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Abstract

We introduce a technique for extending the classical method of Linear Discriminant Analysis to data
sets where the predictor variables are curves or functions. This procedure, which we call functional linear
discriminant analysis (FLDA), is particularly useful when only fragments of the curves are observed. All
the techniques associated with LDA can be extended for use with FLDA. In particular FLDA can be used
to produce classifications on new (test) curves, give an estimate of the discriminant function between
classes, and provide a one or two dimensional pictorial representation of a set of curves. We also extend
this procedure to provide generalizations of quadratic and regularized discriminant analysis.

Some key words: Classification; Filtering; Functional data; Linear discriminant analysis; Low dimensional representa-
tion; Reduced rank; Regularized discriminant analysis; Sparse curves.

1 Introduction

Linear discriminant analysis (LDA) is a popular procedure which dates back as far as Fisher (1936). Let X be
a q-dimensional vector representing an observation from one of several possible classes. Linear discriminant
analysis can be used to classify X if the class is unknown. Alternatively, it can be used to characterize the
way that classes differ via a discriminant function. There are several different ways of describing LDA. One
is using probability models. Suppose that the ith class has density fi

�
x � and prior probability πi. Then Bayes’

formula tells us that

P
�
Class � i � x ��� fi

�
x � πi

∑ j f j
�
x � π j � (1)

It is relatively simple to show that the rule that classifies to the largest conditional probability will make the
smallest expected number of misclassifications. This is known as the Bayes’ rule or classifier. If we further
assume that the ith class has a Gaussian distribution with mean µi and covariance Σ then it can be shown that
classifying to the maximum conditional probability is equivalent to classifying to

argmax
i

Li � (2)
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Figure 1: Data measurements of spinal bone mineral density (g � cm2) for 280 individuals. The black lines represent
females and the grey lines males.

where Li is the discriminant function

Li � xT Σ � 1µi � µT
i Σ � 1µi � 2 � logπi �

Note that Li is a linear function of x. When the maximum likelihood estimates for µi and Σ are used we arrive
at the linear discriminant analysis procedure.

1.1 LDA on functional data

LDA can be implemented on data of any finite dimension but cannot be directly applied to infinite-dimensional
data such as functions or curves. Provided the entire curve has been observed, this can be overcome by dis-
cretizing the time interval. However, this generally results in highly correlated high-dimensional data which
makes the within-class covariance matrix difficult to estimate. There are two common solutions to this prob-
lem. The first is to use some form of regularization, such as adding a diagonal matrix to the covariance matrix.
See for example DiPillo (1976), DiPillo (1979), Campbell (1980), Friedman (1989) and Hastie et al. (1995).
We call this the regularization method. The second is to choose a finite-dimensional basis, φ

�
x � , and find

the best projection of each curve onto this basis. The resulting basis coefficients can then be used as a finite-
dimensional representation making it possible to use LDA, or any other procedure, on the basis coefficients.
We call this the filtering method.

Unfortunately, it is often the case that only a fragment of each curve has been observed. Consider, for ex-
ample, the data illustrated in Figure 1. These data consist of measurements of spinal bone mineral density for
280 individuals taken at various ages, a subset of the data presented in Bachrach et al. (1999). Even though,
in aggregate, there are 860 observations measured over a period of almost two decades, we only have 2-4
measurements for each individual, typically measured over no more than a couple of years. In this situation
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both of the common approaches to discriminant analysis can break down. The regularization method is not
feasible because discretizing would result in a large number of missing observations in each dimension. The
filtering method also has several potential problems. The first is that an assumption is made of a common
covariance matrix for each curves’ basis coefficients. However, if the curves are measured at different time
points, as is the case in the growth curve data of Figure 1, the coefficients will all have different covariances.
One would ideally like to put more weight on accurate basis coefficients but the filtering method does not
allow such an approach. A second problem is that with extremely sparse data sets some of the basis coeffi-
cients may have infinite variance, making it impossible to estimate the entire curve. For example, with the
spinal bone density data, each individual curve has so few observations that it is not possible to fit any rea-
sonable basis. In this case the method fails and there is no way to proceed. For the sparse data considered in
this paper these are serious problems.

1.2 General functional model

The regularization and filtering approaches can both be viewed as methods for fitting the following general
functional model. Let g

�
t � be the curve of an individual randomly drawn from the ith class. Assume that, if

g
�
t � is in Class i, it is distributed as a Gaussian process with

E � g
�
t ��� � µi

�
t � � Cov � g

�
t � � g

�
t � ��� � ω

�
t � t � �

One typically never observes an individual over the entire curve; rather one samples the curve with error at
distinct time points t1 � � � � � tn. We assume that the measurement errors are uncorrelated with mean zero and
constant variance σ2. Let Y be the vector of observations of g

�
t � at times t1 � � � � � tn. Then

Y � N
�
µi � Ω � σ2I �

where

µi �

����
�
µi
�
t1 �

µi
�
t2 �
...

