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Abstract

We introduce a technique for extending the classical method of Linear Discriminant Analysisto data
setswherethepredictor variables are curvesor functions. Thisprocedure, whichwecall functional linear
discriminant analysis (FLDA), is particularly useful when only fragmentsof the curves are observed. All
thetechniques associated with LDA can be extended for use with FLDA. In particular FLDA can beused
to produce classifications on new (test) curves, give an estimate of the discriminant function between
classes, and provide a one or two dimensiona pictoria representation of a set of curves. We a so extend
this procedure to provide generalizations of quadratic and regularized discriminant anaysis.

Some key words: Classification; Filtering; Functiona data; Linear discriminant analysis, Low dimensional representa-
tion; Reduced rank; Regularized discriminant analysis; Sparse curves.

1 Introduction

Linear discriminant analysis(LDA) isapopular procedure which dates back asfar as Fisher (1936). Let X be
ag-dimensional vector representing an observation from one of severa possibleclasses. Linear discriminant
analysis can be used to classify X if the classis unknown. Alternatively, it can be used to characterize the
way that classes differ viaadiscriminant function. There are severa different ways of describing LDA. One
isusing probability models. Supposethat theith class hasdensity fi(x) and prior probability 5. Then Bayes
formulatells us that

figm
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It isrelatively simpleto show that therule that classifiesto the largest conditional probability will make the
smallest expected number of misclassifications. Thisis known as the Bayes' rule or classifier. If we further
assume that theith class has a Gaussi an distributionwith mean ; and covariance Z then it can be shown that
classifying to the maximum conditional probability is equivaent to classifying to

P(Class= i|x) =

argmax L, 2
|



<
—
2
|2 o
& <
a
=
©
c o |
EH
()
c
o
Q o |
®
c ©
o
wn
© |
o

10 15 20 25
Age (years)

Figure 1: Data measurements of spinal bone mineral density (g/cm?) for 280 individuals. The black lines represent
females and the grey lines males.

where L is the discriminant function
Li =x"Z 7 — W =4 /2+ logs,

Notethat L; isalinear function of x. When the maximum likelihood estimatesfor p; and Z are used we arrive
at the linear discriminant analysis procedure.

1.1 LDA onfunctional data

LDA can beimplemented on dataof any finitedimensionbut cannot bedirectly appliedtoinfinite-dimensiona
data such as functionsor curves. Provided the entire curve has been observed, this can be overcome by dis-
cretizing thetimeinterval. However, thisgenerally resultsin highly correlated high-dimensiona datawhich
makes the within-classcovariance matrix difficult to estimate. There are two common solutionsto this prob-
lem. Thefirst isto usesomeform of regul arization, such as adding adiagona matrix to the covariance matrix.
See for example DiPillo (1976), DiPillo (1979), Campbell (1980), Friedman (1989) and Hastieet al. (1995).
We call thisthe regularization method. The second is to choose a finite-dimensional basis, ¢(x), and find
the best projection of each curve onto thisbasis. The resulting basis coefficients can then be used as afinite-
dimensional representation making it possibleto use LDA, or any other procedure, on the basis coefficients.
We call thisthe filtering method.

Unfortunately, it is often the case that only afragment of each curve has been observed. Consider, for ex-
ample, thedataillustratedin Figure 1. These dataconsist of measurements of spinal bone mineral density for
280 individual staken at various ages, a subset of the data presented in Bachrach et al. (1999). Even though,
in aggregate, there are 860 observations measured over a period of almost two decades, we only have 2-4
measurements for each individual, typically measured over no more than a couple of years. In thissituation



both of the common approaches to discriminant analysis can break down. The regularization method is not
feasible because discretizing would result in alarge number of missing observationsin each dimension. The
filtering method also has severa potential problems. The first is that an assumption is made of a common
covariance matrix for each curves' basis coefficients. However, if the curves are measured at different time
points, asisthe casein the growth curve data of Figure 1, the coefficientswill all have different covariances.
One would ideally like to put more weight on accurate basis coefficients but the filtering method does not
allow such an approach. A second problem isthat with extremely sparse data sets some of the basis coeffi-
cients may have infinite variance, making it impossibleto estimate the entire curve. For example, with the
spinal bone density data, each individual curve has so few observationsthat it is not possibleto fit any rea-
sonablebasis. In this case the method fails and there isno way to proceed. For the sparse data considered in
this paper these are serious problems.

