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Abstract

In this paper we present a technique for extending generalized linear models (GLM) to the situation
where some of the predictor variables are observationsfrom acurve or function. The techniqueis partic-
ularly useful when only fragments of each curve have been observed. We demonstrate, on both simulated
and real world data sets, how this approach can be used to perform linear, logistic and censored regres-
sion with functiona predictors. In addition, we show how functional principa components can be used
to gain insight into the relationship between the response and functional predictors. Finally, we extend
the methodol ogy to apply GLM and principa componentsto standard missing data problems.

Some key words: Censored regression; Functional data analysis, Functiona principal components; Generalized linear

models; Logistic regression.

1 Introduction

Generalized linear models provide a framework for relating response and predictor variables (McCullagh
and Nelder, 1989). For arandom variableY with distribution,
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we model the relationship between predictor X and responseY as
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wherep = E(Y;6,¢9) = b'(8) and g is referred to as the link function. Common examples include the iden-
tity link used for normal response data and thelogisticlink used for binary responsedata. Generalized linear
models provide a very flexible class of procedures. However, they assume that the predictor has afinite di-
mension. In this paper we extend GLM to handle functional predictors which may be measured at different
times and with different numbers of observationsfor each individual.

One of the difficulties with these sorts of data setsis that, when predictors are functional, observations
from the same individua will generally be correlated. A great deal of research has been conducted on data
with correlated outcomes. Situations where such data arise include twin studies (Cessie and Houwelingen,
1994), two-period cross-over designs(Jonesand K enward, 1989), ophthal mological studies(Gao et al., 2001)
and longitudinal data (Diggleet al., 1994). Numerous models have been proposed for the responsevariable.
For instance Moyeed and Diggle (1994) and Zeger and Diggle (1994) model the relationship between re-
sponse Y (t) and predictor X(t), both measured over time, using the equation,

Y(t) = oo(t) + B X(t) +£(t) 2



[ID] End Outcome Drug Day Bili Alb [[ID || End Outcome Drug Day Bili Alb |

1 | 400 Dead Yes 0O 145 260 2 ||5169 Alive Yes 2515 42 273

400 Dead Yes 192 21.3 294 5169 Alive Yes 2882 3.6 2.80
5169 Alive  Yes 0 11 414 5169 Alive Yes 3226 4.6 2.67
5169 Alive Yes 182 0.8 3.60 1012 Dead Yes 0 14 348
5169 Alive Yes 365 10 355 1012 Dead Yes 176 1.1 3.29
5169 Alive Yes 768 19 3.92 1012 Dead Yes 364 15 357
5169 Alive Yes 1790 26 3.32 1012 Dead Yes 743 1.8 325

5169 Alive Yes 2151 36 292
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Table 1: Subset of datafrom Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted be-
tween 1974 and 1984.

where a(t) isasmooth function of t, B, isafixed but unknown vector of regression coefficients and €(t) is
a zero mean stationary Gaussian process. Hoover et al. (1998), Wu et al. (1998) and Lin and Ying (2001)
use the varying-coefficient models proposed in Hastie and Tibshirani (1993) to extend (2) by allowing the
regression coefficientsto vary over time. Alternatively, Gao et al. (2001) model categorical responses using
a combined smoothing spline analysis of variance and log-linear model approach, while James and Hastie
(2001) use afunctional linear discriminant analysis model. Fahrmeir and Tutz (1994) and Liang and Zeger
(1986) suggest an even more general framework where the response is modeled as a member of the expo-
nential family of distributions.

Thiswork has tended to focus on the situation where the predictor and response are observed together at
varying times. However, in many cases, one wishes to model the relationship between a single, time inde-
pendent, response and a functional predictor. For example, one might wish to predict whether an individual
possesses a genetic disorder based on various predictors measured over time. Alternatively, one may wish
to calculate the probability of a successful transplant operation based on historical measurements of a pa-
tient. In both these situationsa singleresponseis observed but the predictors are functional because they are
measured over time. Most of the methods listed above cannot easily be applied to such problems because
they assume a separate response at each time that a predictor is observed. Hastie and Mallows (1993) and
Ramsay and Silverman (1997) (Chapter 10) discussperforming regression where theresponseisascalar and
the predictorsfunctional but they primarily address the situation where the predictors are all measured at the
same time points.

