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Abstract

In this paper we present a technique for extending generalized linear models (GLM) to the situation
where some of the predictor variables are observations from a curve or function. The technique is partic-
ularly useful when only fragments of each curve have been observed. We demonstrate, on both simulated
and real world data sets, how this approach can be used to perform linear, logistic and censored regres-
sion with functional predictors. In addition, we show how functional principal components can be used
to gain insight into the relationship between the response and functional predictors. Finally, we extend
the methodology to apply GLM and principal components to standard missing data problems.

Some key words: Censored regression; Functional data analysis; Functional principal components; Generalized linear
models; Logistic regression.

1 Introduction

Generalized linear models provide a framework for relating response and predictor variables (McCullagh
and Nelder, 1989). For a random variable Y with distribution,

p
�
y;η � φ ��� exp

�
yθ � b

�
θ �

a
�
φ ��� c

�
y � φ �
	

we model the relationship between predictor X and response Y as

g
�
µ ��� β0 � βT

1 X (1)

where µ � E
�
Y ;θ � φ ��� b � � θ � and g is referred to as the link function. Common examples include the iden-

tity link used for normal response data and the logistic link used for binary response data. Generalized linear
models provide a very flexible class of procedures. However, they assume that the predictor has a finite di-
mension. In this paper we extend GLM to handle functional predictors which may be measured at different
times and with different numbers of observations for each individual.

One of the difficulties with these sorts of data sets is that, when predictors are functional, observations
from the same individual will generally be correlated. A great deal of research has been conducted on data
with correlated outcomes. Situations where such data arise include twin studies (Cessie and Houwelingen,
1994), two-period cross-over designs (Jones and Kenward, 1989), ophthalmologicalstudies (Gao et al., 2001)
and longitudinal data (Diggle et al., 1994). Numerous models have been proposed for the response variable.
For instance Moyeed and Diggle (1994) and Zeger and Diggle (1994) model the relationship between re-
sponse Y

�
t � and predictor X

�
t � , both measured over time, using the equation,

Y
�
t ��� α0

�
t � � βT

0 X
�
t � � ε

�
t � (2)

1



ID End Outcome Drug Day Bili Alb ID End Outcome Drug Day Bili Alb

1 400 Dead Yes 0 14 � 5 2 � 60 2 5169 Alive Yes 2515 4 � 2 2 � 73
1 400 Dead Yes 192 21 � 3 2 � 94 2 5169 Alive Yes 2882 3 � 6 2 � 80
2 5169 Alive Yes 0 1 � 1 4 � 14 2 5169 Alive Yes 3226 4 � 6 2 � 67
2 5169 Alive Yes 182 0 � 8 3 � 60 3 1012 Dead Yes 0 1 � 4 3 � 48
2 5169 Alive Yes 365 1 � 0 3 � 55 3 1012 Dead Yes 176 1 � 1 3 � 29
2 5169 Alive Yes 768 1 � 9 3 � 92 3 1012 Dead Yes 364 1 � 5 3 � 57
2 5169 Alive Yes 1790 2 � 6 3 � 32 3 1012 Dead Yes 743 1 � 8 3 � 25

2 5169 Alive Yes 2151 3 � 6 2 � 92
...

...
...

...
...

...
...

Table 1: Subset of data from Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted be-
tween 1974 and 1984.

where α0
�
t � is a smooth function of t, β0 is a fixed but unknown vector of regression coefficients and ε

�
t � is

a zero mean stationary Gaussian process. Hoover et al. (1998), Wu et al. (1998) and Lin and Ying (2001)
use the varying-coefficient models proposed in Hastie and Tibshirani (1993) to extend (2) by allowing the
regression coefficients to vary over time. Alternatively, Gao et al. (2001) model categorical responses using
a combined smoothing spline analysis of variance and log-linear model approach, while James and Hastie
(2001) use a functional linear discriminant analysis model. Fahrmeir and Tutz (1994) and Liang and Zeger
(1986) suggest an even more general framework where the response is modeled as a member of the expo-
nential family of distributions.

This work has tended to focus on the situation where the predictor and response are observed together at
varying times. However, in many cases, one wishes to model the relationship between a single, time inde-
pendent, response and a functional predictor. For example, one might wish to predict whether an individual
possesses a genetic disorder based on various predictors measured over time. Alternatively, one may wish
to calculate the probability of a successful transplant operation based on historical measurements of a pa-
tient. In both these situations a single response is observed but the predictors are functional because they are
measured over time. Most of the methods listed above cannot easily be applied to such problems because
they assume a separate response at each time that a predictor is observed. Hastie and Mallows (1993) and
Ramsay and Silverman (1997) (Chapter 10) discuss performing regression where the response is a scalar and
the predictors functional but they primarily address the situation where the predictors are all measured at the
same time points.

Table 1 provides a typical example of a functional data set with unequally spaced observations. These
data were obtained from StatLib and come from a randomized placebo controlled trial of the drug D-penicillamine
on patients with primary biliary cirrhosis (PBC) of the liver conducted by the Mayo Clinic between 1974 and
1984 (Fleming and Harrrington, 1991). For each patient we have a record of the time, in days, between the
earlier of death or end of study (“End”), alive or dead (“Outcome”), whether they received the drug (“Drug”),
day of each patient visit measured from registration (“Day”), serum bilirubin in mg/dl (“Bili”) and albumin in
gm/dl (“Alb”). Several other potential predictors were measured but for illustrative purposes we will restrict
to these variables. There are two response variables of interest. The first is survival time, a right censored
variable, and the second is the five year survival outcome. For both situations, each patient has multiple
measurements of both bilirubin and albumin but only one, time independent, response so a model such as (2)
cannot be applied. Furthermore, there are different numbers of measurements for each patient and they are
taken at different times so it is not possible to use a standard multiple regression model.

One possible solutionwould be to ignore time trends and to use either the first measurement or the average
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over all observations for each person. However, if there is a time trend, both of these methods will make
inefficient use of the available information. A superior approach might be to fit a smooth parametric curve,
such as a natural cubic spline, to each individual’s observations and use the resulting coefficient vector as a
predictor. This method has the advantage that it accounts for any time trends in the data. Unfortunately, it
has several drawbacks. First, many of the individuals only have a very small number of observations so it
may not be possible to fit curves for each of them. Second, even if the curves can all be fit, it is not obvious
how to adjust for the varying levels of accuracy in the coefficients caused by differences in the number and
spacing of observations.

In this paper we present an approach, which we call functional generalized linear models (FGLM), that
directly models the relationship between a single response, from any member of the exponential family of
distributions, and a functional predictor. The predictors are modeled as cubic splines and it is assumed that
the spline coefficients for all individuals have a common mean and variance for which both the response
and predictors are used to fit. The predicted coefficients for each individual can then be used in the linear
portion of the link function to relate the predictors to the response. We have successfully applied FGLM to
situations in which each subject has observations at differing time points. Furthermore, the method works
well on sparse data sets such as the PBC data, since it does not rely on fitting a separate curve to each person.
A large range of possible distributions can be assumed for the response variable, allowing the modeling of
both continuous and categorical data. In addition, the relationship between functional predictor and scalar
response can be assessed through the use of functional principal components. Tests are also developed for a
relationship between predictor and response.