1.2 General functional model

The regularization and filtering approaches can both be viewed as methods for fitting the following general
functional model. Let g(t) be the curve of an individua randomly drawn from the ith class. Assumethat, if
g(t) isin Classi, it is distributed as a Gaussian process with

E{g(t)} = ui(t), Cov{g(t),q(t)} = w(t,t)

Onetypically never observes an individual over the entire curve; rather one samples the curve with error at
distinct time pointsty, ... ,t,. We assume that the measurement errors are uncorrel ated with mean zero and
constant variance 62. Let Y bethe vector of observationsof g(t) at timesty, ... ,t,. Then

Y ~ N, Q+021)
where

Mi (tl) (*)(tlytl) (A)(tl,tz) s (A)(tl,tn)

W= p—i(:tZ) 7 o- (A)(tz:7t1) (A)(tz:7t2) w(t2:7tn) 9

Hi (tn) u)(tr;,tl) u)(tr;,tz) u)(tr;,tn)

The Bayesrulefor classifying thiscurveis given by (2) with p; asgivenin (3) and = = Q+ ¢?l. Many func-
tional classification procedures are simply methods for fitting this model, i.e. estimating p;(t) and w(t,t’),
and then using the classification rule given by (2). For example, the regularization approach attemptsto es-
timate ; (t) and w(t,t’) by producing sample estimates along afine lattice of time points. Alternatively, the
filtering method forms estimates by modeling ; (t) and w(t,t’) using basis functions. However, we saw in
Section 1.1 that, when confronted with sparse data sets, both methods can produce poor fits to the model.

1.3 TheFLDA approach

In this paper we present an alternative method for fitting the functional model of §1.2, which copeswell with
gparse data. We call this method “functiona linear discriminant analysis’ (FLDA). The procedure uses a
splinecurve plusrandom error to model observationsfrom eachindividual. Thesplineisparameterized using
abasisfunction multiplied by ag-dimensional coefficient vector. Thiseffectively transformsall the datainto
asingle g-dimensional space. Finally, the coefficient vector is modeled using a Gaussian distribution with
common covariance matrix for al classes, in analogy with LDA. The observed curves can then be pooled to



15

—— Class1 —— Class1
Class 2 Class 2

1.0

0.2

0.0
|

-0.5
|

SRS
6 %
/
| A

-0.2

-1.0

@ (b)

Figure 2: (a) A simulated data set of 20 curves from 2 different classes. (b) The transformed curves after removing
the random components.

estimate the covariance and mean for each class. Thismakes it possibleto form accurate estimates for each
individual curve based on only afew observations.

This has several advantages over the regularization and filtering methods. First, as it does not rely on
forming individual estimatesfor each curve, it can be used on sparse data sets such asthe growth curve data.
Second, by producing an estimate for the covariance kerndl it is possibleto estimate the variance of thebasis
coefficient for each curve and automatically put more weight on the more accurate coefficients.

Asasimpleillustration of the effectiveness of FLDA in separating curvesfrom different classes consider
Figure 2(a). Thisisaplot of curvesfrom asimulated dataset. Class 1 curves are plotted as black linesand
Class 2 as grey. Each class has a different mean function and the curves are generated by combining the
class mean with arandom curve plus random normal noise. From visual inspection aone thereisno obvious
separation between classes. However, Figure 2(b) providesa plot of the transformed curves after using the
FLDA procedure to remove the “random component” from each curve. Now the separationisclear so when
the same procedure is applied to anew curveit will clearly beidentifiablewhich groupit fallsinto and it can
be classified with high accuracy. Thelevel of accuracy dependson the signal to noiseratio, whichishighin
thiscase. However, the key point isthat the strong signal is not apparent in Figure 2(a) and only emerges as
aresult of using the FLDA procedure. In the classical two-class LDA setting thistransformation amounts to
projecting observations onto the line segment spanned by the means.

The FLDA model and classification procedure are presented in Sections 2 and 3. One of the reasons for
the popularity of LDA isthat it can be used for avariety of tasks. It can be used to project high-dimensiona
datainto alow dimension and hence produce a graphical representation. Furthermore it can aso be used for
classification and to produce a discriminant function to identify areas of discrimination between classes. In
Section 4 we show how FLDA can be used to generalize each of thesetoolsto functional data. Section 5 ex-
plainshow thestandard FL DA framework can be extended toinclude rank-reduced and non-identical within-
class covariance matrices. The latter of these extensions provides a functional generalization of quadratic
discriminant analysis.



