warping
functions.
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A number of approaches have been proposed for this problem. Marker, or land-
mark, registration [Kneip and Gasser (1992)] involves selecting common features
in the data, such as peaks or troughs, and transforming time so that these features
occur together. This method can work well when such features can be easily iden-
tified, but tends to perform poorly if no obvious and consistent landmarks exist. In
addition, the landmarks often need to be manually identified, preventing the imple-
mentation of a fully automatic approach. An alternative method involves aligning
curves using a target function. Silverman (1995) proposed registering curves us-
ing a simple shift in time such that the average squared distance between each
curve and a target function is minimized. This idea was extended in Ramsay and
Li (1998) using a Procrustes type fitting procedure on a general nonlinear class of
time transformations to provide maximal alignment to the target function subject
to suitable smoothness of the transformations. This approach, called “continuous
monotone registration,” is often very effective but depends heavily on the target
function. Generally the cross-sectional mean is used, which can provide mislead-
ing results if the curves are significantly misaligned. Other recent work in this area
includes Kneip et al. (2000), Rønn (2001) and Gervini and Gasser (2005).

The aim of this paper is to develop an automatic synchronization method that
incorporates the best properties of both the landmark and continuous monotone
registration approaches. We start by calculating “moments” for each curve. These
moments are intended to capture the locations of important features which may
represent local behavior, such as maximums and minimums, or more global char-
acteristics, such as the slope of the curve over time. We then synchronize the curves
by both, equating the moments for each curve, which has the effect of aligning
common features, and simultaneously shrinking toward a common shape. In sit-
uations where obvious marker events are present, our approach has the same ad-
vantages as landmark registration. Additionally, when there are no events but an
accurate target function can be estimated, we will achieve similar performance to
the continuous monotone registration method. However, we show through the use
of theory, simulations and real world examples that even in situations where the
landmark and continuous monotone registration procedures fail, that is, where ob-
vious markers do not exist and an accurate target function can not be computed,
our moments based method can still perform well.

General definitions for the moments of an arbitrary function are developed in
Section 2. These moments are defined in terms of “feature” functions which can
be designed to detect both local and global characteristics of the curves. In Sec-
tion 3 we provide a model for the observed or unsynchronized curves. The mo-
ments from Section 2 are included as a fundamental part of the model. We also
discuss alternative types of warping functions, both linear and nonlinear. A syn-
chronization procedure to fit our model is presented in Section 4. Our procedure
attempts to (a) equate the moments among the curves, and hence, align the com-
mon “features” in analogy with landmark registration, and (b) shrink the curves
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toward a common shape in analogy to the continuous monotone registration ap-
proach. We provide an algorithm for implementing our method and demonstrate
that the estimates are consistent. Our method is illustrated on the Berkeley growth
curve data in Section 5. The results from several simulation studies, comparing the
performance of our approach with other synchronization methods, are reported in
Section 6. Finally, Section 7 discusses the relationship of our approach to other
common methods and suggests some further extensions.

2. Defining the moments of a function. In this section we develop defini-
tions for the moments of an arbitrary function, g, in analogy with the moments
of a random variable. The fundamental idea is that, just as one can define the
distribution of a random variable through its moments and equate two different
distributions by transforming to equate the moments, we can also define the shape
of a function through its moments and synchronize two curves by equating their
moments. We first introduce the concept of a “feature function,” Ig(t), for g and
impose the constraints

Ig(t) ≥ 0 and
∫

Ig(t) dt = 1,

which ensure that Ig is a weighting function. There are various possible choices for
Ig(t). Depending on the properties of our data, we may wish to utilize a function
that places high weight on the time points corresponding to local features, such
as maximums or minimums, or alternatively use a function that places weight ac-
cording to more global characteristics such as the slope at a given time.

First, we discuss local approaches where most of the weight is concentrated
around the time points corresponding to a specific feature in the data. For exam-
ple, as r → ∞, Imax

g (t) ∝ (g(t) − min{g(t)})r and Imin
g (t) ∝ (max{g(t)} − g(t))r

will respectively concentrate their weight on the global maximum and minimum
of g(t). We may wish to search for local, as well as global, maximums and mini-
mums. In this case one could utilize

I local
g (t) ∝




exp
(
−r

|g(1)(t)|√
|g(2)(t)|

)
, g(2)(t) �= 0,

0, g(2)(t) = 0.

This function places maximum weight on points where the first derivative is zero.
However, I local

g (t) is also high for points with a low first derivative but a high
second derivative. Thus, the function effectively searches for local maximums or
minimums where g is changing most rapidly. As r → ∞, I local

g (t) will place all

its weight on the regions around local turning points. Finally, we examine I
(m)
g (t),

which places weights according to the absolute mth derivative of the curve, g(m),
that is, I

(m)
g (t) ∝ |g(m)(t)|. With m = 0, this function puts highest weight on large

absolute values of g. With m = 1, most weight is placed on time points where
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g has a large slope and would be used when we are most interested in regions
where a curve is changing rapidly. Setting m = 2 searches for points with greatest
curvature etc. I

(m)
g (t) can be considered to be searching for global characteristics

of a curve because it is likely to spread its mass over all time points.
Then, for a given choice of Ig , we define the first moment of g by

µ(1)
g =

∫
tIg(t) dt

and the kth central moment by

µ(k)
g =

∫ (
t − µ(1)

g

)k
Ig(t) dt, k ≥ 2.

µ
(1)
g provides a measure of the center of g on the time axis, while µ

(2)
g measures

variability in g. Note that the variability is measured in relation to the time axis
and not the y, or amplitude, axis. A curve could vary significantly in the y-axis, but
still have a low value for µ

(2)
g . In general, µ

(1)
g will be more useful than the higher

order moments when using feature functions such as Imax
g or Imin

g that concentrate

on local features. The higher-order moments, that is, µ
(k)
g for k ≥ 2, increase in

importance when using more global feature functions such as I
(m)
g .