In section 2 we outline and motivate the general modeling procedure. Functional linear, logistic and cen-
sored regression are developed as special cases of this model. Section 3 provides details of an EM algorithm
that works well for fitting the functional generalized linear model. Examples on simulated and real data sets
are given in section 4. Functional principal components ideas are used in section 5 to provide a better under-
standing of the exact form of the relationship between predictor and response. In practice one may wish to
incorporate multiple functional and finite dimensional predictors into the model. This extension is developed
in section 6. Finally, extensions to missing data problems are provided in section 7.

2 The functional generalized linear model

In this section we develop the functional generalized linear model. We then illustrate three particular exam-
ples, linear, censored and logistic regression.

2.1 The general model

When the predictor X
�
t � is functional, the link function given by (1) cannot be directly applied. However, a

natural generalization is to replace the summation over the finite dimensional space with an integral over the
infinite dimensional one,

g
�
µ ��� β0 �

�
ω1
�
t � X � t � dt � (3)

where ω1
�
t � is the functional analogue of β1. Unfortunately, in practice X

�
t � is only ever observed at a finite

set of time points. One might imagine simply replacing the integral with a summation over the observed
times. However, this approach has several potential problems. First, it may necessitate fitting an extremely
high dimensional vector of coefficients, resulting in large or infinite variance terms. Second, it is not clear
how to handle individuals with observations that are measured at different sets of time points or individuals
with differing numbers of observations. Both these problems are related to the fact that this procedure fails
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to make use of the intrinsic relationship between points observed at similar times. Instead we assume that
each predictor can be modeled as a smooth curve from a given functional family. We choose to make use of
natural cubic splines (Silverman 1985; Green and Silverman 1994). The resulting parameterization is

X
�
t ��� s

�
t � Tγ � γ � N

�
µγ � Γ � (4)

where s
�
t � represents the q-dimensional spline basis at time t, γ the q-dimensional spline coefficients for the

predictor and µγ and Γ the mean and variance of the γ’s. A q-dimensional natural cubic spline will have q � 2
knots. Combining (3) and (4) we arrive at the final link function,

g
�
µi � � β0 �

�
ω1
�
t � s � t � Tγidt

� β0 � βT
1 γi � (5)

where β1 � �
ω1
�
t � s � t � dt. Further, we assume that, at any given time t, instead of X

�
t � , one observes x

�
t �

where,
x
�
t ��� X

�
t � � e

�
t � �

We model e
�
t � as a zero-mean stationary Gaussian process. This term represents the deviations of observa-

tions from the spline fit due to measurement error or other factors. Let xi and ei be the vectors of observations
and measurement errors for individual i at times ti1 � � � � � tini and let Si � � s � ti1 � � � � � � s � tini � � T be the correspond-
ing spline basis matrix. Then the functional generalized linear model can be written as

p
�
yi;θi � φ � � exp

�
yiθi � b

�
θi �

a
�
φ � � c

�
yi � φ �
	 �

g
�
µi � � β0 � βT

1 γi � γi � N
�
µγ � Γ � �

xi � Siγi � ei � ei � N
�
0 � σ2

xI � � i � 1 � � � � � N �
where N represents the number of observed response-predictor pairs. We use spline bases because they al-
low one to fit a large variety of functional forms. Using a basis with a large number of knots models very
flexible curves while restricting the number of knots forces less flexible, possibly more interpretable, curves.
However, the above model can be fit with equal ease using Fourier transforms, orthogonal polynomial bases
or any other finite dimensional basis.

2.2 Specific Models

The FGLM model from the previous section can be used with a large number of response variable distribu-
tions. In this section we give details for three important specific examples.

2.2.1 Functional Linear Regression

The best known special case of GLM is linear regression, in which the response is assumed to be normally
distributed and g is taken to be the identity function. Under these conditions the FGLM model of Section 2.1
reduces to

Yi � β0 � βT
1 γi � εi � εi � N

�
0 � σ2

y � � γi � N
�
µγ � Γ �

xi � Siγi � ei � ei � N
�
0 � σ2

xI � �
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An algorithm for fitting this model is presented in the appendix A.1 and examples of its application are given
in Section 4.1. As with standard linear regression the predicted response will be E

�
Y � x � . It can be shown

that,

γ � x � N ��� σ2
xΓ � 1 � ST S � � 1 � σ2

xΓ � 1µγ � ST x � ��� Γ � 1 � ST S 	 σ2
x � � 1 


� (6)

Hence E
�
Y � x � can be easily computed using

Y � x � N � β0 � βT
1
�
σ2

xΓ � 1 � ST S ��� 1 � σ2
xΓ � 1µγ � ST x � � βT

1
�
Γ � 1 � ST S 	 σ2

x ��� 1β1 � σ2
y



� (7)

2.2.2 Functional Censored Regression

When using life expectancy as the response variable right censoring is a common problem. The functional
linear regression model can be extended to the case where right censoring exists in the response. In this
situation we assume that Yi is observed for i � 1 � � � � � m but for i � m � 1 � � � � � N we observe only that Yi � ci

where ci is a known constant. In all other respects the censored and standard linear regression models are
identical. We present an algorithm for fitting this model in appendix A.2 and an example using the PBC data
in section 4.2. Predictions for new or uncensored responses are given by E

�
Y � x � calculated according to (7).

However, predictions for a censored response are given by

E
�
Yi �Yi � ci � xi � � µY  x � σY  x φ � ci � µY � x

σY � x 

1 � Φ � ci � µY � x

σY � x 
 � (8)

where µY  x and σ2
Y  x are the mean and variance of Y � x from (7) and φ and Φ are the standard normal density

and cumulative distribution functions.

2.2.3 Functional Logistic Regression

Finally we illustrate the case in which the response is a Bernoulli variable. The PBC data using five year
survival as the response is a typical example. In this case E

�
Y � x ��� P

�
Y � 1 � x � represents the survival rate.

This probability can be modeled using several possible link functions including the probit or complementary
log-log. We will demonstrate the technique on the canonical and most commonly applied link function, the
logistic, under which the functional generalized linear model becomes

Yi � � 1 with probability
�
1 � exp

� � β0 � βT
1 γi � � � 1 �

0 with probability
�
1 � exp

�
β0 � βT

1 γi � � � 1 � (9)

xi � Siγi � ei � ei � N
�
0 � σ2

xI � � γi � N
�
µγ � Γ � � (10)

An algorithm for fitting this model and examples of its application are presented respectively in appendix A.3
and section 4.3. In general, a new response is predicted as 1 if E

�
Y � x ��� P

�
Y � 1 � x � � 0 � 5 and 0 otherwise.

Thus we predict Y � 1 if � 1 � exp
� � β0 � βT

1 µγ  x � 
 � 1 � 0 � 5

where µγ  x is computed using (6). It should be noted that, while

P
�
Y � 1 � x � � 0 � 5 iff � 1 � exp

� � β0 � βT
1 µγ  x � 
 � 1 � 0 � 5 �
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in general � 1 � exp
� � β0 � βT

1 µγ  x � 
 � 1
will provide a biased estimate of P

�
Y � 1 � x � . A method to obtain

unbiased probability estimates is presented in section 4.3.