2 TheFLDA model

In thissection we develop the FLDA model by generalizing the LDA model givenin 81 to handlefunctiona
data

2.1 A generalization to functional data

Let gij(t) bethetruevalueat timet for the jthindividual or curve from theith class. Let Y;; and & bethe
corresponding vectors of observations and measurement errors at timestjz, ... , tijn, - Then we begin with

Yij = 0ij +&ij, i=1...,K, j=1....,m,

whereK isthe number of classesand m; isthe number of individualsintheith class. The measurement errors
are assumed to have mean zero, constant variance o2 and be uncorrelated with each other and gij.- These
assumptions implicitly mean that we are assuming that the time points that we have failed to observe are
missing at random. Aswe only have afinite amount of datawe need to place somerestrictionson gjj in order
tofit thismodel. A common approach to modeling functional dataisto represent thefunctionsusing aflexible
basis (Ramsay and Silverman 1997, Chapter 3). We choose to use natural cubic spline functions because
of their desirable mathematical properties and easy implementation (de Boor, 1978; Green and Silverman,
1994). Let
gij(t) = S(t)Tﬂip

where s(t) is a spline basis with dimension g and n);; is a g-dimensional vector of spline coefficients. This
|eads to a more restricted model,

Yij:S”r]ij—I—Sij i=1...,K, j=1....,m,
where
Sj= (S(tiil)v"' 7S(tijnij))T‘
Noticethat the problem of modeling Y'ij hasreduced to oneof modelingn;;. However, n;; isag-dimensional

variable, so anatural approach isto model it using the Gaussian distribution assumed for the standard LDA
model,

Mij = Mi+¥%j, % ~N(OT).
If we assume that the error terms are also normally distributed this gives

Ylj:Sj(u|+y|])+S|]7 |:l7K7 J:177m7 (4)

&ij ~N(0,0°), v ~N(O,T).

2.2 Rank reduced LDA

A reduced-rank version of LDA isoften performed by transforming or projecting the variablesinto alower-
dimensional subspace and classifying in this subspace. The subspace is chosen to maximize the between-
class covariance relative to the within-class covariance. These transformed variables are called linear dis-
criminantsor canonical variables. Anderson (1951) and Hastie and Tibshirani (1996) outline an alternative
procedure using the constraint

K = Ao+ Aai, sTIN=1, Zal— : ®)



where Ao and a; are respectively ¢- and h-dimensional vectors, and A isaq x h matrix, h < min(qg,K). Both
sets of authors show that using maximum likelihood to fit the Gaussian LDA model of 81 with the added
constraint (5) and classifying to the maximum posterior probability isidentical to the classification from the
reduced rank LDA procedure.

Thesame rank constraint can be placed onthemeansin (4). Thisgivesthefinal form of the FLDA modd,

Yij:S”'()\O—I—/\Cli—I—yij)—l—Sij7 i—=1,...K, j:l,...,ﬁ‘h7 (6)

&ij ~N(0,0%), vi; ~N(O,I),

inwhich A, A and a; are confounded if no constraint isimposed. Therefore we place the following restric-
tionson A and theai’s,

ATSTz isn =1, ZO“ =0, (7)
I

where> = 0%l + I°S' and Sisthebasismatrix evaluated over afinelatticeof points. The constraint provides
aform of normalization for the linear discriminants. More detailswill be given in the following section. In
practicethelattice shouldinclude, at least, all time pointsinthe dataset. For examplethe spina bone density
datawas measured in 1/10th of ayear increments from age 8.8 to 26.2 years so the | attice covered the same
period. This moddl isidentical to the general functional model of 81.2 with

Wi(t) = s(t) T(Ao+ Aati)
and
w(t,t') = s(t) TTs(t").
3 Classifying curves

In this section wefirst detail a maximum likelihood procedure for fitting (6) and then a method for forming
classifications by combining (1) and (6) to form an estimate of the Bayes classifier.

3.1 Fittingthe model
Fitting the FLDA model involves estimating Ag, A, a;, T and 0. Noticethat (6) implies
Yij ~ N(Sj(Ao+Aai),Zjj)

where
2jj = ol —|—SJ-FSTJ-.