Table 1 provides atypical example of a functional data set with unequally spaced observations. These
datawere obtained from StatL ib and comefrom arandomized placebo controlledtrial of thedrug D-penicillamine
on patientswith primary biliary cirrhosis(PBC) of theliver conducted by the Mayo Clinic between 1974 and
1984 (Fleming and Harrrington, 1991). For each patient we have arecord of the time, in days, between the
earlier of death or end of study (“End”), aliveor dead (“ Outcome”), whether they received the drug (“Drug”),
day of each patient visit measured from registration (“Day”), serum bilirubinin mg/dl (“Bili”) and albuminin
gm/dl (“Alb”). Several other potential predictorswere measured but for illustrative purposeswe will restrict
to these variables. There are two response variables of interest. Thefirst is survival time, aright censored
variable, and the second is the five year survival outcome. For both situations, each patient has multiple
measurements of both bilirubinand albumin but only one, timeindependent, response so amodel such as (2)
cannot be applied. Furthermore, there are different numbers of measurements for each patient and they are
taken at different times so it is not possible to use a standard multiple regression model.

Onepossiblesolutionwould betoignoretimetrendsand to use either thefirst measurement or theaverage



over al observations for each person. However, if thereis a time trend, both of these methods will make
inefficient use of the availableinformation. A superior approach might be to fit a smooth parametric curve,
such as a natural cubic spline, to each individual’s observations and use the resulting coefficient vector as a
predictor. This method has the advantage that it accounts for any time trends in the data. Unfortunately, it
has several drawbacks. First, many of the individuals only have a very small number of observations so it
may not be possibleto fit curves for each of them. Second, even if the curves can all befit, it is not obvious
how to adjust for the varying levels of accuracy in the coefficients caused by differences in the number and
spacing of observations.

In this paper we present an approach, which we call functional generalized linear models (FGLM), that
directly models the relationship between a single response, from any member of the exponential family of
distributions, and a functional predictor. The predictors are modeled as cubic splinesand it is assumed that
the spline coefficients for all individuals have a common mean and variance for which both the response
and predictors are used to fit. The predicted coefficients for each individua can then be used in the linear
portion of thelink function to relate the predictors to the response. We have successfully applied FGLM to
situationsin which each subject has observations at differing time points. Furthermore, the method works
well on sparse data sets such asthe PBC data, sinceit doesnot rely on fitting a separate curve to each person.
A large range of possible distributions can be assumed for the response variable, alowing the modeling of
both continuous and categorical data. In addition, the relationship between functional predictor and scalar
response can be assessed through the use of functional principal components. Tests are also developed for a
rel ationship between predictor and response.

In section 2 we outlineand motivate the general modeling procedure. Functional linear, logistic and cen-
sored regression are devel oped as specia cases of thismodel. Section 3 providesdetailsof an EM agorithm
that workswell for fitting the functional generalized linear model. Examples on simulated and real data sets
aregivenin section 4. Functional principal componentsideas are used in section 5 to provide a better under-
standing of the exact form of the relationship between predictor and response. In practice one may wish to
incorporate multiplefunctional and finite dimensional predictorsinto themodel. Thisextensionisdevel oped
in section 6. Finally, extensionsto missing data problems are provided in section 7.

2 Thefunctional generalized linear model

In this section we devel op the functional generalized linear model. We then illustrate three particular exam-
ples, linear, censored and logistic regression.

2.1 Thegeneral model

When the predictor X(t) isfunctional, the link function given by (1) cannot be directly applied. However, a
natural generalization isto replace the summeation over thefinite dimensional space with an integral over the
infinite dimensiona one,

o) = Bo+ [ wr(t)X(t)ct ©

where w (t) isthefunctional analogue of 3;. Unfortunately, in practice X(t) isonly ever observed at afinite
set of time points. One might imagine simply replacing the integral with a summation over the observed
times. However, this approach has several potential problems. First, it may necessitate fitting an extremely
high dimensional vector of coefficients, resulting in large or infinite variance terms. Second, it is not clear
how to handle individualswith observationsthat are measured at different sets of time pointsor individuals
with differing numbers of observations. Both these problems are related to the fact that this procedure fails



to make use of the intrinsic relationship between points observed at similar times. Instead we assume that
each predictor can be modeled as a smooth curve from a given functional family. We chooseto make use of
natural cubic splines (Silverman 1985; Green and Silverman 1994). The resulting parameterization is