3 The fitting procedure

In this section we outline a general approach to fitting the functional generalized linear model. The observed
data likelihoodfor this model is extremely difficult to optimize directly because the γi’s are unobserved. How-
ever, if the γi’s are treated as missing data then xi and Yi are conditionally independent and the full data log
likelihood factors, up to additive constants, into three distinct parts:

l
�
µγ � Γ � σ2

x � β0 � β1 � φ � � N

∑
i � 1

�
yiθi � b

�
θi �

a
�
φ � � c

�
yi � φ ��� (11)

� N

∑
i � 1

�
ni

2
logσ2

x � 1
2σ2

x

�
xi � Siγi � T � xi � Siγi ��� (12)

� N

∑
i � 1

�
1
2

log �Γ � � 1
2

�
γi � µγ � T Γ � 1 � γi � µγ ��� � (13)

We use the EM algorithm (Dempster et al., 1977; Laird and Ware, 1982) which iterates between a maxi-
mization and an expectation step to optimize the observed likelihood. Since θi is a function of β0 and β1 the
M-step involves maximizing the expected values of (11) with respect to β0 � β1 and φ, (12) with respect to σ2

x
and (13) with respect to µγ and Γ. The three maximizations all involve separate parameters so the M-step
can be performed in three parts. Maximizing the expected value of (12) and (13) involves setting

σ2
x � 1

∑ni

N

∑
i � 1

� � xi � Siγ̂i � T � xi � Siγ̂i � � trace � SiVγi
ST

i � � � (14)

µγ � 1
N

N

∑
i � 1

γ̂i � (15)

Γ � 1
N

N

∑
i � 1

�
Vγi � � γ̂i � µγ � � γ̂i � µγ � T � � (16)

where,

γ̂i � E
�
γi � xi � Yi � � Vγi

� Var
�
γi � xi � Yi � � (17)

The maximization procedure for (11) depends on the distribution of Yi.
The E-step consists of calculating the expected value and variance of the γi’s given xi, Yi and the current

estimates of the parameters. The procedure for calculating these values also depends on the distribution Yi.
For certain distributions there is a closed form equation while for others a Monte Carlo approach must be
adopted.

The fitting procedure iterates through these steps until the parameters have converged. Details of the
fitting procedures for the linear, censored and logistic regression models are presented in the appendixes.
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Method Simulation
1 2 3 4 5 6

Simple Regression 97 � 2 97 � 2 97 � 2 78 � 6 78 � 6 100 � 2
Mean Regression 92 � 3 92 � 3 92 � 3 32 � 7 32 � 7 100 � 5
Multiple Regression 91 � 3 91 � 3 91 � 3 9 � 6 9 � 6 103 � 3
Filtering Regression 166 � 5 98 � 8 NA 182 � 0 NA 72 � 1
Functional Regression 23 � 6 88 � 3 37 � 9 2 � 7 2 � 1 13 � 8
Optimal Regression 22 � 7 22 � 7 22 � 7 1 � 2 1 � 2 13 � 7

Table 2: Results from the simulation study of section 4.1. The FGLM method produces close to optimal
results for all but the second simulation.

4 Examples

In this section we present several applications of the functional generalized linear models approach. In sec-
tion 4.1 we use a simulation study to illustrate some situations in which the functional linear regression ap-
proach can be expected to provide advantages over other methods. In sections 4.2 and 4.3 the functional
censored and functional logistic regression methods are applied to the primary biliary cirrhosis (PBC) data
set.

4.1 Functional Linear Regression Simulation Study

We performed six simulations whose purpose was to predict a time independent real valued response based on
longitudinal observations. Four different “straw men” were compared to the functional regression approach
of this paper. The results are summarized in table 2. The first approach, simple regression, used the first
observation for each individual as the predictor in a standard linear regression. The second, mean regression,
used the average of the observations for each individual as the sole predictor. In the third approach, multiple
regression was performed on the time-ordered observations. This method could only be adopted because
every individual had observations at the same number of time points. The final method, filtering regression,
was a less simplistic approach in which a natural cubic spline was fit to each individual’s observations and
the spline coefficients were used as the predictors in a multiple regression.

Simulation 1 involved producing data from the functional linear regression model of section 2.2.1. First
100 random γ’s were generated from a six-dimensional normal distribution with an identity covariance ma-
trix. Next, 100 curves were created by using each of the γ’s as the coefficients of a natural cubic spline with
four equally spaced knots. The curve fragments to be used as the predictors, were then generated by sam-
pling at six random locations from each of the curves and adding a small amount of random normal noise.
Finally, the response variables were generated by multiplying each of the γ’s by a fixed six-dimensional vec-
tor and adding a small amount of random normal noise. All methods were fit using this training data. A
separate test set of size 1000 was generated using the same distribution. The average squared deviations of
the predictions of each method from the observed test set responses are recorded in the first column of table 2.
The deviations have been standardized by dividing by the mean squared deviation achieved by simply using
the mean response from the training data. For example the mean squared deviation of the simple regression
method was 97 � 2% of that achieved by using the mean of the training responses. The numbers are analogous
to 1 � R2 but calculated on the new test data. The final row of table 2 lists results for the optimal regression
which uses E

�
Y � x � calculated from the true simulation distribution and hence has the lowest possible squared

deviation. Naturally the optimal regression approach could not be used on a real data set where the distribu-
tion is unknown. The functional regression method performed favorably with deviations of 23 � 6% compared
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to 22 � 7% for the optimal regression. The straw man methods all performed poorly. The simple, mean and
multiple regression methods worked slightly better than the sample mean i.e. had results slightly less than
100%. However, the filtering regression approach produced considerably worse results.

The filtering and functional regression methods both require the choice of a spline basis or, equivalently,
knot locations. In simulation 1 the correct knot locations were used. In simulations 2 and 3 we illustrate the
effect of incorrect knot selection. Simulation 2 fitted the functional and filtering regression methods using
a two knot spline while simulation 3 fitted a six knot spline. Both simulations used the test and training
data from simulation 1. In simulation 2 the filtering method improved to a level comparable to the other
straw men and the performance of the functional regression method declined considerably, although it still
produced results superior to those of the other approaches. In the third simulation the filtering regression
method could not be used because at least eight observations were required to fit a natural cubic spline with
six knots and each curve had only six measurements. However, there was no difficulty in fitting the FGLM
model and its predictions were again considerably better than those of the other approaches. In general it has
been our experience that the FGLM method suffers less from an overly flexible spline basis than it does from
an overly rigid basis.

Simulations 4 and 5 explored the effect of violations of several of the FGLM model assumptions. Instead
of the assumed spline basis, the training and test data were generated according to a fourth degree polyno-
mial with no knots. In addition, the response and predictor error terms and the γ’s were produced using a t
distribution with 10 degrees of freedom. In simulation 4 the FGLM and filtering regression methods were
fit using a three knot spline while a six knot spline was used in simulation 5. The optimal regression results
were again obtained using the correct model specification. Despite the incorrect modeling assumptions the
FGLM approach still produced results close to optimal, with the six knot spline giving a slightly better fit
than the three knot spline. Of the straw men the multiple regression method worked best but was still clearly
inferior to FGLM. The filtering regression method again performed poorly with no fit possible for the six
knot spline. In general, in sparse data situations, the filtering approach works best when using low dimen-
sional bases. For example, when using a two knot spline the standardized mean squared error for the filtering
regression reduced to 17 � 1%.