Since observations from different individuals are assumed to be independent, the joint distribution of the
observed curvesis

K 0 1 1
HHWGXP —5(Yij — Sjo+Aai)TZTH(Yij — iAo+ Aai]) |- (8
i: J: |]

A natural approach to fitting the model is to maximize (8) over A, A, 0;, I and 0. Unfortunately, directly
maximizing thislikelihoodisadifficult non-convex optimization problem. If they;; had been observed, how-



ever, thejoint likelihood of Yij and y;; would simplify to

K m 1
ilz_l 111 (2m0) M+ 20 || /2

1 1
eXp[ 507 (Yii = S,-[Ao+/\ai+vi,-])T(Yi,-—S,-[Ao+/\ai+vi,-])—Evﬁr‘lvi,- :

Maximizing this likelihood is much less complex, and suggests treating the y;; as missing data and imple-
menting the EM algorithm (Dempster et al., 1977; Laird and Ware, 1982). The EM agorithm involves al-
ternately calculating the expected value of the missing datay;; and maximizing thejoint likelihood. The E
step is performed using the equation

E(v;;IYi,Yo. A, 0, T,0%) = (0T 1+ §5)) 7S (Yij — SjAo — SjAai),

whilethe M step involves maximizing

K m
ZZ {YIJ = Aati = i) T (Yij = SiAo - Adi - ;j]) /02

I\)II—‘

+nijlog(0%) + YTty +|09|F|}

holding y;; fixed. Further details can be obtained from the web site www-rcf.usc.edu/~gareth. Aswith all
EM algorithmsthelikelihoodwill increase at each iterationbut it is possibleto reach alocal rather than global
maximum. This can be a problem for very sparse data sets such as the bone mineral density data. However,
the problem is generally eliminated by enforcing arank constraint on I as discussedin §5.1.

Other model selection questions arise in practice, such as the choice of g, the dimension of the spline
basis. There are several possibleproceduresthat have been applied to model s of thistype. Oneisto calculate
the cross-validated likelihood for various dimensions and choose the model corresponding to the maximum
(James et al., 2000). AIC and BIC are two other, less computationally expensive, procedures that have also
proved successful on this sort of data (Rice and Wu, 2000). In practice thefinal classification appears to be
relatively robust to any reasonabl e choice of dimension but thisis an area of ongoing research.

3.2 Classification
Notice that under the standard reduced-rank LDA model,
X|Class=i~ N(Ag+Aaj,Z).
Hence, using Bayes' formula, the probability of Classi given X is proportional to

(X =Ao—Aa)TZHX —Ag—Aai) —2logmy = [[X —Ag— AT, ]||5 1 +||AG, — Adti||2; — 2logT
= C(X)+]]8, —ail|*— 2logm

whered, = ATZ~1(X — Ag). Note that the second line follows from the fact that ATZ=IA = I. This means
that classifying an observation X using reduced-rank LDA isidentical to classifying to

argmiin(||aX —ai|[?~2logm) .



It can be shown that @, and o; are equal to the linear discriminantsof X and ; that LDA produces, up to an
additive constant.

The same approach isused for FLDA. By combining (1) and (6) we seethat the posterior probability that
acurveY was generated from Classi is proportional to

(Y =S Ao~ S,Aai) Z, “H(Y = § Ao — S, Aati) - 2logT,
where S, isthe spline basis matrix for Y and
s, =0’l+STS,".
So Y will be classified to
argmiin(||Y—S\()\O—S\(/\aiH%;l—ZIogrq). (9)
Notice, however, that if onelets
6, = (A8,7%,',A) AT, TE (Y - § M), (10)

then
1Y =S Mo = SAG 2 = [IY, — S Ao~ S,AG |32 + (IS AT, — S, Al ..

Hence (9) isequivalent to

argmiln (HGY - a'||(/\TSYTZ;1S$/\) - ZIOQT[I) =ag rniln (HGY - a'”COV(aY)ﬂ - 2|Ong'|) (11)
since
~ _ -1
Cov(a,) = (ATS,TE;IS,A) .

Just as with standard LDA, aY and a; are, up to an additive constant, the linear discriminantsof Y and ;.
Therefore (11) correspondsto classifying to the class whose mean is closest to our test point in the reduced
spacewhere distanceis measured using theinverse covariance of 0, . Noticealsothat if Y has been measured
over theentiretime period, sothat S, = S then

Cov(a,) =1
and (11) reducesto

argmiin(||aY —ai|[?~2logm) .