X(t) = S(t)Ty7 Yy~ N(p'yv r) 4

where s(t) represents the g-dimensional splinebasisat timet, y the g-dimensional spline coefficients for the
predictor and p, and I" the mean and variance of they's. A g-dimensional natural cubic splinewill haveq—2
knots. Combining (3) and (4) we arrive at thefinal link function,

o) = Bo+ [ @u(v)sit) Ty
= Bo+Blyi )

where 3; = [ (t)s(t)dt. Further, we assume that, at any given timet, instead of X(t), one observes x(t)
where,

X(t) = X(t) + &(t).

We mode! e(t) as a zero-mean stationary Gaussian process. This term represents the deviations of observa-
tionsfrom the splinefit due to measurement error or other factors. Let x; and g bethevectorsof observations
and measurement errorsfor individual i at timestyy, .. . ,ti, andlet S = (s(ti1), .. ., S(tin)) T bethecorrespond-
ing spline basis matrix. Then the functional generalized linear model can be written as

. yi6 — b(6)) )
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where N represents the number of observed response-predictor pairs. We use spline bases because they a-
low one to fit a large variety of functional forms. Using a basis with alarge number of knots models very
flexible curves whil e restricting the number of knotsforceslessflexible, possibly moreinterpretable, curves.
However, the above model can be fit with equal ease using Fourier transforms, orthogonal polynomial bases
or any other finite dimensional basis.

2.2 Specific Models
The FGLM model from the previous section can be used with a large number of response variable distribu-
tions. In this section we give detailsfor three important specific examples.

221 Functional Linear Regression

The best known special case of GLM is linear regression, in which the response is assumed to be normally
distributed and g istaken to be theidentity function. Under these conditionsthe FGLM model of Section 2.1
reduces to

Yi = BO—I_B-]I.-VI +&, SiNN(Ovo-)z/)v leN(p‘yvr)

Xi = Sy+e, a~N(00g).



Anagorithmfor fitting thismodel is presented in the appendix A.1 and examples of itsapplication are given
in Section 4.1. As with standard linear regression the predicted response will be E(Y|x). It can be shown
that,

yx~N ([cfr‘l—l—STS] -t {cfr‘luy—l— STX} , [F‘l—I—STS/G)z(]_l) : (6)
Hence E(Y|x) can be easily computed using
YIx~ N (Bo+Bl (02 + 8T8 (o2, + §7x), BT+ STS/0d) By +03). (D)

2.2.2 Functional Censored Regression

When using life expectancy as the response variable right censoring is a common problem. The functiona
linear regression model can be extended to the case where right censoring exists in the response. In this
situationwe assumethat Y; isobservedfori=1,... ,mbutfori=m+1,... N weobserveonly that Y; > ¢;
where ¢; is aknown constant. In all other respects the censored and standard linear regression models are
identical. We present an algorithm for fitting thismodel in appendix A.2 and an example using the PBC data
in section 4.2. Predictionsfor new or uncensored responses are given by E(Y|x) calculated according to (7).
However, predictions for a censored response are given by
® G—Hvix
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E(Yi[Yi > i, Xi) = Hyjx + Oyx

where Ly}, and 0\2(|x are the mean and variance of Y|x from (7) and @ and @ are the standard normal density
and cumul ative distribution functions.

2.2.3 Functional Logistic Regression

Finally we illustrate the case in which the response is a Bernoulli variable. The PBC data using five year
survival asthe responseis atypical example. In thiscase E(Y|x) = P(Y = 1|x) represents the survival rate.
Thisprobability can be modeled using several possiblelink functionsincluding the probit or complementary
log-log. We will demonstrate the technique on the canonical and most commonly applied link function, the
logistic, under which the functional generalized linear model becomes

, _ 1 withprobability (1+exp(~Bo-BIw) ©)
"~ 10 withprobability (1+exp(Bo+Bly)) "L,
xi = Sy+ea, a~N(0,02), y~N(u,l). (10)

Anagorithmfor fitting thismodel and examples of its application are presented respectively in appendix A.3
and section 4.3. In general, anew responseispredicted as 1 if E(Y|x) = P(Y = 1|x) > 0.5 and O otherwise.
Thuswe predict Y = 1 if

T -1
(1‘|‘exp(_B0_Blp-y|x)) > 0.5
where L, is computed using (6). It should be noted that, while

-1
P(Y=1/x) > 05iff (1+exp(~Bo—Bliy) >05,



-1
in genera (1—|— exp(—Po— BIpr)) will provide a biased estimate of P(Y = 1|x). A method to obtain
unbiased probability estimatesis presented in section 4.3.