While this article has concentrated on spline bases, any finite dimensional basis can be equally easily ap-
plied. To illustrate the improvements that are possible when using FGLM, even for relatively simple curves,
the final simulation made use of orthogonal polynomials. The training and test data were produced in a sim-
ilar fashion to those of the first simulation except that the curves were generated from a standard cubic with
no constant term. The filtering and functional regression procedures were then fit using a three dimensional
orthogonal polynomial basis instead of a spline basis. This situation is more favorable to the filtering ap-
proach because only three parameters need be estimated for each curve as opposed to six in the first simu-
lation. However, while the filtering method does perform considerably better than the other straw-men, the
functional regression approach still provides a significantly superior fit.

These simulations concentrate on situations in which the predictors have been sparsely sampled. In these
circumstances the FGLM approach generally provides considerable improvement over the filtering method.
In data sets with a large number of observations per predictor the two methods will give more similar results.

4.2 Functional Censoring Example

In this section we illustrate the FGLM approach on the primary biliary cirrhosis (PBC) data set. We choose to
predict life expectancy, from date of enrollment in the study, based on the first four measurements of bilirubin
level. For each individual the number of observations varied from one to sixteen. After removing all those
patients with fewer than four observations 169 remained of whom 65 died prior to the end of the study. Since
104 of the responses were right censored, we fit the functional censored regression model of section 2.2.2.
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Coefficient Estimate Std. Error t P-value

β0 5268 � 66 355 � 2 14 � 83 � 0 � 001
β11 7 � 60 2 � 2 3 � 39 0 � 001
β12 � 27 � 85 9 � 8 � 2 � 85 0 � 004
β13 � 12 � 69 7 � 0 � 1 � 80 0 � 071
β14 � 1 � 62 5 � 4 � 0 � 30 0 � 765
β15 36 � 73 8 � 8 4 � 18 � 0 � 001
β16 27 � 89 18 � 7 1 � 49 0 � 136

Table 3: Estimated coefficients and significance levels for the Mayo Clinic trial using life expectancy as
the response. Several of the coefficients are highly significant so there appears to be a relationship between
predictor and response.

A natural cubic spline with four equally spaced knots, or equivalently six dimensions, was used to create the
basis matrix. The average time of observation for patients who died was only seven days lower than for those
who survived, indicating that there was no bias from differences in measurement times between censored and
uncensored people.

The estimated coefficients are shown in table 3. β1 j is the jth element of β1 and gives the weight applied
to the corresponding element of γ in calculating g

�
µ � . The standard error estimates were obtained using

Var

�
β0

β1
��� Var

� � E � AT A � � � 1
E
�
AT � Y � x � � � E � AT A � � � 1

E
�
AT � Var � Y � x � E � A � �E � AT A � � � 1 � (18)

where A is an m by q � 1 matrix whose ith row is
�
1 � γT

i � . The various components of (18) are estimated during
the fitting procedure so no extra computations are required. Equation (18) only makes use of the uncensored
responses Y1 � � � � � Ym, and ignores the partial information provided by the censored responses. As a result it
may tend to somewhat overestimate the standard errors. However, despite this fact, when the asymptotic
normality of the maximum likelihood estimates is used to calculate the p-values, there are several highly
significant coefficients. In addition to p-values for individual coefficients it is possible to estimate the overall
significance level of the fit using the fact that

βT
1 Var

�
β1 ��� 1β1 (19)

will asymptotically have a χ2
q distribution under the hypothesis of no relationship between x and Y . Note that

Var
�
β1 � can be calculated from (18). For this data set (19) gives a value of 68 � 75 with a corresponding p-value

of less than 0 � 001. There is strong evidence of a relationship between bilirubin levels and life expectancy.
Generalized linear models can be used to either gain insights into the relationship between predictor and

response or to estimate the response given values of a predictor. Unfortunately, there is no simple way to
relate the coefficients in table 3 to the predictor, bilirubin. The best we can say is that a relationship between
x and Y exists. We address this problem in detail in section 5. However, using the FGLM method to make
predictions is straight forward. Censored responses are estimated by using (8) and uncensored responses by
using E

�
Y � x � from (7).

This data set was collected to study the effectiveness of the drug D-penicillamine. To test whether there
was any effect from the drug on life expectancy we fit the functional censoring model separately to the control
and treatment groups and estimated life expectancy on the censored observations. There was no apparent
improvement for those on the medication. In fact there was some evidence that the treatment group may be
performing worse than the control group with a mean life expectancy of 4237 days for the former and 4618
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for the latter. However, the mean survival times are not significantly different at the 5% level. In section 6
we directly examine the drug effect by extending the model to include multiple predictors.

4.3 Functional Logistic Regression Example

In this section we illustrate the binary response version of FGLM to model five year survival on the PBC
data set. The framework is identical to that of section 4.2 except that now Y equals one or zero depending
on whether the patient did or did not survive five years from date of registration. Three individuals who
were studied for less than five years were removed from the data set. As with regular logistic regression the
standard errors of β0 and β1 can be estimated using the diagonal elements of the inverse Hessian,

Var

�
β0

β1
����� ∑

i

E

�
πi
�
1 � πi � πi

�
1 � πi � γT

i
πi
�
1 � πi � γi πi

�
1 � πi � γiγT

i
��� � 1 � (20)

where πi � P
�
Yi � 1 � xi � . The Hessian is computed during the fitting process so no extra calculations are re-

quired. It is possible to estimate the overall significance level of the fit using (19) where Var
�
β1 � is calculated

from (20). For this response the chi-square statistic is 22 � 54 with a corresponding p-value of 0 � 002. Hence
there is strong evidence of a relationship between bilirubin observations and the probability of an individual
surviving five years.

Once again, interpretation of the β1 coefficients poses a problem which we address in Section 5. How-
ever, prediction of responses can still be achieved with relative ease. Generally one predicts Y � 1 iff

π � PY � γ � Y � 1 � � Eγ
�
1 � exp

� � β0 � βT
1 γ � ��� 1 � 0 � 5 �

It is possible to estimate π in a variety of ways. The most accurate approach is to simulate γ �1 � � � � � γ �n from (6)
and produce the Monte Carlo estimate,

πn
MC � 1

n

n

∑
j � 1

�
1 � exp

� � β0 � βT
1 γ � j � � � 1

� (21)

Equation (21) can be calculated quickly for moderate n. However, it may be computationally expensive if a
large number of estimates are required. A simple alternative is to use the biased “plug in” approximation,

πPlug � � 1 � exp
� � β0 � βT

1 E
�
γ � x � � ��� 1 �

where E
�
γ � x � is given by (6). It can be shown that πPlug � 0 � 5 iff π∞

MC � 0 � 5 � Hence, if prediction of Y is the
sole objective and computational speed is an issue πPlug may be used. However, if accurate probability esti-
mates are required the more precise Monte Carlo procedure is preferable. The functional logistic regression
approach produces fairly accurate predictions for the PBC data with only 15 out of 166 patients misclassified.