4 Applicationsof FLDA

In this section we show how three of the most important toolsthat LDA provides, namely, low dimensiona
representation, discrimination functions and classification, can be replicated using FLDA.
4.1 Low dimensional representation of curves

One of thereasons for the popularity of LDA isthat it providesthe ability to view high-dimensional data by
projecting it onto alow-dimensional space. Thisallowsoneto visually determinethediscrimination between
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Figure 3: (a) Linear discriminants for each curve of the spinal bone density data, plotted against the average age
peoplewere measured at. (b) Estimates of the standard error of the linear discriminantsfor each curve plotted against
the average age. Thereisa clear trend of increasing variability with age.

classes. Asmentioned in 83.2, in astandard finite-dimensional setting the linear discriminant of X equals
a, = ATZHX =),

up to an additive constant. As Cov(ax) = |, the transformed variables al have identity covariance, so the
distance between different observationsis Euclidean and can be easily cal culated by visua inspection.
Thisprovidesanatura approach to projecting functiona datainto alow-dimensional space. IntheFLDA
model the analogue of @, isd,, givenin (10). Recal that @, isthelinear discriminant for Y and that if Y
has been observed over the entire interval Cov(@, ) = I. However, if only fragments of the curve have been
observed,
Cov(@,) = (ATS,T=;1s,A) .

This makes direct comparison of points more difficult because the covariance structure may no longer be
diagonal and, in general, curves measured at different time pointswill have different covariances. However,
if h=1, sothelinear discriminantisascalar, theonly effect thishasisthat each point hasadifferent standard
error. Figures 3-6 provide examples of this.

Figure 3(a) shows linear discriminants for each curve from the growth curve data of Figure 1, plotted
versusthe average age for observationsfrom each individual . For atwo-class situation, such asthis, the plot
also provides asimple classification rule; curves with positivelinear discriminant are classified as male and
curves with negative linear discriminant as female. The plot reveals some interesting properties of the data.
Curves measured at ages below eighteen years are relatively well-separated while individual s measured at
older ages havelittlediscernibleseparation. Thistrendisal so apparent upon closeexamination of theoriginal
curves. Thetwo solid vertical lines either side of zero give the fitted values for the a;’s. They represent the
“class centroids’ in the transformed space. Their close proximity to each other relative to the variability of
the linear discriminants indicate little overall separation between classes. However, recall that, as a result
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Figure 4: (a) Plot of the linear discriminants for each curve on the spinal bone density data versus the estimated
standard errors. (b) Alinear discriminant plot for a simulated data set. It shows a fairly clear difference between the
classes but also a significant overlap.

of (7), thelinear discriminant of Y will have a standard error of one if the curve is measured over the entire
interval. In fact the separation between the centroids is about 23.5 standard deviations. This implies that
the confusion between gendersis aresult of the small number of observations per individual, which cause
the standard error to increase dramatically. A clear separation could be achieved with more observations.
Figure 3(b) givesthe standard error for each linear discriminant versus average age of observation. A curve
with measurements over the entiretime period would have standard error 1, so thisplot givesan indication of
the amount of information lost by only observing the curve at alimited number of time points. The standard
errorsrangefrom over tento eighty, indicatingthat agreat deal of accuracy hasbeen sacrificed. Theincreased
variability also explains the poor separation at older ages where the standard errors are large relative to the
distance between the class centroids. Once the model has been fit, the standard error can be calculated for a
curve observed at an arbitrary set of time points. Thisprovidesamethod for deciding onan “optimal” design
in terms of locating a finite number of observationsfor an individual to minimize the standard error.

Figure 4 givestwo plots which combine the linear discriminants and their standard errorstogether. This
gives an easy method for deciding on the reliability of a given observation. For example pointswith high
standard error should be treated with caution. We call these linear discriminant plots. The left and right
vertical dotted linesindicatethe class centroidswhilethe center linesarethe classdiscriminators. Figure4(a)
shows that the points with relatively low standard error have far better separation than those with a large
standard error. Figure 4(b) providesasimilar plot for asimulated data set consisting of 80 curves measured
at the same set of time pointsasthat of thedataset illustrated in Figure 2. Noticethat even though each curve
has been measured at fairly evenly spaced pointsthroughout the time interval the standard errors still range
up to ten. The two classes are relatively well separated but there is still some clear overlap. The distance
between the class centroidsis 5 standard deviations, indicating that one could achieve near perfect separation
by sampling the curves at awider range of time points.