To better understand the properties of µ(k), we examine the relationship between
the moments of a function h(s) and those of the shape invariant function h(s−a

b
).

In this formulation, h(s) is stretched, about s = 0, by a factor b and shifted to the
right by a. Hence, since µ(1) is a measure of the center of a function and µ(k) is
a measure of variability about the center, stretching by a factor b should multiply
the first moment by b and the kth moment by bk . For example, one would expect
that µ

(2)
h((s−a)/b), which measures the variability of the transformed function, would

equal b2µ
(k)
h(s). Similarly, a shift of a should add a to the first moment and leave the

higher-order moments, which are centered around the first moment, unchanged.
We express this mathematically as

µ
(1)
h((s−a)/b) = bµ

(1)
h(s) + a and µ

(k)
h((s−a)/b) = bkµ

(k)
h(s), k ≥ 2.(1)

Theorem 1 shows that, provided we utilize a certain family of feature functions,
these properties will hold.

THEOREM 1. Suppose that Ig(t) is chosen such that

Ig((s−a)/b)(t) ∝ Ig(s)

(
t − a

b

)
, −∞ < t < ∞,(2)

for all a, g and b > 0. Then (1) will hold for any function h(s).

Condition (2) holds for many large classes of feature functions. In particular,
the previously mentioned feature functions all satisfy (2) and, hence, their corre-
sponding moments all possess the desirable properties given by (1).
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COROLLARY 1. When utilizing I
(m)
g , Imax

g , Imin
g or I local

g , condition (2) is sat-

isfied, and hence, (1) holds. In addition, (2) is satisfied for any I
φ
g (t) ∝ φ(g(t))

where φ(t) is an arbitrary function.

The feature functions we have utilized represent only a few of the possible
choices one could utilize. In fact, one of the strengths of our approach is the ability
to design functions which best suit one’s particular data.

3. The synchronization model. Let Y1(t), Y2(t), . . . , YN(t) represent the un-
synchronized functions or curves with Yi observed at t1, . . . , tn where tj ∈ [0, T ].
Suppose we select L feature functions, I 1

g , . . . , IL
g , and associated moments,

µ
(1,k)
g ,µ

(2,k)
g , . . . ,µ

(L,k)
g . Then our synchronization model is given by

Yi(tj ) = Zi(Wi(tj )) + εij , i = 1, . . . ,N,(3)

µ
(l,k)
Z1

= µ
(l,k)
Z2

= · · · = µ
(l,k)
ZN

= µ
(l,k)

Ȳ
,

(4)
l = 1, . . . ,L and k = 1, . . . ,Kl,

where µ
(l,k)

Ȳ
= 1

N

∑
i µ

(l,k)
Yi

and Zi(t) represents an “amplitude function,” which
is stretched on the time axis according to a strictly increasing “warping function,”
Wi(t). In addition, εij represents i.i.d. random measurement errors with Eεij = 0
and Var(εij ) = σ 2 < ∞. Note that we have assumed that the curves are all ob-
served at a common set of points simply for notational convenience. There is noth-
ing in our approach that will prevent it working on curves observed at differing
time points.

As with all curve registration methods, (3) has an identifiability problem be-
tween Zi and Wi . Landmark registration achieves identifiable results by assuming
certain markers align for every curve. We generalize this approach using the mo-
ments condition given by (4) which forces the Zi’s to have a common “shape.”
For example, if Imax

g (t), which searches for global maximums, is chosen as the
feature function, then (4) states that the Zi’s have a common shape in as much as
their global peaks occur at the same time point and that point is equal to the aver-
age of the peaks in the observed curves, Yi . As more feature functions are chosen,
(4) forces more alignment in the Zi’s. Landmark registration can be seen as a spe-
cial case of (4) because µ

(l,k)
Zi

can be used to identify specific marker events in
each curve, such as peaks or troughs, in which case (4) simply forces an alignment
of landmarks. However, µ

(l,k)
Zi

can also be used to measure more general and more
global curve characteristics such as the mth derivative as discussed in Section 2.
Note that by equating the moments for each curve to µ

(l,k)

Ȳ
we are assuming that

positive and negative warping cancels out, in terms of the moments, when averaged
over all curves. Without this assumption, Zi and Wi will not be identifiable.
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We model Zi and Wi using finite-dimensional basis functions. The amplitude
function is modeled as Zi(t) = z(t)T θ i , where z(t) is a p-dimensional basis func-
tion and θ i represents the corresponding basis coefficients. In the case of the warp-
ing functions, since they are restricted to be increasing, we can, without loss of
generality, reparameterize them using

Wi(t) = γi0 +
∫ t

0
exp(fi(s)) ds,(5)

where γi0 and fi are unconstrained. As with the amplitude functions, we model f

using a finite-dimensional basis, fi(s) = w(s)T γ i , where w(s) is a q-dimensional
basis and γ i the corresponding coefficients. Several special cases of (5) can be
achieved by appropriately restricting the γ i coefficients. We shall explore two
in this paper. The first is the linear warping function Wi(t) = αi + βit which is
achieved by setting fi equal to a constant. The second is

Wi(t) = T
∫ t

0 exp(fi(s)) ds∫ T
0 exp(fi(s)) ds

.(6)

Equation (6) has the often desirable property that Wi(0) = 0 and Wi(T ) = T ,
which means that time is taken to run over a consistent time period for all curves.
We utilize b-spline bases for both z and w but, in principle, any finite-dimensional
basis will suffice.