5 Assessing the relationship between predictor and response

Although the results from sections 4.2 and 4.3 clearly showed a relationshipbetween bilirubin levels and both
life expectancy and five year survival, they gave no simple way of understanding the form of the relationship.
For instance, in standard linear regression a positive sign on the β coefficient indicates a positive relationship
between x and Y , but for FGLM there is no such simple explanation. In this section we develop two methods
to improve the interpretability of the FGLM results. In section 5.1 we use a functional principal components
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decomposition of the predictor curves and in section 5.2 we show how to compute the weight function ω1
�
t �

from (3). The function ω1
�
t � is the analogue of the coefficients in a standard linear regression.

5.1 Functional principal components

We can decompose the covariance matrix of the γi’s into

Γ � ∆D∆T �
where ∆ is the q by q matrix of eigenvectors of Γ and D is the diagonal matrix of eigenvalues. Then an
alternative parameterization of γ is

γ � ∆α �
where Var

�
α� � D. Under this formulation the functional generalized linear model of section 2.1 can be

rewritten as

p
�
yi;θi � φ � � exp

�
yiθi � b

�
θi �

a
�
φ � � c

�
yi � φ �
	

g
�
µi � � β �0 � β �1T αi � αi � N

�
0 � D �

xi �αi � Si
�
µγ � δ1αi1 �������
� δqαiq � � ei � ei � N

�
0 � σ2

xI � (22)

where

β �0 � β0 � βT
1 µγ � and β �1 � ∆T β1 � (23)

Note that (22) provides a functional principal components decomposition of X
�
t � (Shi et al., 1996; Ramsay

and Silverman, 1997; James et al., 2000). This model is easily fit by implementing the EM algorithm of
section 3, performing an eigenvalue decomposition of the fitted Γ to produce ∆ and D, and using (23) to
obtain the transformed coefficients. This model’s principal advantage is that each β coefficient has a natural
interpretation in terms of the functional principal component curves of the predictor. For example, if the
identity link is used, β �11 gives the average increase in Yi for a one unit increase in αi1. From (22) we note
that a one unit increase in αi1 will cause Xi

�
t � to increase by s

�
t � Tδ1 above the population average. Hence,

β �11 can be interpreted as the average increase in Yi when Xi
�
t � increases by s

�
t � Tδ1.

Figure 1 illustrates the principal components approach on the fits of sections 4.2 and 4.3 where bilirubin
was used as a predictor of life expectancy and five year survival. The plot gives the mean and first three
principal component curves, for bilirubin levels, with life expectancy as the response. The curves when using
five year survival as the response where almost identical. The dotted lines correspond to 90% pointwise
confidence intervals. They were produced by generating bootstrapped γ’s from a normal distribution with
mean µγ and variance Γ and then using these γ’s to estimate a new variance matrix Γ � and hence new principal
component curves. This procedure was repeated 100 times and at each time point the 5th and 95th largest
values for the curves were taken as the upper and lower confidence bounds. Upon examining the mean curve
it appears that the average bilirubin level is increasing over time. Liver failure is generally associated with
increasing bilirubin levels so, as a whole, the population is getting sicker.

The first principal component curve models individuals with bilirubin levels starting above the average
and continuing to increase. Thus an individual with average bilirubin levels will have an αi1 of zero, one with
bilirubin levels above average and continuing to climb will have a positive αi1 and one with bilirubin levels
below average and declining will have a negative αi1. Table 4 gives the transformed coefficients using both
life expectancy and five year survival as the response. Notice that β �11 is negative for both responses ( � 10 � 41
and � 0 � 016) indicating that, for example, an individual with bilirubin levels initially 0 � 2 mg/dl above the
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Life Expectancy Five Year Survival
Coef. Estimate Std. Error t P-value Estimate Std. Error t P-value

β �0 4440 � 2 268 � 0 16 � 57 � 0 � 001 2 � 88 0 � 417 6 � 91 � 0 � 001
β �11 � 10 � 41 1 � 9 � 5 � 52 � 0 � 001 � 0 � 016 0 � 004 � 4 � 60 � 0 � 001
β �12 0 � 11 6 � 1 0 � 02 0 � 986 0 � 021 0 � 011 2 � 03 0 � 043
β �13 1 � 54 10 � 5 0 � 15 0 � 883 � 0 � 020 0 � 019 � 1 � 04 0 � 297
β �14 � 16 � 53 9 � 3 � 1 � 77 0 � 077 � 0 � 079 0 � 046 � 1 � 73 0 � 083
β �15 � 50 � 98 14 � 6 � 3 � 50 0 � 001 � 0 � 192 0 � 100 � 1 � 91 0 � 056
β �16 11 � 93 12 � 5 0 � 95 0 � 340 � 0 � 007 0 � 370 � 0 � 02 0 � 985

Table 4: Transformed coefficients and significance levels for the Mayo Clinic trial using life expectancy and
five year survival as the response. The first and fifth principal component curves are significant for life ex-
pectancy while the first and second are significant for five year survival.

mean and increasing by day 800 to 0 � 35 mg/dl above average can be expected to live 104 days below the
average and has an odds ratio of e � 0 � 16 � 0 � 85 of surviving five years relative to an average person. Since
increasing bilirubin levels are generally associated with liver failure this is a clinically sensible result. The
first principal component explains 91% of the variance in the γ’s and is highly significant for both the life
expectancy and five year survival responses. Clearly this is an important predictor.

The second principal component curve models individualswith below average bilirubin levels at the start
that, relative to the mean, increase and then begin to decline again. This component explains about 6% of the
variability in the γ’s and is marginally significant for five year survival but not life expectancy. An individual
with bilirubin levels initially 0 � 2 mg/dl below the mean increasing to 0 � 4 mg/dl above the mean by day 600
and then declining again will have an odds ratio of e0 � 21 � 1 � 23 of surviving five years relative to an average
person. The third component models a cubic pattern. It only explains about 2% of the variability in the γ’s
and is not a significant predictor.

The other three components explain only a small fraction of the variability in the γ’s. Interestingly the
fifth principal component is significant for life expectancy. This suggests that we may be underestimating the
standard errors for the higher level principal components. As one would expect, given that the γ’s exhibit less
variability in these directions, the higher level curves generally have greater standard errors. Notice also that
the life expectancy coefficient β �0 � 4440 can now be interpreted as the expected survival time of an individual
with bilirubin levels equal to the population average. Also the five year survival coefficient β �0 � 2 � 88 gives
the probability of an average individual surviving five years as 1 	 � 1 � e � 2 � 88 ��� 0 � 95.