µi
�
tn �

�
			
� � Ω �

����
�
ω
�
t1 � t1 � ω

�
t1 � t2 � � � � ω

�
t1 � tn �

ω
�
t2 � t1 � ω

�
t2 � t2 � � � � ω

�
t2 � tn �

...
...

. . .
...

ω
�
tn � t1 � ω

�
tn � t2 � � � � ω

�
tn � tn �

�
			
� (3)

The Bayes rule for classifying this curve is given by (2) with µi as given in (3) and Σ � Ω � σ2I. Many func-
tional classification procedures are simply methods for fitting this model, i.e. estimating µi

�
t � and ω

�
t � t � � ,

and then using the classification rule given by (2). For example, the regularization approach attempts to es-
timate µi

�
t � and ω

�
t � t � � by producing sample estimates along a fine lattice of time points. Alternatively, the

filtering method forms estimates by modeling µi
�
t � and ω

�
t � t � � using basis functions. However, we saw in

Section 1.1 that, when confronted with sparse data sets, both methods can produce poor fits to the model.

1.3 The FLDA approach

In this paper we present an alternative method for fitting the functional model of §1.2, which copes well with
sparse data. We call this method “functional linear discriminant analysis” (FLDA). The procedure uses a
spline curve plus random error to model observations from each individual. The spline is parameterized using
a basis function multiplied by a q-dimensional coefficient vector. This effectively transforms all the data into
a single q-dimensional space. Finally, the coefficient vector is modeled using a Gaussian distribution with
common covariance matrix for all classes, in analogy with LDA. The observed curves can then be pooled to
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Figure 2: (a) A simulated data set of 20 curves from 2 different classes. (b) The transformed curves after removing
the random components.

estimate the covariance and mean for each class. This makes it possible to form accurate estimates for each
individual curve based on only a few observations.

This has several advantages over the regularization and filtering methods. First, as it does not rely on
forming individual estimates for each curve, it can be used on sparse data sets such as the growth curve data.
Second, by producing an estimate for the covariance kernel it is possible to estimate the variance of the basis
coefficient for each curve and automatically put more weight on the more accurate coefficients.

As a simple illustration of the effectiveness of FLDA in separating curves from different classes consider
Figure 2(a). This is a plot of curves from a simulated data set. Class 1 curves are plotted as black lines and
Class 2 as grey. Each class has a different mean function and the curves are generated by combining the
class mean with a random curve plus random normal noise. From visual inspection alone there is no obvious
separation between classes. However, Figure 2(b) provides a plot of the transformed curves after using the
FLDA procedure to remove the “random component” from each curve. Now the separation is clear so when
the same procedure is applied to a new curve it will clearly be identifiable which group it falls into and it can
be classified with high accuracy. The level of accuracy depends on the signal to noise ratio, which is high in
this case. However, the key point is that the strong signal is not apparent in Figure 2(a) and only emerges as
a result of using the FLDA procedure. In the classical two-class LDA setting this transformation amounts to
projecting observations onto the line segment spanned by the means.

The FLDA model and classification procedure are presented in Sections 2 and 3. One of the reasons for
the popularity of LDA is that it can be used for a variety of tasks. It can be used to project high-dimensional
data into a low dimension and hence produce a graphical representation. Furthermore it can also be used for
classification and to produce a discriminant function to identify areas of discrimination between classes. In
Section 4 we show how FLDA can be used to generalize each of these tools to functional data. Section 5 ex-
plains how the standard FLDA framework can be extended to include rank-reduced and non-identical within-
class covariance matrices. The latter of these extensions provides a functional generalization of quadratic
discriminant analysis.
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2 The FLDA model

In this section we develop the FLDA model by generalizing the LDA model given in §1 to handle functional
data.