4. Curve alignment. In this section we detail our curve alignment approach
for fitting the model from Section 3.

4.1. A moments based alignment approach. The aim in fitting our model is
to produce estimated curves, Ŷij = z(Wi(tj ))

T θ i , that accurately approximate the
observed curves, Yij = Yi(tj ), subject to two constraints. First, the shape of the
synchronized curves, Zi(t), should be as close as possible to that of the original
curves. Notice that if W ′

i (t) = 1 for all values of t , then Zi(t) will have an identical
shape to Yi(t). Therefore, we measure the change in shape by examining the de-
parture of W ′

i (t) from 1 using P(Wi) = (
∫ {[W ′

i (t)]−1 −1}dt)2 and, hence, choose
a fit such that P(Wi) is small. We penalize the inverse of W ′

i (t) to ensure slopes
close to zero, which would imply an extremely high level of warping, are strongly
discouraged. Second, the shapes of the Zi(t)’s should be as similar as possible to
each other. Differences in the shapes can be measured either by examining vari-
ability in the θ i ’s from a target µθ , P(θ i ) = ‖θ i − µθ‖2, or by concentrating on
the spread of the moments, P(µZi

) = ∑
l

∑Kl

k=1(µ
(l,k)
Zi

− µ
(l,k)

Ȳ
)2. Hence, we find

the θ i ’s, γ i ’s and the µθ that minimize

Q = 1

N

N∑
i=1

{‖Yi − Ŷi‖2 + λsyncP(θ i ) + λmomP(µZi
) + λWP(Wi)},(7)
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where λsync, λmom and λW are tuning parameters that determine the impact of
each term on the fit. λmom and λsync control the balance between the continuous
monotone registration and landmark registration methods. Conceptually, setting
λmom = 0 and minimizing Q is very similar to the continuous monotone registra-
tion method of Ramsay and Li (1998). Alternatively, setting λsync = 0 and mini-
mizing Q provides a type of generalized landmark registration. Note that includ-
ing ‖Yi − Ŷi‖2 and P(µZi

) ensures that both (3) and (4) from our synchronization
model will hold.

For fixed µθ , minimizing (7) is relatively simple because we only need min-
imize Q individually over γ i and θ i . This suggests the following iterative algo-
rithm:

1. For fixed µθ , minimize Q over γ i and θ i for i = 1. Repeat for i = 2, . . . ,N .
2. Set µθ = 1

N

∑N
i=1 θ i .

3. Repeat 1 and 2 until convergence.

Step 1 involves a nonlinear optimization, but can be achieved with relative ease
because we only need optimize over each curve individually and the derivatives
of Q can be computed analytically. Note that we optimize over the µ

(l,k)
Zi

as part

of step 1, that is, we do not fix µ
(l,k)
Zi

at the previous value of θ i .
Figure 2 uses a simulated data set to illustrate the need for all four terms in (7).

Figure 2(a) plots ten curves, each generated from the solid grey curve in the center
and then “warped” by distorting the time axis by differing amounts. Figure 2(b)
illustrates the corresponding ten estimates for the Zi’s, representing the “synchro-
nized” curves, obtained by minimizing (7) with λsync = λmom = λW = 0. The fit is
very good, with the estimated standard deviation of the εij ’s only 0.006, but this
approach has clearly done a poor job of synchronizing the data. Alternatively, Fig-
ure 2(c) shows the results using λsync = 10, a small value for λW and λmom = 0.
A high level of synchronization has resulted from the use of P(θ i ), but the curves
bear little relationship to the original ones. In addition, the Zi’s have been shrunk
toward zero, resulting in a ten fold increase in the standard deviation of the es-
timates. As λsync is reduced and λW increased, the fit shifts toward that shown in
Figure 2(b), but at no stage do we get strong synchronization, the correct shape and
a good fit to the data. Finally, Figure 2(d) provides a plot of the ten estimated Zi’s
after setting λmom > 0 and using two moments corresponding to Imax and Imin.
Notice that the addition of P(µZi

) has enabled us to not only synchronize the data
but to also reproduce the original shape of the curves. In addition, the estimated
standard deviation is almost identical to that from the fit illustrated in Figure 2(b),
indicating that the synchronization has not been at the expense of an accurate fit to
the data.

There are two reasons for the inadequate fit in Figure 2(c). First, because of
the significant distortion of the observed Yi ’s, the cross-sectional mean, which is
used to compute µθ , is a poor estimate for the true shape, so the curves have been
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FIG. 2. (a) A simulated set of ten curves that have been “warped” in time with the grey line indi-
cating the original shape. (b) The estimates for Zi(t) with λsync = λmom = λW = 0. (c) Estimates
for Zi(t) with λmom = 0. (d) Estimates including all four terms.

synchronized toward the wrong “target.” This is the same problem that one would
encounter when using the continuous monotone registration approach on this data.
Second, the act of shrinking has resulted in a very poor fit to the original curves.
Utilizing P(µZi

) has three advantages which allows us to address both these prob-
lems. First, since the moments are measures of shifts in the time axis, forcing the
Zi’s to have similar moments has no effect on their amplitude and, hence, does
not cause the shrinkage problem observed in Figure 2(c). Second, the moments
are only a summary of each curve so can often be much more accurately estimated
than the entire curve. For example, the cross-sectional mean of the curves in Fig-
ure 2(a) is a poor estimate of the overall shape of the curves. However, µmax

Ȳ
and

µmin
Ȳ

still provide good estimates for the maximum and minimum of the original
curve that the data was generated from, so the problem of aligning the curves to
the wrong shape can be eliminated. Finally, one can choose among a wide range of
feature functions when producing the moments. Hence, one can identify specific
characteristics or features in the curves and design feature functions accordingly.
Since feature functions can theoretically be designed to identify, and hence syn-
chronize toward any consistent marker events, the landmark registration approach
can be seen as a special case of the moments method.
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4.2. Asymptotic theory. Section 5 illustrates the moments method’s practical
performance on the Berkeley growth curve data and Section 6 provides a compre-
hensive comparison to other methods on several simulated data sets. However, we
can also show that, under general regularity conditions, the method exhibits good
large sample properties in terms of asymptotic consistency of the estimators. Let η0
represent the set of parameters for our model, that is, γ 1, . . . ,γ N and θ1, . . . , θN ,
and η̂n the corresponding estimates from minimizing (7). Then we first introduce
four assumptions:

(A-1) µ
(l,k)
Zi

is a continuous function of θ i for all l and k. Also, z(Wi(tj )) is a
continuous function of γ i .