5.2 Weight function

An alternative method for visualizingthe relationship between predictor and response is to plot the weight
function, ω1

�
t � . This function gives the weight placed on the predictor X

�
t � at each time in determining the

value of the response. High absolute values of the curve indicate times with a large influence while small
values correspond to periods with little influence. We can model ω1

�
t � using the same spline basis as for the

predictors Xi
�
t � i.e. ω1

�
t ��� ηT

1 s
�
t � . In this case, provided s

�
t � is an orthogonal basis,

�
ω1
�
t � Xi

�
t � dt � ηT

1

�
s
�
t � s � t � Tdtγi � ηT

1 γi �

Hence, an alternative formulation of (5) would be

g
�
µi ��� β0 � ηT

1 γi �
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Figure 1: Mean and first three principal component curves for bilirubin. Solid lines are the estimates while the dotted
lines are 90% pointwise confidence intervals.

As a result η1 and β1 are identical and ω1
�
t � can be estimated by using βT

1 s
�
t � . Figure 2 shows a plot of ω1

�
t �

for the PBC data using life expectancy as the response. The weights are negative in the early and late time
periods indicating that people with high bilirubin levels in these stages have lower life expectancies. This
confirms the results from the previous section. Interestingly, the middle time periods have slightly positive
coefficients indicating higher life expectancy for high bilirubin levels between days 200 to 600. However,
this result must be interpreted carefully because patients with high levels in this time period will likely have
high bilirubin levels at the early and late time periods also.

6 Multiple predictor variables

The functional generalized linear model of section 2.1 assumes only one functional predictor variable. In
practice one may wish to perform a regression with multiple functional and/or finite dimensional predictors.
For the ith person we denote the observations from the jth functional predictor by xi j, the corresponding
spline basis matrix by Si j and the vector of fixed dimensional predictors by zi. Then, in analogy with gener-
alized linear models, we assume a linear relationshipbetween predictors. When fitting p functional predictors

13



Day
0 200 400 600 800

-4
-3

-2
-1

0
1

2

ω1
�
t �

Figure 2: A plot of ω1
�
t � . This curve gives the weight placed on the bilirubin level for an individual at any given time.

the FGLM model becomes

p
�
yi;θi � φ � � exp

�
yiθi � b

�
θi �

a
�
φ � � c

�
yi � φ �
	 �

g
�
µi � � β0 � βT

Z zi � p

∑
j � 1

βT
j γi j � γi j � N

�
µ j � Γ j � �

xi j � Si jγi j � ei � ei � N
�
0 � σ2

x jI � �

Here β j denotes the coefficient vector for the jth functional predictor and βZ the coefficient vector for the
finite dimensional predictors. The mean and variance of γi j for the jth predictor are given by µ j and Γ j and
the γi j’s are assumed independent. As with the model of section 2.1, the extended FGLM model can be fit to
a large variety of response variables. In particular it provides generalizations of multiple linear and logistic
regression as well as censored regression with multiple predictors.

The functional multiple generalized linear model is fit using an EM procedure similar to that of section 3.
Details of the functional multiple linear regression (FMLR) fitting algorithm are provided in appendix A.4.
To aid interpretation one can decompose each of the functional predictors into their respective principal com-
ponent curves and transform the coefficients according to

β �0 � β0 � p

∑
j � 1

βT
j µ j � and β � j � ∆T

j β j � (24)

where ∆ j is the matrix of eigenvectors of Γ j .
To illustrate this approach we used two functional predictors, bilirubin and albumin levels, as well as an

indicator of D-penicillamine use, to predict life expectancy. The results are shown in figure 3 and table 5.
Figure 3 illustrates the mean curve and first two principal component curves for both bilirubin and albumin.
The bilirubin curves are extremely similar to those of section 5. The mean curve for albumin indicates de-
creasing levels. A healthy liver secretes albumin so this is further indication of a sickening population. The
first principal component models individuals with above average albumin levels with a slight increase and
then decrease relative to the mean while the second component models a cubic relationship.
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Coef. Est. Sd Err t P-value Coef. Est. Sd. Err t P-value

β �0 4399 � 2 392 � 2 11 � 22 � 0 � 001 βZ � 207 � 5 520 � 1 � 0 � 40 0 � 690
β �11 � 11 � 2 2 � 9 � 3 � 90 � 0 � 001 β �21 75 � 9 27 � 7 2 � 73 0 � 006
β �12 4 � 1 9 � 3 0 � 44 0 � 657 β �22 64 � 4 36 � 6 1 � 76 0 � 078

Bili- β �13 � 6 � 1 13 � 2 � 0 � 46 0 � 646 Alb- β �23 42 � 8 46 � 8 0 � 92 0 � 360
rubin β �14 45 � 4 15 � 8 2 � 88 0 � 004 umin β �24 � 100 � 7 61 � 0 � 1 � 65 0 � 099

β �15 � 2 � 6 16 � 6 � 0 � 16 0 � 874 β �25 � 312 � 6 70 � 4 � 4 � 44 � 0 � 001
β �16 6 � 3 6 � 6 0 � 96 0 � 336 β �26 498 � 9 80 � 9 6 � 17 � 0 � 001

Table 5: Transformed coefficients and significance levels for the PBC data using life expectancy as the re-
sponse and bilirubin, albumin and drug as the predictors. The first and fourth principal component curves
are significant for bilirubin while the first, fifth and sixth are significant for albumin. Drug is not a significant
predictor.

The standard errors in table 5 are calculated using (18) where the ith row of A is now
�
1 � γi1 � � � � � γip � zi � .

We note that for both bilirubin and albumin the first principal component is highly significant. The negative
coefficient for β �11 and positive coefficient for β �21 imply increased life expectancy for individuals with lower
bilirubin and higher albumin levels, both clinically sensible results. There is strong evidence that albumin
and bilirubin are both significant predictors for life expectancy. One may also directly gauge the effect of the
drug D-penicillamine on life expectancy by examining βZ. The estimated coefficient is negative suggesting
that the drug may actually reduce life expectancy, although the result is not statistically significant. Finally,
notice that β14 � β25 and β26 are all significant. Since the first three principal components explain almost all
the variability in bilirubin and albumin levels it seems likely that the model has underestimated the standard
errors of these coefficients.

7 Missing data

This paper has focused on the situation where the predictors have a functional form so that a spline basis
matrix Si is appropriate. However, through the use of an alternative basis matrix, this methodology may be
extended immediately to GLM with finite dimensional predictors that suffer from missing data. For finite,
q-dimensional predictors, there will in general be no reason to assume a particular functional relationship
between observations from adjacent dimensions so a spline basis matrix would be inappropriate. For an ob-
servation xi, with the first m dimensions observed and the remaining q � m missing, a natural choice would
be to replace Si by an m by q matrix with the first m columns consisting of the identity matrix and remain-
ing entries zero. This parameterization allows the data to directly model any relationship between different
dimensions through the covariance matrix Γ. Using this basis matrix, the model of section 2.1 provides a
natural representation of the relationship between a predictor, containing missing data, and a response which
means that the FGLM fitting procedure can be implemented immediately in this setting. The FGLM approach
provides three useful tools for working with missing data. First, it enables GLMs to be fit when missing data
is present in the predictors. Second, the estimated γ’s can be used to impute the missing observations. Finally,
the eigen-decomposition of Γ provides a method for performing principal components on missing data.