2.1 A generalization to functional data

Let gi j
�
t � be the true value at time t for the jth individual or curve from the ith class. Let Yi j and εi j be the

corresponding vectors of observations and measurement errors at times ti j1 � � � � � ti jni j . Then we begin with

Yi j � gi j � εi j � i � 1 � � � � � K � j � 1 � � � � � mi �
where K is the number of classes and mi is the number of individuals in the ith class. The measurement errors
are assumed to have mean zero, constant variance σ2 and be uncorrelated with each other and gi j . These
assumptions implicitly mean that we are assuming that the time points that we have failed to observe are
missing at random. As we only have a finite amount of data we need to place some restrictions on gi j in order
to fit this model. A common approach to modeling functional data is to represent the functions using a flexible
basis (Ramsay and Silverman 1997, Chapter 3). We choose to use natural cubic spline functions because
of their desirable mathematical properties and easy implementation (de Boor, 1978; Green and Silverman,
1994). Let

gi j
�
t ��� s

�
t � Tηi j �

where s
�
t � is a spline basis with dimension q and ηi j is a q-dimensional vector of spline coefficients. This

leads to a more restricted model,

Yi j � Si jηi j � εi j i � 1 � � � � � K � j � 1 � � � � � mi �
where

Si j �
�
s
�
ti j1 � � � � � � s � ti jni j � � T �

Notice that the problem of modeling Yi j has reduced to one of modeling ηi j . However, ηi j is a q-dimensional
variable, so a natural approach is to model it using the Gaussian distribution assumed for the standard LDA
model,

ηi j � µi � γi j � γi j � N
�
0 � Γ � �

If we assume that the error terms are also normally distributed this gives

Yi j � Si j
�
µi � γi j � � εi j � i � 1 � � � � K � j � 1 � � � � � mi � (4)

εi j � N
�
0 � σ2I � � γi j � N

�
0 � Γ � �

2.2 Rank reduced LDA

A reduced-rank version of LDA is often performed by transforming or projecting the variables into a lower-
dimensional subspace and classifying in this subspace. The subspace is chosen to maximize the between-
class covariance relative to the within-class covariance. These transformed variables are called linear dis-
criminants or canonical variables. Anderson (1951) and Hastie and Tibshirani (1996) outline an alternative
procedure using the constraint

µi � λ0 � Λαi � ΛT Σ � 1Λ � I � ∑
i

αi � 0 � (5)
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where λ0 and αi are respectively q- and h-dimensional vectors, and Λ is a q � h matrix, h � min
�
q � K � . Both

sets of authors show that using maximum likelihood to fit the Gaussian LDA model of §1 with the added
constraint (5) and classifying to the maximum posterior probability is identical to the classification from the
reduced rank LDA procedure.

The same rank constraint can be placed on the means in (4). This gives the final form of the FLDA model,

Yi j � Si j
�
λ0 � Λαi � γi j � � εi j � i � 1 � � � � K � j � 1 � � � � � mi � (6)

εi j � N
�
0 � σ2I � � γi j � N

�
0 � Γ � �

in which λ0, Λ and αi are confounded if no constraint is imposed. Therefore we place the following restric-
tions on Λ and the αi’s,

ΛT ST Σ � 1SΛ � I � ∑
i

αi � 0 � (7)

where Σ � σ2I � SΓST and S is the basis matrix evaluated over a fine lattice of points. The constraint provides
a form of normalization for the linear discriminants. More details will be given in the following section. In
practice the lattice should include, at least, all time points in the data set. For example the spinal bone density
data was measured in 1 � 10th of a year increments from age 8 � 8 to 26 � 2 years so the lattice covered the same
period. This model is identical to the general functional model of §1.2 with

µi
�
t � � s

�
t � T � λ0 � Λαi �

and
ω
�
t � t � � � s

�
t � TΓs

�
t � � �

3 Classifying curves

In this section we first detail a maximum likelihood procedure for fitting (6) and then a method for forming
classifications by combining (1) and (6) to form an estimate of the Bayes classifier.

3.1 Fitting the model

Fitting the FLDA model involves estimating λ0 � Λ � αi � Γ and σ2. Notice that (6) implies

Yi j � N
�
Si j
�
λ0 � Λαi � � Σi j � �

where
Σi j � σ2I � Si jΓST

i j �
Since observations from different individuals are assumed to be independent, the joint distribution of the
observed curves is

K

∏
i � 1

mi

∏
j � 1

1�
2π � ni j � 2 �Σi j � 1 � 2

exp � � 1
2

�
Yi j � Si j � λ0 � Λαi � � T Σ � 1

i j

�
Yi j � Si j � λ0 � Λαi � �
	 � (8)

A natural approach to fitting the model is to maximize (8) over λ0 � Λ � αi � Γ and σ2. Unfortunately, directly
maximizing this likelihood is a difficult non-convex optimization problem. If the γi j had been observed, how-
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ever, the joint likelihood of Yi j and γi j would simplify to

K

∏
i � 1

mi

∏
j � 1

1�
2π ��� ni j � q � � 2σni j �Γ � 1 � 2

exp � � 1
2σ2

�
Yi j � Si j � λ0 � Λαi � γi j � � T � Yi j � Si j � λ0 � Λαi � γi j � � � 1

2
γT

i jΓ � 1γi j 	 �

Maximizing this likelihood is much less complex, and suggests treating the γi j as missing data and imple-
menting the EM algorithm (Dempster et al., 1977; Laird and Ware, 1982). The EM algorithm involves al-
ternately calculating the expected value of the missing data γi j and maximizing the joint likelihood. The E
step is performed using the equation