(A-2) z(W(t))T θ is a uniformly continuous function of t , that is, for all δ1 > 0,
there exists δ2 > 0 such that for all t1, t2, where |t1 − t2| < δ2, it is the case
that |z(W(t1))

T θ − z(W(t2))
T θ | < δ1 for any θ and γ .

(A-3) We choose feature functions and corresponding moments such that the syn-
chronization model given by (3) and (4) is identifiable when the curves are
observed over a finite set of time points, t.

(A-4) The parameter space is bounded, that is, ‖η‖2 < M for some finite M .

We can not hope to have consistent estimators without (A-1) because that would
imply that estimating µ

(l,k)
Zi

and z(Wi(tj )) well did not necessarily correspond
to estimating the true parameters well. (A-2) places a restriction on the lack of
smoothness of the fit. Some level of smoothness must always be imposed on such
fits or a line that interpolated the observed values of Y would minimize the crite-
rion. (A-3) is obviously necessary because if the model is unidentifiable we could
not select the correct parameters even if we had complete information. (A-4) as-
sumes that the estimators are not allowed to diverge off to infinity. Subject to these
four assumptions, we provide the following consistency result.

THEOREM 2. Let λsync,n, λW,n and λmom,n represent the tuning parameters
as a function of n. Suppose that (A-1) through (A-4) hold, that λsync,n and λW,n

are o(n) and that λmom,n is O(n). Then η̂n will be a consistent estimator for η0,
that is, η̂n → η0 a.s.

4.3. Selection of tuning parameters. A key component of our synchronization
approach is the choice of the tuning parameters λsync, λW and λmom. The choice of
these parameters is governed by a tradeoff between quality of fit, that is, how well
the estimated curves fit the observed data, the level of synchronization achieved
and the amount of distortion to the shape in performing the synchronization. In
general, improving performance in one of these characteristics will cause a de-
terioration in the other two. An analogy would be choosing between small prob-
abilities of type 1 and type 2 errors in hypothesis tests. Of course, the standard
approach in that setting is to minimize the probability of a type 2 error subject to
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an upper bound constraint on the probability of a type 1 error. We take a simi-
lar approach here by selecting the tuning parameters to produce the best possible
synchronization subject to constraints on the lack of fit and the distortion of the
shape.

We measure the level of synchronization, Sync, using the average squared de-
viation of the synchronized curves from their mean curve as a percentage of the
same quantity for the unsynchronized curves. Hence, a value of zero would in-
dicate an identical shape for all synchronized curves, while one corresponds to
no improvement in the synchronization. The lack of fit, σ , is quantified using the
average standard deviation between the observed curves, Yi(tj ), and their “esti-
mates,” Ŷi(tj ). Finally, the distortion to the shape of the curves is measured using
P(W). We then select the tuning parameters so as to minimize Sync subject to
σ and P(W) being less than certain upper bounds. Performing this optimization
over three parameters is a potentially difficult computational task. Fortunately, the
fit turns out to be fairly stable for wide ranges of possible values for λW and λmom,
while λsync has a considerably stronger influence. In the case of λmom it makes
intuitive sense that its exact value is not important because the moments are act-
ing to produce an identifiable result, so any reasonable weight will make the model
identifiable and, hence, produce a good fit. Hence, it is feasible to implement a grid
search over the three parameters where the grid for λW and λmom is very coarse,
while the grid for λsync needs to be considerably finer. For the growth curve data,
illustrated in the following section, we use values of 103, 104, 105 and 106 for
λmom and values of 10−1, 100 and 101 for λW. We have found these grids to work
well for the problems we have examined. This is consistent with Ramsay and Li
(1998) who also found that a small grid of tuning parameters worked over a wide
range of applications. In theory cross-validation could be used to select the dimen-
sions of the basis functions z and w. However, in practice we have found that,
given the flexibility provided by the three tuning parameters, any dimension that
provides a reasonably flexible basis will suffice.

5. An application to the Berkeley growth curve data. In this section we
demonstrate the moments based method on the Berkeley growth curve data, dis-
cussed in Section 1, utilizing the nonlinear warping functions, Wi , given by (6).
The data were obtained by fitting a smoothing spline to the second differences of
the observed heights for each of ten boys. The smoothing was performed to aid
visualizing the resulting curves. We have also performed registration on the raw
data with similar results. The first step in implementing our approach involves the
choice of the feature functions. This data exhibits clear global maximums and min-
imums so we elected to utilize Imax

g and Imin
g with r = 100. For both feature func-

tions we concentrated on the first moment, but one could also have used additional
higher-order moments. Next we selected the tuning parameters using the approach
from Section 4.3. Figure 3 provides an illustration of this method. Each plot con-
tains 12 separate lines corresponding to four different values for λmom (103, 104,
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FIG. 3. Plots of (a) σ versus λsync, (b) Sync versus λsync and (c) Sync versus σ for four different
values of λmom and three different values for λW.