3 Thefitting procedure

In thissection we outlineageneral approach to fitting the functional generalized linear model. The observed
datalikelihoodfor thismode! isextremely difficult to optimizedirectly becausethey,’sare unobserved. How-
ever, if they,’s are treated as missing data then x; and Y; are conditionally independent and the full datalog
likelihood factors, up to additive constants, into three distinct parts:

N Ty — b(6
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We use the EM algorithm (Dempster et al., 1977; Laird and Ware, 1982) which iterates between a maxi-
mization and an expectation step to optimize the observed likelihood. Since 6; isafunction of 3o and 3; the
M-step involves maximizing the expected values of (11) with respect to Bo, B; and @, (12) with respect to 62
and (13) with respect to [, and I'. The three maximizations all involve separate parameters so the M-step
can be performed in three parts. Maximizing the expected value of (12) and (13) involves setting

N
o = zin [(%i — S¥) T (xi — S§) +trace (S, §) ], (14)
1 NI_A
p-y = N; i (15)
1N N N T
= N2 Mo TG -wT (16)
where,
Vi = E(vixi,Yi), Wy =Var(y|xi,Y). (17)

The maximization procedure for (11) depends on the distribution of Y;.

The E-step consists of calculating the expected value and variance of they,’s given x;, Y; and the current
estimates of the parameters. The procedure for cal culating these values also depends on the distribution ;.
For certain distributionsthere is a closed form equation while for others a Monte Carlo approach must be
adopted.

The fitting procedure iterates through these steps until the parameters have converged. Details of the
fitting procedures for the linear, censored and logistic regression models are presented in the appendixes.



Method Simulation

1 2 3] 4 5 6
Simple Regression 97.2 97.2 97.2 78.6 78.6 | 100.2
Mean Regression 92.3 92.3 92.3 32.7 32.7| 100.5
Multiple Regression 91.3 91.3 91.3 9.6 9.6| 1033

Filtering Regression 166.5 98.8 NA | 1820 NA 72.1
Functional Regression 23.6 88.3 37.9 2.7 21 13.8
Optimal Regression 22.7 22.7 22.7 12 12 13.7

Table 2: Results from the simulation study of section 4.1. The FGLM method produces close to optimal
resultsfor all but the second simulation.

4 Examples

In this section we present severa applicationsof the functional generalized linear models approach. I1n sec-
tion 4.1 we use a simulation study to illustrate some situationsin which the functional linear regression ap-
proach can be expected to provide advantages over other methods. In sections 4.2 and 4.3 the functional
censored and functional logistic regression methods are applied to the primary biliary cirrhosis (PBC) data
set.

4.1 Functional Linear Regression Simulation Study

We performed six simulationswhose purposewasto predict atimeindependent real val ued responsebased on
longitudinal observations. Four different “straw men” were compared to the functional regression approach
of this paper. The results are summarized in table 2. The first approach, simple regression, used the first
observationfor each individua asthe predictor in astandard linear regression. The second, mean regression,
used the average of the observationsfor each individua asthe sole predictor. In thethird approach, multiple
regression was performed on the time-ordered observations. This method could only be adopted because
every individual had observationsat the same number of time points. Thefinal method, filtering regression,
was a less simplistic approach in which anatural cubic spline was fit to each individual’s observations and
the spline coefficients were used as the predictorsin a multiple regression.