E
�
γi j �Yi � γ0 � Λ � αi � Γ � σ2 � � �

σ2Γ � 1 � ST
i jSi j � � 1ST

i j
�
Yi j � Si jλ0 � Si jΛαi � �

while the M step involves maximizing

Q � � 1
2

K

∑
i � 1

mi

∑
j � 1

E

� �
Yi j � Si j � λ0 � Λαi � γi j � � T � Yi j � Si j � λ0 � Λαi � γi j � � � σ2

� ni j log
�
σ2 � � γT

i jΓ � 1γi j � log �Γ ���
holding γi j fixed. Further details can be obtained from the web site www-rcf.usc.edu/ � gareth. As with all
EM algorithms the likelihood will increase at each iteration but it is possible to reach a local rather than global
maximum. This can be a problem for very sparse data sets such as the bone mineral density data. However,
the problem is generally eliminated by enforcing a rank constraint on Γ as discussed in §5.1.

Other model selection questions arise in practice, such as the choice of q, the dimension of the spline
basis. There are several possible procedures that have been applied to models of this type. One is to calculate
the cross-validated likelihood for various dimensions and choose the model corresponding to the maximum
(James et al., 2000). AIC and BIC are two other, less computationally expensive, procedures that have also
proved successful on this sort of data (Rice and Wu, 2000). In practice the final classification appears to be
relatively robust to any reasonable choice of dimension but this is an area of ongoing research.

3.2 Classification

Notice that under the standard reduced-rank LDA model,

X �Class � i � N
�
λ0 � Λαi � Σ � �

Hence, using Bayes’ formula, the probability of Class i given X is proportional to

�
X � λ0 � Λαi � T Σ � 1 � X � λ0 � Λαi � � 2logπi � � �X � λ0 � Λ �αX � � 2Σ � 1 � � �Λ �αX � Λαi � � 2Σ � 1 � 2logπi

� C
�
X � � � � �αX � αi � � 2 � 2logπi

where �αX � ΛT Σ � 1 � X � λ0 � . Note that the second line follows from the fact that ΛT Σ � 1Λ � I. This means
that classifying an observation X using reduced-rank LDA is identical to classifying to

argmin
i

� � � �αX � αi � � 2 � 2logπi � �

7



It can be shown that �αX and αi are equal to the linear discriminants of X and µi that LDA produces, up to an
additive constant.

The same approach is used for FLDA. By combining (1) and (6) we see that the posterior probability that
a curve Y was generated from Class i is proportional to

�
Y � SYλ0 � SY Λαi � T ΣY � 1 � Y � SYλ0 � SYΛαi � � 2logπi �

where SY is the spline basis matrix for Y and

ΣY � σ2I � SY ΓSY
T �

So Y will be classified to

argmin
i � � �Y � SYλ0 � SYΛαi � � 2Σ � 1

Y
� 2logπi � � (9)

Notice, however, that if one lets

�αY �
�
ΛT SY

T Σ � 1
Y

SYΛ � � 1 ΛT SY
T Σ � 1

Y

�
Y � SYλ0 � � (10)

then
� �Y � SYλ0 � SYΛαi � � 2Σ � 1

Y
� � �YY � SY λ0 � SY Λ �αY � � 2Σ � 1

Y
� � � SYΛ �αY � SY Λαi � � 2Σ � 1

Y
�

Hence (9) is equivalent to

argmin
i � � � �αY � αi � � 2� ΛTSY

T Σ � 1
Y

ST
Y

Λ � � 2logπi � � arg min
i � � � �αY � αi � � 2Cov � �αY � � 1 � 2logπi � (11)

since
Cov

� �αY � �
�
ΛT SY

T Σ � 1
Y

SYΛ � � 1 �
Just as with standard LDA, �αY and αi are, up to an additive constant, the linear discriminants of Y and µi.
Therefore (11) corresponds to classifying to the class whose mean is closest to our test point in the reduced
space where distance is measured using the inverse covariance of �αY . Notice also that if Y has been measured
over the entire time period, so that SY � S, then

Cov
� �αY � � I

and (11) reduces to
argmin

i

� � � �αY � αi � � 2 � 2logπi � �

4 Applications of FLDA

In this section we show how three of the most important tools that LDA provides, namely, low dimensional
representation, discrimination functions and classification, can be replicated using FLDA.