105, 106) and three different values for λW (10−1, 100, 101). The 12 lines are al-
most indistinguishable from each other, emphasizing the insensitivity of the result
to the exact choice of λmom and λW. Figure 3(a) plots σ as a function of λsync.
Similarly, Figure 3(b) plots Sync as a function of λsync. Finally, Figure 3(c) plots
Sync as a function of σ . All three plots show a smooth tradeoff between σ and
Sync with little effect from the other two tuning parameters. We opted to use tun-
ing parameters that produced the optimal synchronization subject to σ being no
larger than 0.1 and P(W) no greater than 0.5. These cutoffs were chosen because
they seemed to produce a high level of synchronization with a relatively low in-
crease in σ . The dots on Figure 3 correspond to this fit (λsync = 0.2, λW = 10,
λmom = 105). We can see that attempting to further synchronize the curves past
this point will result in a large increase in σ .

Figure 1(b) in Section 1 provides a plot of the synchronized curves, Zi , from
the resulting fit. Notice that the synchronized mean curve not only appears to esti-
mate the correct height for the peaks and troughs but also shifts the peak to a later
age from that of the cross-sectional mean. To help judge the accuracy of our pro-
cedure, Figure 4 provides a comparison to other potential methods. Here we have
plotted the estimated mean acceleration curve using five different approaches. In
particular, we applied our moments method using the above tuning parameters, the
moments method with λmom = 0, landmark registration (aligning on the peak and
the trough of each curve), the continuous monotone registration method and the
cross-sectional mean from the unaligned curves. The cross-sectional mean is well
known to be inadequate for this data set [Gasser et al. (1984)]. However, the land-
mark method provides a natural gold standard for this problem because it is known
to work extremely well in situations such as this one where each curve exhibits a
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FIG. 4. Plots of mean curves on the Berkeley growth curve data using cross-sectional mean (dashed
black), continuous monotone registration (dotted), moments method with λmom = 0 (dashed grey)
and λmom = 105 (solid grey), and landmark registration (solid black).

very similar structure [Kneip and Gasser (1992)]. All four methods give consider-
able improvements over the cross-sectional mean, but the moments method with
λmom = 105 gives the most similar fit to the landmark approach. The continuous
monotone registration method gives the worst performance of the four because it
does not take advantage of the specific shape information in the data. Finally, the
moments method with λmom = 0 gives somewhat intermediate performance. While
it does a good job correctly estimating the trough, it fails to identify the correct lo-
cation of the peak. Again, this is because it fails to make full use of the structure
that is present. This illustrates that, while the results are relatively insensitive to
the choice of λmom, this term is still a vital part of the fit.

6. Simulation study. In this section we compare the performance of our mo-
ments based synchronization approach with the continuous monotone registration
and landmark methods over four sets of simulations. For each simulation 100 data
sets, each consisting of ten curves sampled at 100 equally spaced time points,
were generated from a given distribution. Six different synchronization methods
were then applied to each data set corresponding to the moments, continuous
monotone registration and landmark procedures using both linear and standard-
ized, (6), warping functions. For the moments method, we used K = 1 moment
for each feature function. For each set of simulations, the λ parameters were cho-
sen by selecting the values that provided maximum alignment on a preliminary
data set subject to constraints on σ and P(W) as discussed in Section 4.3. The
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TABLE 1
Results from four simulations on six different alignment methods. Sync is measured as a percentage

so 100 corresponds to no improvement in synchronization. The standard errors on the Sync were
between 0.15 and 0.45 for those results marked with an ∗ and were less than 0.15 for all others

Simulation

One Two Three Four

W(t) Method Sync σ Sync σ Sync σ Sync σ

Cont. Mono. Reg. 0.02 0.0005 76.50 0.0003 78.63∗ 0.004 75.37∗ 0.009
Linear Landmark 11.86∗ 0.0005 1.15 0.0003 9.39 0.004 15.64 0.009

Moments 0.07 0.0013 0.50 0.0020 8.33∗ 0.028 13.71∗ 0.039

Cont. Mono. Reg. 0.06 0.0005 39.47 0.0003 21.55∗ 0.004 21.18 0.009
Nonlinear Landmark 12.32∗ 0.0005 6.31 0.0003 2.86 0.004 1.42 0.009

Moments <0.01 0.0013 0.59 0.0008 0.76 0.009 1.20 0.014

simulation results are summarized in Table 1. Two numbers are provided for each
simulation-method pair corresponding to Sync and σ as defined in Section 4.3.
For the moments method, σ was produced using Zi(Wi(t)), while for the other
two methods it was computed using a smoothing of the curves performed via a
smoothing spline prior to synchronization.

Simulation one consisted of curves generated from a standard Gaussian density
which were then stretched and shifted in the X or time axis. Figure 5(a) illus-
trates a typical set of curves. We used the peak of each curve as the marker event
for the landmark methods and Imax(t) (r = 100) for the moments methods. For
this simulation, the continuous monotone registration and moments methods both
worked very well. In particular, the continuous monotone registration method pro-
duced good results because the cross-sectional mean of the observed curves, used
to produce the target function, still had an approximate bell shape. There was lit-
tle difference between the linear and nonlinear warping functions because the true
warping was in fact linear. The landmark method, while still providing a consid-
erable level of synchronization, performed relatively less well because, with only
one marker, it could not adequately correct for differences in the spread of the
curves.