A simulation study was conducted to illustrate the improvements that are possible when using FGLM to
perform linear regression with missing predictor values. Six simulations were conducted. For each a train-
ing data set was created by randomly sampling 50 γ’s from a mean zero five-dimensional multivariate normal
distribution. The first three data sets had correlations between each dimension of 0 � 5 while the other three
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Method ρ � � 5 ρ � � 9
5% miss. 10% miss. 20% miss. 5% miss. 10% miss. 20% miss.

Substitution 2 � 02 3 � 92 8 � 08 1 � 40 2 � 89 7 � 51
FGLM 1 � 64 2 � 28 5 � 20 0 � 32 0 � 61 0 � 92
Optimal 1 � 40 2 � 21 4 � 79 0 � 30 0 � 52 0 � 75

Table 6: Results from missing data simulations. The FGLM approach achieves squared deviations very close
to that of the optimal fit while the substitution method has consistently higher deviations.

had correlations of 0 � 9. The responses were produced as a linear combination of the γ’s plus a small amount
of random normal noise. Finally, the predictors were created by randomly removing a fixed percentage of
the elements from each γ, to simulate the missing data, and adding random normal measurement errors to
the remaining elements. Three procedures were fit to these data sets. The first, a simple approach commonly
applied in practice, substituted the mean of each dimension for any missing observations before applying a
standard linear regression fit. We call this method substitution regression. The second was the FGLM ap-
proach using the basis matrix described earlier. The final method was the optimal fit where the response is
predicted using the true distribution from which the data were simulated. This procedure gives the best possi-
ble estimates but cannot be used on real problems. We compared the fitted models for each of the procedures
using a separate test set of 1000 observations drawn from the same distributionas the training data. The mean
squared deviations between predictions and actual responses, standardized in the same manner as table 2, are
shown in table 6. The first three columns show results for a correlation of 0 � 5 and data missing at random with
probabilities 5% � 10% and 20% while the remaining three columns correspond to a correlation of 0 � 9. Notice
that the FGLM approach is producing deviations very close to the lowest possible. The substitution regres-
sion method produces consistently higher deviations. As we would expect the FGLM approach provides the
greatest advantages over the substitution method when there are larger correlations between dimensions and
higher percentages of missing data.
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A Appendix

A.1 Functional Simple Linear Regression Algorithm

When Y is assumed to have a normal distribution with the identity link function then the distribution of γ
conditional on x and Y is normal with

Var
�
γ � x � Y � � � Γ � 1 � ST S 	 σ2

x � β1βT
1 	 σ2

y � � 1 �
E
�
γ � x � Y � � Var

�
γ � x � Y � � Γ � 1µγ � ST x 	 σ2

x � β1
�
y � β0 � 	 σ2

y � �
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Hence

Vγi
� � Γ � 1 � ST

i Si 	 σ2
x � β1βT

1 	 σ2
y � � 1 � (25)

γ̂i � Vγi

� Γ � 1µγ � ST
i xi 	 σ2

x � β1
�
yi � β0 � 	 σ2

y � (26)

Furthermore, (11) reduces to

� 1
2

N

∑
i � 1

�
logσ2

y � � yi � β0 � βT
1 γi � 2 	 σ2

y � � (27)

Hence, using standard least squares, the maximization of the expected value of (11) is achieved using (28)
and (29), �

β0

β1
� � �

N ∑i γ̂T
i

∑i γ̂i ∑i
�
Vγi � γ̂iγ̂

T
i � � � 1 �

∑i yi

∑i γ̂iyi
� � (28)

σ2
y � 1

N

N

∑
i � 1

� �
Yi � β0 � βT

1 γ̂i � 2 � βT
1Vγi

β1 � � (29)

Thus the functional linear regression algorithm iterates through a two step procedure until the param-
eters have converged.

1. In the E-step γ̂i and Vγi
are calculated according to (26) and (25) using the current estimates of the

parameters.

2. Then in the M-step the parameters σ2
x � µγ � Γ � β0 � β1 and σ2

y are calculated using (14), (15), (16), (28)
and (29) respectively.

3. Return to 1. unless the parameters have converged.

A.2 Functional Censored Regression Algorithm

The functional censored regression model is almost identical to that of linear regression with the exception
that a portion of the responses are assumed censored and hence missing. The EM algorithm has been com-
monly applied to this problem when the predictor has finite dimension (Schmee and Hahn, 1979). One still
estimates σ2

x � µγ and Γ using (14), (15) and (16). Likewise, for responses that have been observed γ̂i and Vγi

are still calculated using (26) and (25). There is no simple closed form solution for γ̂i and Vγi
when the re-

sponse is censored but they may still be computed using a simple form of Monte Carlo estimation. For the ith
censored response, generate a sample, γ �1 � � � � � γ �n, according to the distribution given by (6). Then an unbiased
estimate for γ̂i is,

γ̂i � ∑n
j � 1 γ � jP � Yi � ci � γ � j �

∑n
j � 1 P

�
Yi � ci � γ � j � � (30)
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where P
�
Yi � ci � γ � � � 1 � Φ � ci � β0 � βT

1 γ �
σy



. Similarly Vγi

can be estimated using

Vγi
� ∑n

j � 1 γ � j γ � jT P
�
Yi � ci � γ � j �

∑n
j � 1 P

�
Yi � ci � γ � j � � γ̂iγ̂

T
i � (31)

β0 and β1 are estimated using a similar equation to (28),�
β0

β1
� � �

N ∑i γ̂T
i

∑i γ̂i ∑i
�
Vγi � γ̂iγ̂

T
i � � � 1 �

∑m
i � 1 yi � ∑N

i � m
�

1 E
�
Yi �Yi � ci � xi �

∑m
i � 1 γ̂iyi � ∑N

i � m
�

1 E
�
γiYi �Yi � ci � xi � � � (32)

where E
�
Yi �Yi � ci � xi � is given by (8) and E

�
γiYi �Yi � ci � xi � can be estimated using the above mentioned

Monte Carlo approach with

E
�
γiYi �Yi � ci � xi � � ∑n

j � 1 γ � j E � Yi �Yi � ci � γ � j � P � Yi � ci � γ � j �
∑n

j � 1 P
�
Yi � ci � γ � j � � (33)

and

E
�
Yi �Yi � ci � γ � j � � β0 � βT

1 γ � j � σyφ � � ci � β0 � β1γ � j � 	 σy



1 � Φ � � ci � β0 � β1γ � j � 	 σy

 �

Finally σ2
y is estimated using

σ2
y � 1

N

N

∑
i � 1

E
�
ε2

i �Yi � xi � � 1
N

�
m

∑
i � 1

� � Yi � β0 � βT
1 γ̂i � 2 � βT

1Vγi
β1

 � N

∑
i � m

�
1

E
�
ε2

i �Yi � ci � xi ��� (34)

where an unbiased estimate of E
�
ε2

i �Yi � ci � xi � is obtained using the Monte Carlo approach with

E
�
ε2

i �Yi � ci � xi � � ∑n
j � 1

�
σ2

yP
�
Yi � ci � γ � j � � σy

�
ci � β0 � βT

1 γ � j � φ � ci � β0 � βT
1 γ� j

σy
	 �

∑n
j � 1 P

�
Yi � ci � γ � j � � (35)

Thus the functional censored regression algorithm iterates through a two step procedure until the pa-
rameters have converged.