4.1 Low dimensional representation of curves

One of the reasons for the popularity of LDA is that it provides the ability to view high-dimensional data by
projecting it onto a low-dimensional space. This allows one to visually determine the discrimination between
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Figure 3: (a) Linear discriminants for each curve of the spinal bone density data, plotted against the average age
people were measured at. (b) Estimates of the standard error of the linear discriminants for each curve plotted against
the average age. There is a clear trend of increasing variability with age.

classes. As mentioned in §3.2, in a standard finite-dimensional setting the linear discriminant of X equals

�αX � ΛT Σ � 1 � X � λ0 � �
up to an additive constant. As Cov

� �αX � � I, the transformed variables all have identity covariance, so the
distance between different observations is Euclidean and can be easily calculated by visual inspection.

This provides a natural approach to projecting functional data into a low-dimensional space. In the FLDA
model the analogue of �αX is �αY , given in (10). Recall that �αY is the linear discriminant for Y and that if Y
has been observed over the entire interval Cov

� �αY � � I. However, if only fragments of the curve have been
observed,

Cov
� �αY � �

�
ΛT SY

T Σ � 1
Y

SYΛ � � 1 �
This makes direct comparison of points more difficult because the covariance structure may no longer be
diagonal and, in general, curves measured at different time points will have different covariances. However,
if h � 1, so the linear discriminant is a scalar, the only effect this has is that each point has a different standard
error. Figures 3-6 provide examples of this.

Figure 3(a) shows linear discriminants for each curve from the growth curve data of Figure 1, plotted
versus the average age for observations from each individual. For a two-class situation, such as this, the plot
also provides a simple classification rule; curves with positive linear discriminant are classified as male and
curves with negative linear discriminant as female. The plot reveals some interesting properties of the data.
Curves measured at ages below eighteen years are relatively well-separated while individuals measured at
older ages have little discernible separation. This trend is also apparent upon close examination of the original
curves. The two solid vertical lines either side of zero give the fitted values for the αi’s. They represent the
“class centroids” in the transformed space. Their close proximity to each other relative to the variability of
the linear discriminants indicate little overall separation between classes. However, recall that, as a result
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Figure 4: (a) Plot of the linear discriminants for each curve on the spinal bone density data versus the estimated
standard errors. (b) A linear discriminant plot for a simulated data set. It shows a fairly clear difference between the
classes but also a significant overlap.

of (7), the linear discriminant of Y will have a standard error of one if the curve is measured over the entire
interval. In fact the separation between the centroids is about 23 � 5 standard deviations. This implies that
the confusion between genders is a result of the small number of observations per individual, which cause
the standard error to increase dramatically. A clear separation could be achieved with more observations.
Figure 3(b) gives the standard error for each linear discriminant versus average age of observation. A curve
with measurements over the entire time period would have standard error 1, so this plot gives an indication of
the amount of information lost by only observing the curve at a limited number of time points. The standard
errors range from over ten to eighty, indicatingthat a great deal of accuracy has been sacrificed. The increased
variability also explains the poor separation at older ages where the standard errors are large relative to the
distance between the class centroids. Once the model has been fit, the standard error can be calculated for a
curve observed at an arbitrary set of time points. This provides a method for deciding on an “optimal” design
in terms of locating a finite number of observations for an individual to minimize the standard error.

Figure 4 gives two plots which combine the linear discriminants and their standard errors together. This
gives an easy method for deciding on the reliability of a given observation. For example points with high
standard error should be treated with caution. We call these linear discriminant plots. The left and right
vertical dotted lines indicate the class centroids while the center lines are the class discriminators. Figure 4(a)
shows that the points with relatively low standard error have far better separation than those with a large
standard error. Figure 4(b) provides a similar plot for a simulated data set consisting of 80 curves measured
at the same set of time points as that of the data set illustrated in Figure 2. Notice that even though each curve
has been measured at fairly evenly spaced points throughout the time interval the standard errors still range
up to ten. The two classes are relatively well separated but there is still some clear overlap. The distance
between the class centroids is 5 standard deviations, indicating that one could achieve near perfect separation
by sampling the curves at a wider range of time points.