Simulation two had a similar set up to the previous simulation except that half
the curves were centered close to 0.7, while the others were centered close to 0.3
[see Figure 5(b)]. As a result, the cross-sectional mean was bimodal, which signif-
icantly adversely affected the continuous monotone registration method. The land-
mark method performed relatively better on this data because shifts in the curve,
which it could correct for, formed a larger portion of the lack of synchronization.
The moments method was only marginally affected by the bimodal shape of the
data.
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FIG. 5. (a) A simulated set of ten curves that have been “warped” in time. This is one of 100 data
sets from simulation one. (b) One of the 100 data sets from simulation two. (c) One of the 100 data
sets from simulation four. For each plot, the thicker grey line indicates the original shape.

For simulation three we generated curves using the distribution illustrated in
Figure 2(a). These curves were produced using a nonlinear warping function
and presented a more challenging problem. We utilized both the maximum and
minimum points as markers for the landmark methods and Imax(t) and Imin(t)

(r = 100) for the moments methods. Again, the continuous monotone registration
method performed poorly because the cross-sectional mean did not adequately re-
flect the shape of the curves. The landmark and moments methods both gave good
results. For all three procedures the nonlinear warping functions worked consider-
ably better than their linear counterparts. Finally, the fourth simulation tested out
the effect of noise in the observed curves by adding Gaussian errors with standard
deviation of 0.01 to the data from simulation three [see Figure 5(c)]. We also added
a linear drift in the curves to ensure that the moments method still performed well
when the curves started and ended at differing values on the Y -axis. In general,
these changes caused a moderate deterioration in the linear versions of the land-
mark and moments procedures, presumably because the drift in the curves made
it harder for a linear warping function to accurately realign the curves. However,
the nonlinear versions gave fairly similar performance to those of simulation three.
Note that some improvement in the moments method results may have been possi-
ble if we had smoothed the curves before applying our approach. However, given
the small deterioration from simulation three, it is doubtful that any significant
gains would have been achieved.

These simulation results may be somewhat unfair to the landmark method be-
cause it is difficult to implement this approach in a truly automatic fashion. For
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example, by manually identifying additional landmarks in the simulated curves,
one may have been able to produce fits closer to that from the moments approach.
However, our attempt here is not necessarily to show that our approach will outper-
form landmark registration where multiple marker events can be manually identi-
fied, since landmark registration is considered the benchmark in this case. Rather,
we want to show that the moments method can give comparable results, without
the need for manual intervention, when marker events are present, but can also
provide accurate results even in the absence of such markers.

Notice that because of the way that the moments method works its σ was some-
what higher on all four simulations than for the continuous monotone registration
or landmark methods. This is one of the tradeoffs for a higher level of synchro-
nization. However, the increase is relatively small, particularly for the nonlinear
warping functions, so the tradeoff clearly seems worthwhile. Simulations two and
three illustrate the advantage of combining landmark and continuous monotone
registration criteria together. By first synchronizing based on landmarks, such as
turning points, we can achieve a partial synchronization and then estimate µθ well
enough to produce a very accurate final alignment. In such situations we have
found that the best results are obtained by using a relatively higher value for λmom
in the first few iterations and then reducing λmom while increasing λsync in the
remaining iterations. This is the approach we took for these simulations.

7. Discussion. In this article we have developed a general moments based ap-
proach to the problem of synchronization of functional or curve data. The gener-
ally accepted benchmark for such problems is landmark registration which aligns
curves by identifying marker events. This approach can be very effective but has
two, potentially significant, disadvantages. First, it assumes all curves have con-
sistent marker events and, second, even if the marker events exist, one often must
manually identify them, which is not feasible for large data sets. Alternatively,
the continuous monotone registration method works well when an adequate target
function, T (t), can be identified but fails when the data is poorly enough aligned
that T (t) does not match the shape of the curves. The moments based approach
builds on the strengths of both methods and reduces or eliminates their deficien-
cies. As with the landmark approach, for those curves with marker events, feature
functions, such as Imax(t) or Imin(t), can be implemented to synchronize based on
these events. However, for curves, or data sets, that do not exhibit such markers,
more global feature functions, such as I (m)(t), can be utilized. In this sense our
method is an extension of landmark registration. When comparing to the contin-
uous monotone registration approach, notice that Z̄(t) = z(t)T µθ can be consid-
ered to be the analog of T (t) in that we, at least partially, synchronize the curves
toward it. However, even in situations where the cross-sectional mean provides a
poor estimate for T (t) and, hence, the continuous monotone registration method
fails, the moments will often induce an accurate enough initial synchronization
that Z̄(t) will represent the correct shape. Hence, as the method iterates through
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the fitting algorithm, the synchronization becomes better as opposed to the contin-
uous monotone registration fit where no improvement may be possible. The data
from simulations two and three provide a good illustration of this effect. Hence,
our approach can also be considered as an extension of continuous monotone reg-
istration.

This method could be generalized in several directions. Although, in this article,
we have only discussed one-dimensional curves, the moments approach could po-
tentially be extended to multidimensional data. The definition of the feature func-
tion, Ig(t), could easily be expanded to such data and hence the moments also.
Equating the lower-order moments could then be achieved in a similar fashion to
the one-dimensional case. The most significant challenge would seem to be dealing
with higher-order moments on high-dimensional data where the number of cross
product terms could become unmanageable. Another possible extension is to at-
tempt to model the covariance of the θ i’s, Var(θ i ) = 	. For example, P(θ i ) could
be altered to include 	 using, P ∗(θ i ) = (θ i − µθ )

T 	−1(θ i − µθ ). There are sev-
eral possible ways to model 	. The first, which we have effectively used in P(θ i ),
is to take 	 equal to a multiple of the identity matrix. One could also estimate 	 at
each iteration via the sample covariance, 	̂ = 1

N

∑
i (θ i −µθ )(θ i −µθ )

T . However,
such an unconstrained estimate may be impractical if the dimension of the θ i ’s is
large. One solution would be to constrain the rank of 	 and, hence, significantly
reduce the number of parameters to estimate [James, Hastie and Sugar (2000)].
Another appealing alternative would be to design 	 such that P ∗(θ i ) placed no
penalty on values of θ i corresponding to constant vertical shifts of z(t)T θ i . This
would mean that two curves that differed only by a constant vertical shift would be
considered to be perfectly synchronized and would likely significantly reduce the
undesirable shrinkage toward the mean that, for example, is evident in Figure 2(c).