Figures 5 and 6 are further linear discriminant plots. They were produced by using ethnicity asthe class

10
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Figure 5: Linear discriminants for the spinal bone density data using ethnicity as the class variable. (a) The dotted
lines represent, from left to right, class centroids for Blacks, Hispanics, Whites, and Asians. Notice that Blacks and
Asiansarefairly well separated while Hispanics and Whitesare not. (b) The solid lines represent decision boundaries
for classifying a given curve.

variable on a subset of the growth curve data, all femaes. A plot of the growth curves for each ethnicity
(not shown) indicatesthat there may be no clear separation between classes. Thisisborne out by Figure 5(a)
which givesaplot of linear discriminant versusaverage age. Thereissignificant overlap between the classes.
However, it isstill possibleto gain someinformation. The four vertical dotted lines represent the class cen-
troidsfor, fromleft toright, Blacks, Hispanics, Whitesand Asians. Itisclear that thereisvery littleseparation
between Hispanicsand Whiteswhile Blacks and Asians are rel atively well separated. Thisishighlighted by
Figure 6 which showslinear discriminantsand apl ot of the raw datafor Blacksand Asiansaone. Thediffer-
encesarenow clear. Figure5(b) isidentical to 5(a) except that the three discrimination boundariesare plotted
in place of the class centroids. The discrimination boundaries divide the space into four regions. Pointsin
the leftmost region are classified as Black, the next as Hispanic, followed by White and finally Asian.

4.2 Clasdsfication

The ability of LDA to perform classification is of equal importance to its ability to explain discrimination
between classes. In §3.2 we showed that to classify a curve using FLDA one need only produce @, using
(10) and classify using (11). When all classeshave equa weight and @, isonedimensional thisclassification
rule simplifiesto

argmin(@, —oi)° (12)
|

Whileclassificationisnot the primary goal onthe spina bonedensity data, weapply (12) toittoillustrate

the procedure. When using gender as the class variable the overal training error rate comes out at 29.3%.

However, the rate increases substantially to 44.1% for ages over 18 and decreases to 22.0% for ages under

18. This conforms to our expectations from Figure 3(a) which shows much better discrimination for lower

11
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Figure6: (a) Linear discriminantsfor Blacksand Asians. Whilethereisstill someoverlap theseparationisfar clearer.
Thevertical line givesthe classification boundary. (b) A plot of theraw data for Blacks and Asians. Notice that Blacks
tend to have a higher bone density. Thetwo solid linesrepresent the meansfor Blacks and Asianswhilethe dotted lines
are for Hispanics and Whites.

ages.
Table1 givesthe confusion matrix when ethnicity isused asthe classvariable. It showsthetrue ethnicity

and the corresponding classification for each of the 153 individuals. For example, 22 of the 35 Asianswere
classified as Asian while 10 of the 27 Hispanics were classified as Black. While the overall training error
rate is 56.9%, alarge fraction of the errors are among Hispanics and Whites, while Asians and Blacks are
relatively well classified. When Asians and Blacks are considered alone the error rate drops to 25%.

In Table 2 we present the results from a simulation study where the FLDA procedure is compared with
two other classifiers. Thefirst is the filtering method of §1.1. Recall that the filtering method consists of
fittingaflexiblebasis, in this case cubic splines, to each curve and then classifying by using LDA on thebasis
coefficients. Thefiltering method providesasimple comparisonto FLDA. The second isthe Bayes classifier
which is optimal if the true distribution of the classes is known. It provides the best case error rate. The

True Ethnicity
Asian Black  Hispanic White | Total
Asian || 22(62.9) 9(20.9) 8(30.0) 19(39.6) | 58
Prediction | Black || 7(20.0) 30(69.8) 10(37.0) 13(27.1) | 60
Hispanic || 1(2.9) 2(4.7) 5(185) 7(14.6) | 15
White | 5(14.3) 2(47) 4(14.8) 9(18.8) || 20
| Total || 35(100) 43(100) 27(100) 48(100) || 153

Table 1: Confusion matrix of classificationsfor thefour ethnicities. The numbersin parentheses give the percentages
of each ethnicity receiving the corresponding classification. Asians and Blacks have relatively little confusion while
Hispanics and Whiteshave a great deal.
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% Missing || Filtering | FLDA | Bayes
50 0(0) 0(0) 0
80 9.5(0.4) | 8.6(0.2) | 83
84 18.8(0.5) | 12.6(0.3) | 12.7
90 40.8(1.9) | 17.2(0.3) | 16.7
9 60.4(1.1) | 28.1(0.5) | 26.7

Table 2: Test error rates from the simulation study for various different fractions of missing data. The numbersin
parentheses indicate estimated standard errors for the error rates.

study consisted of a three-class problem. For each class, 50 curves were generated according to the FLDA
model (6) and sampled on afine grid of 100 equally-spaced points. Then, for each curve, arandom subset,
50-94%, of the observations, were removed to replicate curve fragments. Multiple data sets were created
and the FLDA and filtering procedures were applied to each. Error rates were then calcul ated on a separate,
test set, of 300 curves. Furthermore the Bayes error rate, which is the lowest possible, was aso calculated
on thistest set. Over the 100 time pointsthe average deviation of mean curves between Classes 1 and 2 and
between Classes 2 and 3 was 0.066 while it was twice this number between Classes 1 and 3. The standard
deviation of the error termswas 0 = 0.1. Finally the average standard deviation over the 100 time points of
the random curves Sy was approximately 0.368. Thefirst figure gives a guide as to the signal while the last
two indicate the noise.