Figures 5 and 6 are further linear discriminant plots. They were produced by using ethnicity as the class
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Figure 5: Linear discriminants for the spinal bone density data using ethnicity as the class variable. (a) The dotted
lines represent, from left to right, class centroids for Blacks, Hispanics, Whites, and Asians. Notice that Blacks and
Asians are fairly well separated while Hispanics and Whites are not. (b) The solid lines represent decision boundaries
for classifying a given curve.

variable on a subset of the growth curve data, all females. A plot of the growth curves for each ethnicity
(not shown) indicates that there may be no clear separation between classes. This is borne out by Figure 5(a)
which gives a plot of linear discriminant versus average age. There is significant overlap between the classes.
However, it is still possible to gain some information. The four vertical dotted lines represent the class cen-
troids for, from left to right, Blacks, Hispanics, Whites and Asians. It is clear that there is very little separation
between Hispanics and Whites while Blacks and Asians are relatively well separated. This is highlighted by
Figure 6 which shows linear discriminants and a plot of the raw data for Blacks and Asians alone. The differ-
ences are now clear. Figure 5(b) is identical to 5(a) except that the three discrimination boundaries are plotted
in place of the class centroids. The discrimination boundaries divide the space into four regions. Points in
the leftmost region are classified as Black, the next as Hispanic, followed by White and finally Asian.

4.2 Classification

The ability of LDA to perform classification is of equal importance to its ability to explain discrimination
between classes. In §3.2 we showed that to classify a curve using FLDA one need only produce �αY using
(10) and classify using (11). When all classes have equal weight and �αY is one dimensional this classification
rule simplifies to

argmin
i

� �αY � αi � 2 (12)

While classification is not the primary goal on the spinal bone density data, we apply (12) to it to illustrate
the procedure. When using gender as the class variable the overall training error rate comes out at 29 � 3%.
However, the rate increases substantially to 44 � 1% for ages over 18 and decreases to 22 � 0% for ages under
18. This conforms to our expectations from Figure 3(a) which shows much better discrimination for lower
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Figure 6: (a) Linear discriminants for Blacks and Asians. While there is still some overlap the separation is far clearer.
The vertical line gives the classification boundary. (b) A plot of the raw data for Blacks and Asians. Notice that Blacks
tend to have a higher bone density. The two solid lines represent the means for Blacks and Asians while the dotted lines
are for Hispanics and Whites.

ages.
Table 1 gives the confusion matrix when ethnicity is used as the class variable. It shows the true ethnicity

and the corresponding classification for each of the 153 individuals. For example, 22 of the 35 Asians were
classified as Asian while 10 of the 27 Hispanics were classified as Black. While the overall training error
rate is 56 � 9%, a large fraction of the errors are among Hispanics and Whites, while Asians and Blacks are
relatively well classified. When Asians and Blacks are considered alone the error rate drops to 25%.

In Table 2 we present the results from a simulation study where the FLDA procedure is compared with
two other classifiers. The first is the filtering method of §1.1. Recall that the filtering method consists of
fitting a flexible basis, in this case cubic splines, to each curve and then classifying by using LDA on the basis
coefficients. The filtering method provides a simple comparison to FLDA. The second is the Bayes classifier
which is optimal if the true distribution of the classes is known. It provides the best case error rate. The

True Ethnicity
Asian Black Hispanic White Total

Asian 22
�
62 � 9 � 9

�
20 � 9 � 8

�
30 � 0 � 19

�
39 � 6 � 58

Prediction Black 7
�
20 � 0 � 30

�
69 � 8 � 10

�
37 � 0 � 13

�
27 � 1 � 60

Hispanic 1
�
2 � 9 � 2

�
4 � 7 � 5

�
18 � 5 � 7

�
14 � 6 � 15

White 5
�
14 � 3 � 2

�
4 � 7 � 4

�
14 � 8 � 9

�
18 � 8 � 20

Total 35
�
100 � 43

�
100 � 27

�
100 � 48

�
100 � 153

Table 1: Confusion matrix of classifications for the four ethnicities. The numbers in parentheses give the percentages
of each ethnicity receiving the corresponding classification. Asians and Blacks have relatively little confusion while
Hispanics and Whites have a great deal.
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% Missing Filtering FLDA Bayes
50 0

�
0 � 0

�
0 � 0

80 9 � 5 � 0 � 4 � 8 � 6 � 0 � 2 � 8 � 3
84 18 � 8 � 0 � 5 � 12 � 6 � 0 � 3 � 12 � 7
90 40 � 8 � 1 � 9 � 17 � 2 � 0 � 3 � 16 � 7
94 60 � 4 � 1 � 1 � 28 � 1 � 0 � 5 � 26 � 7

Table 2: Test error rates from the simulation study for various different fractions of missing data. The numbers in
parentheses indicate estimated standard errors for the error rates.

study consisted of a three-class problem. For each class, 50 curves were generated according to the FLDA
model (6) and sampled on a fine grid of 100 equally-spaced points. Then, for each curve, a random subset,
50-94%, of the observations, were removed to replicate curve fragments. Multiple data sets were created
and the FLDA and filtering procedures were applied to each. Error rates were then calculated on a separate,
test set, of 300 curves. Furthermore the Bayes error rate, which is the lowest possible, was also calculated
on this test set. Over the 100 time points the average deviation of mean curves between Classes 1 and 2 and
between Classes 2 and 3 was 0 � 066 while it was twice this number between Classes 1 and 3. The standard
deviation of the error terms was σ � 0 � 1. Finally the average standard deviation over the 100 time points of
the random curves Sγ was approximately 0 � 368. The first figure gives a guide as to the signal while the last
two indicate the noise.