APPENDIX

A.1. Proof of Theorem 1. First note that (2) implies that

Ig((s−a)/b)(t) = Ig((t − a)/b)∫
Ig((t − a)/b) dt

= 1

b
Ig

(
t − a

b

)
.

Hence,

µ
(1)
h((s−a)/b) =

∫
tIh((s−a)/b)(t) dt =

∫
t
1

b
Ih

(
t − a

b

)
dt

=
∫

(sb + a)Ih(s) ds = b

∫
Ih(s) ds + a

∫
Ih(s) ds = bµ

(1)
h + a,

where s = t−a
b

. Similarly,

µ
(k)
h((s−a)/b) =

∫ (
t − bµ

(1)
h − a

)k
Ih((s−a)/b)(t) dt
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=
∫ 1

b

(
t − bµ

(1)
h − a

)k
Ih

(
t − a

b

)
dt

=
∫ (

sb − bµ
(1)
h

)k
Ih(s) ds = bkµ

(k)
h .

A.2. Proof of Corollary 1. First note that if I
φ
g (t) ∝ φ(g(t)), then

I
φ
g((s−a)/b)(t) ∝ φ(g( t−a

b
)) ∝ I

φ
g ( t−a

b
). Next note that

dmg((t − a)/b)

dtm
= 1

bm
g(m)

(
t − a

b

)
,(8)

so I
(m)
g((s−a)/b)(t) ∝ |g(m)( t−a

b
)| ∝ I

(m)
g ( t−a

b
). To show the result for Imax

g note that

Imax
g((s−a)/b)(t) ∝

(
g

(
t − a

b

)
− min

{
g

(
t − a

b

)})δ

=
(
g

(
t − a

b

)
− min{g(t)}

)δ

∝ Imax
g

(
t − a

b

)

and similarly for Imin
g . Finally, by (8),

dg((t − a)/b)/dt√
d2g((t − a)/b)/dt2

= g(1)((t − a)/b)/b√
g(2)((t − a)/b)/b2

= g(1)((t − a)/b)√
g(2)((t − a)/b)

,

so

I local
g((s−a)/b)(t) ∝ exp

(
−δ

dg((t − a)/b)/dt√
(d2g((t − a)/b))/dt2

)

∝ exp
(
−δ

g(1)((t − a)/b)√
g(2)((t − a)/b)

)
∝ I local

g

(
t − a

b

)
.

A.3. Proof of Theorem 2. First we state and prove a lemma.

LEMMA A.1. Suppose

sup
t

|z(Ŵn(t))
T θ̂n − z(W0(t))

T θ0| → 0 a.s.(9)

and

µ
(l,k)

Ẑn
→ µ

(l,k)

Ȳ
a.s. for l = 1, . . . ,L and k = 1, . . . ,Kl,(10)

where Ẑn(t) = z(t)T θ̂n and Ŵn and W0 respectively represent the warping func-
tions evaluated at γ̂ n and γ 0. Then, provided (A-1), (A-3) and (A-4) hold,
θ̂n → θ0 a.s. and γ̂ n → γ 0 a.s.
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A.3.1. Proof of Lemma A.1. Note we treat each curve individually, so we drop

the subscript i and let η0 = (γ 0
θ0

)
and η̂n = (γ̂ n

θ̂n

)
. To reduce notation, let

f (η, t) = z(W(t))T θ .

First, note that (9) and (10) imply that there exists 
∗ with P(
∗) = 1 s.t.
∀ω∗ ∈ 
∗,

f (η̂n(ω
∗), t) → f (η0, t) ∀t(11)

and

µ
(l,k)

Ẑn
(ω∗) → µ

(l,k)

Ȳ
for l = 1, . . . ,L and k = 1, . . . ,Kl.(12)

Now, suppose that η̂n does not converge a.s. to η0. This implies there exists 
 with
P(
) > 0 s.t. ∀ω ∈ 
, η̂n(ω) does not converge to η0. Since the intersection of 
∗
and 
 must be nonempty, we take a particular ω ∈ 
∗ ∩ 
. Then there exists an
infinite subsequence n′(ω) and δ(ω) > 0 such that

∥∥η̂n′(ω)(ω) − η0
∥∥ > δ(ω)(13)

for all n′(ω). But recall that any bounded sequence must have a convergent subse-
quence. Hence, by boundedness of γ and θ , (A-4), there must be a subsequence,
n′′(ω), of n′(ω), and a η∗(ω), such that

η̂n′′(ω)(ω) → η∗(ω).(14)

Let W ∗ represent the warping function evaluated at γ ∗. Then, since z(Ŵn) is a
continuous function of γ̂ n and µ

(l,k)

Ẑn
is a continuous function of θ̂n [by (A-1)],

f is continuous and, hence, (14) implies that

f
(
η̂n′′(ω)(ω), t

) → f (η̂∗
(ω), t) ∀t(15)

and

µ
(l,k)

Ẑn
(ω) → µ

(l,k)
Z∗ for l = 1, . . . ,L and k = 1, . . . ,Kl.(16)

Now, (11) and (15) imply that f (η0, t) = f (η̂∗
(ω), t) for all t , while (12) and

(16) imply that µ
(l,k)