1. In the E-step we calculate the expected values and variances of the γi’s using (26), (30), (25) and (31)
and the conditional expectations of Yi, Yiγi and ε2

i given Yi � ci using (8), (33) and (35)

2. Then in the M-step the parameters, σ2
x � µγ � Γ � β0 � β1 and σ2

y , are estimated using (14), (15), (16), (32)
and (34) respectively.

3. Return to 1. unless the parameters have converged.

This procedure is an example of Monte Carlo EM (Tanner, 1994).

A.3 Functional Logistic Regression Algorithm

As with the previous two algorithms, the logistic regression fitting procedure estimates σ2
x � µγ and Γ using

(14), (15) and (16). There is no closed form solution for γ̂i or Vγi
so we again make use of Monte Carlo.
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For the ith response, generate a sample, γ �1 � � � � � γ �n, according to the distribution given by (6). Then unbiased
estimates for γ̂i and Vγi

are given by,

γ̂i � ∑n
j � 1 γ � j P � Y � yi � γ � j �

∑n
j � 1 P

�
Y � yi � γ � j � and Vγi

� ∑n
j � 1 γ � j γ � jT P

�
Y � yi � γ � j �

∑n
j � 1 P

�
Y � yi � γ � j � � γ̂iγ̂

T
i � (36)

where P
�
Y � yi � γ � j � is calculated from (9).

In analogy with the iteratively re-weighted least squares approach used to fit standard logistic regression
problems, the expected value of (11) can be maximized by choosing β0 and β1 such that

E � ATWA � �
β0

β1
� � E � ATWZ � (37)

where A is an N by q � 1 matrix whose ith row is
�
1 � γT

i � , W is a diagonal matrix with the ith diagonal πi
�
1 � πi � ,

Z is a vector with ith element β0 � γT
i β1 � � yi � πi � 	 πi

�
1 � πi � and πi � P

�
Yi � 1 � xi � . Since πi depends on

the current parameter estimate an iterative approach must be taken to solve this equation where β0 and β1 are
updated by incrementing them by,

� E � ATWA � � � 1
E � ATWZ � ��� ∑

i

E

�
πi
�
1 � πi � πi

�
1 � πi � γT

i
πi
�
1 � πi � γi πi

�
1 � πi � γiγT

i
� � � 1

E

�
∑i
�
yi � πi �

∑i
�
yi � πi � γi

� � (38)

Implementing (37) requires calculating E
�
πi
�
1 � πi � � � E � πi

�
1 � πi � γi � � E � πi

�
1 � πi � γiγT

i � � E � yi � πi � and E
� �

yi �
πi � γi � . These quantities are estimated using

∑n
j � 1 U jP

�
Y � yi � γ � j �

∑n
j � 1 P

�
Y � yi � γ � j � (39)

where

U j �
�������� �������

P
�
Y � 1 � γ � j � � 1 � P

�
Y � 1 � γ � j � � for E

�
πi
�
1 � πi � �

γ � j P � Y � 1 � γ � j � � 1 � P
�
Y � 1 � γ � j � � for E

�
πi
�
1 � πi � γi �

γ � j γ � j T P
�
Y � 1 � γ � j � � 1 � P

�
Y � 1 � γ � j � � for E

�
πi
�
1 � πi � γiγT

i ��
yi � P

�
Y � 1 � γ � j � � for E

�
yi � πi �

γ � j � yi � P
�
Y � 1 � γ � j � � for E

� �
yi � πi � γi � �

Thus the functional logistic regression algorithm iterates through a two step procedure until the param-
eters have converged.

1. In the E-step the expected value and variance of the γi’s are calculated using (36) and the expected
values of πi

�
1 � πi � � πi

�
1 � πi � γi � πi

�
1 � πi � γiγT

i � yi � πi and
�
yi � πi � γi are calculated using (39).

2. In the M-step the parameters σ2
x � µγ � Γ � β0 and β1 are estimated using equations (14), (15), (16) and (37).

3. Return to 1. unless the parameters have converged.

In practice we have found that one step of (38) provides a reasonable estimate of the coefficients. This saves
a great deal of computation as the various expected values only have to be calculated once per M-step.
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A.4 Functional Multiple Linear Regression Algorithm

Let γ �iT � � γT
i1 � � � � � γT

ip � . When Y is assumed to have a normal distribution with the identity link function then
the distribution of γ �i, conditional on xi j and Yi, is normal with

E
�
γ �i � xi j � Yi � � Var

�
γ�i � xi j � Yi ��� 1 ��� Γ � 1

1 µ1 � ST
i1xi1 	 σ2

x1 � � Yi � β0 � βT
Z zi � β1 	 σ2

y �
...

Γ � 1
p bµp � ST

ipxip 	 σ2
xp � � Yi � β0 � βT

Z zi � βp 	 σ2
y �

���� � (40)

and

Var
�
γ�i � xi j � Yi � � ��� Γ � 1

1 � ST
i1Si1 	 σ2

x1 � β1βT
1 	 σ2

y β1βT
2 	 σ2

y �����
β1βT

p 	 σ2
y

...
...

. . .
...

βpβT
1 	 σ2

y βpβT
2 	 σ2

y �����
Γ � 1

p � ST
ipSip 	 σ2

xp � βpβT
p 	 σ2

y

���� � 1

(41)

Therefore γ̂i j � E
�
γi j � xi j � Yi � and Vγi j

� Var
�
γi j � xi j � Yi � can be computed using (40) and (41). This in turn

allows σ2
x j � µ j and Γ j to be calculated using

σ2
x j � 1

∑ni j

N

∑
i � 1

� �
xi j � Si j γ̂i j � T � xi j � Si j γ̂i j � � trace � Si jVγi j

ST
i j

 � � (42)

µ j � 1
N

N

∑
i � 1

γ̂i j � (43)

Γ j � 1
N

N

∑
i � 1

� Vγi j � � γ̂i j � µ j � � γ̂i j � µ j � T 
 � (44)

Finally β0 � β1 � � � � � βp � βZ and σ2
y are estimated using,

�������
β0

β1
...

βp

βZ

�������� � ��� ∑
i

E

��	 1 γ �iT ZT
i

γ �i γ �iγ �iT γ �izT
i

zi ziγ �iT zizT
i


�� ���� � 1 �� ∑i yi

∑i yiEγ �i
∑i yizi

�� � (45)

and

σ2
y � 1

N

N

∑
i � 1

� � Yi � β0 � βT
Z zi � p

∑
j � 1

βT
j γ̂i j � 2 � p

∑
j � 1

βT
j Vγi j

β j � � (46)

Thus the functional multiple linear regression algorithm iterates through a two step procedure until
the parameters have converged.

1. In the E-step the expected value and variance of the γi’s are calculated using (40) and (41).

2. In the M-step the parameters σ2
x j � µ j and Γ j are estimated using equations (42), (43) and (44) and

β0 � β1 � � � � � βp � βZ are estimated using (45). Finally, σ2
y is estimated using (46).

3. Return to 1. unless the parameters have converged.
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