Table 2 provides a summary of the test error rates. As one would expect, all three sets of error rates
increase with the fraction of missing data. Of far more interest is the similarity between the FLDA and Bayes
error rates. Even with 90% of the data removed the difference is only 0 � 5%. With less than 80% of the data
removed the filtering and FLDA methods give comparable results. However, the filtering method deteriorates
rapidly until at 94% its error rate is close to that of the naive classifier which randomly assigns a class label
based on the prior probability for each class. Note that at 94% the filtering method could not even be applied
to several of the simulated data sets because individual curves could not be fitted.

4.3 Class discrimination functions

In a standard two-class LDA setting the discriminant function is defined as

�
µ1 � µ2 � T Σ � 1

where Σ is the within group covariance matrix. This function gives the weight put on each dimension in
determining the classification of a point. In the FLDA setting µi � S

�
λ0 � Λαi � so the functional analogue is

�
SΛα1 � SΛα2 � T Σ � 1 � �

α1 � α2 � T ΛT ST Σ � 1 (13)

where Σ � σ2I � SΓST and S is the spline basis matrix evaluated on a fine grid of points over the entire time
period. Equation (13) can be used to produce a discriminant function for any set of data. Figure 7 provides
examples from the growth curve data. Figure 7(a) gives the discriminant function using gender as the class
variable. There is a strong negative peak before age 15 and a large positive peak afterwards; this indicates a
phase shift between genders and explains why there is far better separation for the earlier ages. Figure 7(b)
gives a similar plot using ethnicity as the class variable. Again most of the discrimination appears to be in
the early years.

A comparison of discriminant functions produced from the simulationstudy of §4.2, using both the FLDA
and filtering approaches, is given in Figure 8. The population discriminant function is shown in black while
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Figure 7: Discriminant functions for the growth curve data of Figure 1. (a) Using gender as the class variable. There
is a strong indication of phase shift. (b) Using ethnicity as the class variable.

its estimates are in grey. Figures 8(a) and (b) present results from the study with 84% of the data removed
while Figures 8(c) and (d) present results with 90% removed. For each, the top plot shows the discriminant
functions from 40 different simulations using FLDA, while the bottom plot gives the corresponding graph
for the filtering approach. As adding or multiplying the discriminant function by a constant leaves the clas-
sification unchanged, the estimates have been transformed to produce the least squares fit to the population
discriminant function. It is clear that in both cases the FLDA approach is producing more accurate discrim-
inant functions, reflected in the decreased error rates of Table 2.

5 Extensions

Under the standard FLDA model

Cov
�
Yi j � � σ2I � Si jΓST

i j � (14)

In this section we consider a number of possible extensions to this model by exploring different assumptions
for Γ and hence the covariance matrix of Yi j.

5.1 Reduced Rank Covariance Matrices

Under (14), no restrictions are placed on the structure of Γ. In practice, the likelihood function for data sets
such as the spinal bone density data has a large number of local maxima which make this model difficult to fit.
As a result, for even moderate q, one can produce a highly variable fit to the data. James et al. (2000) show
that such problems can be reduced by enforcing a rank constraint on Γ. A rank p constraint is equivalent to
setting Γ � ΘDΘT and

Cov
�
Yi j � � σ2I � Si jΘDΘT ST

i j
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Figure 8: Results from two different sets of simulations. Plots (a) and (b) show the true discriminant function (black
line) and estimates (grey lines) from 40 different simulations using FLDA (a) and filtering (b) methods with 84% of
each curve unobserved. Plots (c) and (d) show the equivalent results with 90% of each curve unobserved.

where Θ is a q � p (p � q) matrix and D is a diagonal matrix.
James et al. (2000) suggest several methods for choosing the rank and conclude that the optimal rank for

these data is p � 2. The results from Section 4 were produced using such a reduced rank model with p � 2
because this gave a far better fit to the data.