Ȳ
= µ

(l,k)
Z∗ for l = 1, . . . ,L and k = 1, . . . ,Kl . By moments

identifiability of the model, (A-3), this implies η∗(ω) = η0. But by (13) and (14),
‖η∗(ω) − η0‖ > 0, which is a contradiction. Hence, η̂n → η0 a.s.
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A.3.2. Proof of the theorem. Let η represent the set of parameters for our
model, that is, γ 1, . . . ,γ N, θ1, . . . , θN , and θµ. Each curve is evaluated at n time
points, t1, . . . , tn. Let

an(η) = 1

n

N∑
i=1

n∑
j=1

(
Yij − z(Wij )

T θ i

)2
,

b(η) = λmom
1

n

N∑
i=1

L∑
l=1

Kl∑
k=1

(
µ

(l,k)
Zi

− µ
(l,k)

Ȳ

)2
,

c(η) = ∑N
i=1 ‖θ i − µθ‖2 and d(η) = ∑N

i=1 P(Wi), where Wij = Wγi
(tj ). So

Qn(η) = an(η)+ b(η)+ λsync,n
n

c(η)+ λW,n

n
d(η) represents (7) using n time points.

Let η0 represent the true parameters and η̂n the estimators resulting from mini-

mizing Qn. Then Qn(η0) = an(η0) + λsync,n
n

c(η0) + λW,n

n
d(η0), where c(η0) and

d(η0) are both finite. Note c(η0) is finite since θ is bounded and d(η0) is finite be-
cause, by (5), 0 < W ′

0i
(t) < ∞ for t ∈ [0, T ], provided f0i

(t) is bounded and this

is the case because γ 0i
is bounded. Also, b(η0) = 0 because µ

(l,k)
Z01

= µ
(l,k)
Z02

= · · · =
µ

(l,k)
Z0N

= µ
(l,k)

Ȳ
for all l and k where Z0i

= zT θ0i
. Clearly, Qn(η̂n) ≤ Qn(η0) be-

cause η̂n is optimized over all η. Also, Qn(η̂n) ≥ an(η̂n) + b(η̂n) because c and d

are positive. Hence,

an(η̂n) + b(η̂n) ≤ an(η0) + λsync,n

n
c(η0) + λW,n

n
d(η0).(17)

Let φnij
= (z(W0ij

)T θ0i
− z(Ŵnij

)T θ̂ni
) and εij = (Yij − z(W0ij

)T θ0i
), where

W0ij
= W(tj ) evaluated using the true γi and Ŵnij

= W(tj ) using γi from η̂n.
Then

an(η̂n) = 1

n

N∑
i=1

n∑
j=1

(
Yij − z(Ŵnij

)T θ̂ni

)2

= 1

n

N∑
i=1

n∑
j=1

(
Yij − z(W0ij

)T θ0i
+ z(W0ij

)T θ0i
− z(Ŵnij

)T θ̂ni

)2

= 1

n

N∑
i=1

n∑
j=1

(εij + φnij
)2(18)

= 1

n

N∑
i=1

n∑
j=1

ε2
ij + 1

n

N∑
i=1

n∑
j=1

φ2
nij

+ 2
1

n

N∑
i=1

n∑
j=1

εijφnij

= an(η0) + 1

n

N∑
i=1

n∑
j=1

φ2
nij

+ 2
1

n

N∑
i=1

n∑
j=1

εijφnij
.
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Therefore, by (17) and (18),

1

n

N∑
i=1

n∑
j=1

φ2
nij

+ 2
1

n

N∑
i=1

n∑
j=1

εijφnij
+ b(η̂n) ≤ λsync,n

n
c(η0) + λW,n

n
d(η0).(19)

But notice that the εij ’s are i.i.d. mean zero random variables. Also, φnij
is a

difference of two bounded uniformly continuous functions, so is also bounded
and uniformly continuous. [Note z(W)T θ is uniformly continuous by (A-2)
and is bounded because it is a continuous function of bounded parameters,
γ and θ , by (A-1) and (A-4)]. Hence, by a standard application of the SLLN,
1
n

∑n
j=1 εijφnij

→ 0 a.s. as n → ∞. [See Theorem 1.13(ii) in Shao (2003) for a
proof of this result.] In addition, λsync,n and λW,n are o(n), so the right-hand side
of (19) also converges to 0. Therefore, it must be the case that

1

n

N∑
i=1

n∑
j=1

φ2
nij

→ 0 a.s. for all i(20)

and

bn(η̂n) → 0 a.s.(21)

Since λmom is O(n), (21) implies that (10) in Lemma A.1 must hold for each
curve i. Finally, to show that (9) holds, we divide the time interval [0, T ] into H

equal sized regions R1, . . . ,RH . Let nh = n/H equal the number of time points
in region h. Then, by (20), it must be the case that, for every ω > 0, for large
enough n,

1

nh

∑
j∈Rh

|φij | < ω a.s.(22)

But by uniform continuity, (A-2), there must be a δH > 0 such that
∣∣(z(W0i

(t))T θ0i
− z(Ŵni

(t))T θ̂ni

) − φij

∣∣ < δH(23)

for any t and tj in Rh. Combining (22) and (23), we see that
∣∣(z(W0i

(t))T θ0i
− z(Ŵni

(t))T θ̂ni

)∣∣ < δH + ω(24)

for any t ∈ Rh and large enough n. But by making n large enough, this will ap-
ply simultaneously for all regions, so (24) will hold for all t . Now send n → ∞,
H → ∞ and n/H → ∞. Then nh → ∞ so ω can be made arbitrarily small, but
also H → ∞ so δH can also be made arbitrarily small. Hence, (9) holds for each
curve i. Therefore, the two conditions for Lemma A.1 (9 and 10) have been proved
and, therefore, by Lemma A.1, the theorem has been proved.
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