Table 2 provides a summary of the test error rates. As one would expect, al three sets of error rates
increase with the fraction of missingdata. Of far moreinterest isthe similarity between the FLDA and Bayes
error rates. Even with 90% of the data removed the difference is only 0.5%. With less than 80% of the data
removed thefilteringand FLDA methodsgive comparableresults. However, thefiltering method deteriorates
rapidly until at 94% itserror rateis close to that of the naive classifier which randomly assignsa class label
based on the prior probability for each class. Notethat at 94% thefiltering method could not even be applied
to several of the simulated data sets because individual curves could not be fitted.

4.3 Classdiscrimination functions

In a standard two-class LDA setting the discriminant function is defined as

(M —pp)TE™t

where X is the within group covariance matrix. This function gives the weight put on each dimension in
determining the classification of apoint. Inthe FLDA setting 4; = S(Ag+ Aa;) so the functional analogueis

(S/\(Xl - S/\Gz)Tz_l = ((Xl - Gz)T/\TSTZ_l (13)

where 3 = 0?1 + I'S" and Sisthe spline basis matrix evaluated on afine grid of points over the entiretime
period. Equation (13) can be used to produce a discriminant function for any set of data. Figure 7 provides
examples from the growth curve data. Figure 7(a) gives the discriminant function using gender asthe class
variable. Thereisastrong negative peak before age 15 and alarge positive peak afterwards; thisindicates a
phase shift between genders and explainswhy thereisfar better separation for the earlier ages. Figure 7(b)
givesasimilar plot using ethnicity as the class variable. Again most of the discrimination appearsto be in
the early years.

A comparison of discriminant functionsproduced from the simul ation study of 84.2, usingboththe FLDA
and filtering approaches, is given in Figure 8. The population discriminant function is shown in black while
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Figure 7: Discriminant functionsfor the growth curve data of Figure 1. (a) Using gender asthe classvariable. There
isa strong indication of phase shift. (b) Using ethnicity asthe classvariable.

its estimates are in grey. Figures 8(a) and (b) present results from the study with 84% of the data removed
while Figures 8(c) and (d) present results with 90% removed. For each, the top plot shows the discriminant
functions from 40 different simulationsusing FLDA, while the bottom plot gives the corresponding graph
for thefiltering approach. As adding or multiplying the discriminant function by a constant leaves the clas-
sification unchanged, the estimates have been transformed to produce the least squares fit to the population
discriminant function. It is clear that in both cases the FLDA approach is producing more accurate discrim-
inant functions, reflected in the decreased error rates of Table 2.

5 Extensions
Under the standard FLDA model
Cov(Yij) = 0®l + ;TS (14)

In this section we consider a number of possibleextensionsto thismodel by exploring different assumptions
for I and hence the covariance matrix of Yjj;.

5.1 Reduced Rank Covariance Matrices

Under (14), no restrictions are placed on the structure of I". In practice, the likelihood function for data sets
such asthe spina bonedensity datahasalarge number of local maximawhich makethismodel difficult tofit.
Asaresult, for even moderate g, one can produce a highly variable fit to the data. James et al. (2000) show
that such problems can be reduced by enforcing arank constraint on I'. A rank p constraint is equivalent to
setting I = ©DOT and

Cov(Yij) = 0°1 + §;0D0" S|
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Figure 8: Results from two different sets of simulations. Plots (a) and (b) show the true discriminant function (black
line) and estimates (grey lines) from 40 different simulations using FLDA (a) and filtering (b) methods with 84% of
each curve unobserved. Plots (c) and (d) show the equivalent results with 90% of each curve unobserved.

where©isaqx p (p < g) matrix and D is adiagonal matrix.

James et al. (2000) suggest several methodsfor choosing the rank and conclude that the optimal rank for
these datais p = 2. Theresultsfrom Section 4 were produced using such areduced rank model with p= 2
because this gave a far better fit to the data.