5.2 Functional Quadratic Discriminant Analysis

The FLDA procedure, in analogy with LDA, makes an assumption of a common covariance matrix, Γ, for
the γi j vectors from each class. This can result in a considerable reduction in variance for classes with a small
sample size. However, the assumption can cause a considerable increase in bias if the covariances are not
common. In a standard setting quadratic discriminant analysis (QDA) provides a less restrictive procedure
by allowing different covariance matrices. In a similar manner the FLDA model of §2.2 can be generalized
by removing the assumption of a common covariance term, Γ. This gives the covariance structure

Cov
�
Yi j � � σ2I � Si jΓiS

T
i j �

where Γi is the covariance matrix for Class i. The posterior probability is now proportional to

di
�
Y ��� � �Y � SYλ0 � SYΛαi � � 2Σ � 1

iY

� ln �Σ � 1
iY
� � 2logπi �

where
ΣiY � σ2I � SY ΓiSY

T

By fitting this model and classifying to argmini di
�
Y � a generalization of QDA, which we call functional

quadratic discriminant analysis (FQDA) is produced.
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5.3 Functional Regularized Discriminant Analysis

It is well known that LDA can perform badly if the assumption of a common within-class covariance matrix is
violated, while QDA generally requires a larger sample size (Wald and Kronmal, 1977). A small sample size
causes a covariance matrix to be produced which is close to singular and hence excessive weight is placed
on the directions corresponding to small eigenvalues. Regularization has been highly successful in this sort
of poorly-posed inverse problem (Titterington (1985), O’Sullivan (1985)). Friedman (1989) suggests the
following regularization approach. Let Si � ni be the within class sample covariance matrix for class i and let
S � ∑K

i � 1 Si. Then S � n is the pooled covariance matrix which is used for LDA while Si � ni is used for QDA.
A compromise between the two approaches can be achieved by setting the within-class covariance matrix
equal to

Γ̂i
�
w1 � � Si

�
w1 � � ni

�
w1 � �

where
Si
�
w1 � �

�
1 � w1 � Si � w1 S and ni

�
w1 ���

�
1 � w1 � ni � w1 n �

A second level of regularization, namely shrinkage towards the identity matrix, is provided through

Γ̂i
�
w1 � w2 � �

�
1 � w2 � Γ̂i

�
w1 � � w2

q
tr � Γ̂i

�
w1 � � I � (15)

where q is the dimension of the space. Γ̂i
�
w1 � w2 � is used as the within-classcovariance matrix for the ith class.

Friedman calls this approach regularized discriminant analysis (RDA). RDA has been shown to outperform
both LDA and QDA in a large variety of situations.

A generalization to functional regularized discriminant analysis (FRDA) can be achieved using the fol-
lowing covariance structure

Cov
�
Yi j � � σ2I � Si jΓ̂i

�
w1 � w2 � ST

i j

where Γ̂i
�
w1 � w2 � is defined as in (15). The choice of w1 and w2 is made using cross-validation. Applying

cross-validation to the FRDA model is potentially computationally expensive. However, in the RDA setting,
an algebraic update allows for a significantly faster implementation (Friedman, 1989). This update can be
used in the FLDA setting by fitting the FQDA model, treating the resulting γi j’s as q dimensional data and
fitting RDA to estimate w1 and w2 , and finally fitting the FRDA model with w1 and w2 fixed.

FRDA contains both FLDA and FQDA as sub models. By setting both w1 and w2 equal to zero the FQDA
model is produced. While setting w1 � 1 and w2 � 0 produces the FLDA model. Furthermore, by setting
w1 � w2 � 1 a functional generalization of the nearest-means classifier is produced where an observation is
assigned to the closest class mean, in Euclidean distance.

6 Conclusion

We have presented a method, which we call functional linear discriminant analysis (FLDA), for generaliz-
ing linear discriminant analysis to functional data. FLDA possesses all the usual LDA tools, including a
low-dimensional graphical summary of the data, and classification of new curves. When the functional data
have been measured over a large number of time points the procedure provides similar results to the filtering
method introduced in Section 1.1. However, when only fragments of the function are available the FLDA
approach can still produce favorable outcomes while the filtering method fails completely. FLDA can also be
generalized in a number of ways. A reduced rank version can be implemented when the data are very sparse
and a quadratic version can be used when an assumption of a common covariance matrix is inappropriate. A
regularized version, which is a compromise between FLDA and FQDA, is also available.
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Another possible generalization, which we have not considered, is to model heterogeneous variance and
autocorrelation in the error terms. This may well improve the classification accuracy of the method provided
enough time points have been observed per curve to provide accurate estimates. Unfortunately, allowing σ2

to vary would make it impossible to enforce the constraint,

ΛT ST Σ � 1SΛ � I � (16)

which ensures that, if a curve is measured at all time points, Cov
� �αY ��� I. In turn (16) allows figures such as

3(b) to provide a measure of the amount of information lost through missing observations. If σ2 was allowed
to vary this interpretation would no longer be feasible.
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