5.2 Functional Quadratic Discriminant Analysis

The FLDA procedure, in analogy with LDA, makes an assumption of a common covariance matrix, I, for
they;; vectorsfrom each class. Thiscan resultinaconsiderablereductionin variancefor classeswith asmall
sample size. However, the assumption can cause a considerableincrease in bias if the covariances are not
common. In a standard setting quadratic discriminant analysis (QDA) provides a less restrictive procedure
by alowing different covariance matrices. In asimilar manner the FLDA model of §2.2 can be generalized
by removing the assumption of a common covariance term, I". This gives the covariance structure

Cov(Yij) = 0®l + ;IS
whereT; isthe covariance matrix for Classi. The posterior probability is now proportional to

di(Y) = |IY = S,ho+S,Aai|[2_, +In|5; 2| - 2logT.
'y

where

%, =044+S,IS,"
By fitting this model and classifying to argmin; di(Y) a generalization of QDA, which we call functional
quadratic discriminant analysis (FQDA) is produced.
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5.3 Functional Regularized Discriminant Analysis

Itiswell knownthat LDA can perform badly if the assumption of acommon within-classcovariance matrix is
violated, while QDA generally requiresalarger ssmplesize (Wald and Kronmal, 1977). A small samplesize
causes a covariance matrix to be produced which is close to singular and hence excessive weight is placed
on the directions corresponding to small eigenvalues. Regularization has been highly successful in this sort
of poorly-posed inverse problem (Titterington (1985), O’ Sullivan (1985)). Friedman (1989) suggests the
following regul arization approach. Let S /n; be the within class sample covariance matrix for classi and let
S= ZiK:15- Then S/n isthe pooled covariance matrix which is used for LDA while S /n; is used for QDA.
A compromise between the two approaches can be achieved by setting the within-class covariance matrix
equal to A
Fi (Wl) =3 (Wl)/ni (W1)7

where
S(Wl) = (1_W1)S ‘|’Wls and N (Wl) = (1—W1)ni _|_W1n‘

A second level of regularization, namely shrinkage towards the identity matrix, is provided through

i, w,) = (1w, i) + 2w, (15)
whereqisthedimensionof thespace. I'; (w,, w, ) isused asthewithin-classcovariance matrix for theith class.
Friedman call s this approach regularized discriminant analysis (RDA). RDA has been shown to outperform
both LDA and QDA in alarge variety of situations.

A generaization to functional regularized discriminant analysis (FRDA) can be achieved using the fol-
lowing covariance structure A

COV(Yij) = O'2| —|—S|j I (Wl,WZ)S-I}
where [ (w,,w,) is defined asin (15). The choice of w, and w, is made using cross-validation. Applying
cross-validationtothe FRDA model ispotentially computationally expensive. However, in the RDA setting,
an agebraic update allows for a significantly faster implementation (Friedman, 1989). This update can be
used in the FLDA setting by fitting the FQDA model, treating the resulting yij’s as q dimensional data and
fitting RDA to estimate w, and w,, and finally fitting the FRDA model withw, and w, fixed.

FRDA containsboth FLDA and FQDA assub models. By setting bothw, and w, equal to zero the FQDA
model is produced. While setting w, = 1 and w, = 0 produces the FLDA model. Furthermore, by setting
w, = w, = 1 afunctiona generalization of the nearest-means classifier is produced where an observationis
assigned to the closest class mean, in Euclidean distance.

6 Conclusion

We have presented a method, which we call functional linear discriminant analysis (FLDA), for generaliz-
ing linear discriminant analysis to functional data. FLDA possesses al the usual LDA tools, including a
low-dimensional graphical summary of the data, and classification of new curves. When the functional data
have been measured over alarge number of time pointsthe procedure provides similar resultsto thefiltering
method introduced in Section 1.1. However, when only fragments of the function are available the FLDA
approach can still produce favorabl e outcomeswhilethefiltering method fails completely. FLDA can also be
generalized in a number of ways. A reduced rank version can beimplemented when the data are very sparse
and a quadratic version can be used when an assumption of acommon covariance matrix isinappropriate. A
regularized version, which isa compromise between FLDA and FQDA, isalso available.
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Another possible generalization, which we have not considered, isto model heterogeneous variance and
autocorrelationin the error terms. Thismay well improvethe classification accuracy of the method provided
enough time points have been observed per curve to provide accurate estimates. Unfortunately, allowing o2
to vary would make it impossible to enforce the constraint,

NSz in =1, (16)

which ensuresthat, if acurveis measured at all time points, Cov(dy) = . Inturn (16) allowsfigures such as
3(b) to provide ameasure of the amount of information | ost through missing observations. If 02 was allowed
to vary thisinterpretation would no longer be feasible.
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