Simulation 1 involved producing data from the functional linear regression model of section 2.2.1. First
100 random y's were generated from a six-dimensional normal distribution with an identity covariance ma-
trix. Next, 100 curveswere created by using each of the y's as the coefficients of a natural cubic splinewith
four equally spaced knots. The curve fragments to be used as the predictors, were then generated by sam-
pling a six random locations from each of the curves and adding a small amount of random normal noise.
Finally, the response variableswere generated by multiplying each of they' s by afixed six-dimensional vec-
tor and adding a small amount of random normal noise. All methods were fit using this training data. A
separate test set of size 1000 was generated using the same distribution. The average squared deviations of
the predictions of each method from the observed test set responsesare recorded in thefirst column of table 2.
The deviations have been standardized by dividing by the mean squared deviation achieved by simply using
the mean response from thetraining data. For example the mean squared deviation of the simple regression
method was 97.2% of that achieved by using the mean of thetraining responses. The numbers are anal ogous
to 1 — R? but calculated on the new test data. The final row of table 2 lists results for the optimal regression
which usesE(Y|x) calcul ated from the true simul ation distribution and hence has the |lowest possible squared
deviation. Naturally the optimal regression approach could not be used on areal data set where the distribu-
tionisunknown. Thefunctional regression method performed favorably with deviationsof 23.6% compared



to 22.7% for the optimal regression. The straw man methods all performed poorly. The simple, mean and
multiple regression methods worked slightly better than the sample mean i.e. had results slightly less than
100%. However, the filtering regression approach produced considerably worse results.

Thefiltering and functional regression methods both require the choice of asplinebasisor, equiva ently,
knot locations. In simulation 1 the correct knot locationswere used. In simulations 2 and 3 we illustrate the
effect of incorrect knot selection. Simulation 2 fitted the functional and filtering regression methods using
a two knot spline while simulation 3 fitted a six knot spline. Both simulations used the test and training
data from simulation 1. In simulation 2 the filtering method improved to a level comparable to the other
straw men and the performance of the functional regression method declined considerably, although it still
produced results superior to those of the other approaches. In the third simulation the filtering regression
method could not be used because at |east eight observationswere required to fit a natural cubic splinewith
six knots and each curve had only six measurements. However, there was no difficulty in fitting the FGLM
model and itspredictionswere again considerably better than those of the other approaches. In generad it has
been our experience that the FGLM method sufferslessfrom an overly flexible spline basisthan it doesfrom
an overly rigid basis.

Simulations4 and 5 explored the effect of violationsof several of the FGLM model assumptions. Instead
of the assumed spline basis, the training and test data were generated according to a fourth degree polyno-
mial with no knots. In addition, the response and predictor error terms and the y's were produced using at
distribution with 10 degrees of freedom. In simulation 4 the FGLM and filtering regression methods were
fit using a three knot spline while a six knot spline was used in simulation 5. The optimal regression results
were again obtained using the correct model specification. Despite the incorrect modeling assumptionsthe
FGLM approach still produced results close to optimal, with the six knot spline giving a slightly better fit
than the three knot spline. Of the straw men the multiple regression method worked best but was till clearly
inferior to FGLM. The filtering regression method again performed poorly with no fit possible for the six
knot spline. In general, in sparse data situations, the filtering approach works best when using low dimen-
sional bases. For example, when using atwo knot splinethe standardized mean squared error for thefiltering
regression reduced to 17.1%.

Whilethisarticle has concentrated on splinebases, any finite dimensional basis can be equally easily ap-
plied. Toillustrate theimprovements that are possiblewhen using FGLM, even for relatively simple curves,
the final simulation made use of orthogonal polynomials. Thetraining and test data were produced in asim-
ilar fashion to those of the first simulation except that the curves were generated from a standard cubic with
no constant term. Thefiltering and functional regression procedures were then fit using a three dimensional
orthogonal polynomial basis instead of a spline basis. This situation is more favorable to the filtering ap-
proach because only three parameters need be estimated for each curve as opposed to six in the first simu-
lation. However, whilethe filtering method does perform considerably better than the other straw-men, the
functional regression approach still provides a significantly superior fit.

These simulations concentrate on situationsin which the predictors have been sparsely sampled. Inthese
circumstances the FGLM approach generally provides considerable improvement over the filtering method.
In data setswith alarge number of observationsper predictor the two methodswill give more similar results.

4.2 Functional Censoring Example

Inthissectionweillustratethe FGL M approach on the primary biliary cirrhosis(PBC) dataset. We chooseto
predict life expectancy, from date of enrollment in the study, based on thefirst four measurements of bilirubin
level. For each individual the number of observationsvaried from one to sixteen. After removing all those
patientswith fewer than four observations 169 remained of whom 65 died prior to the end of the study. Since
104 of the responses were right censored, we fit the functional censored regression model of section 2.2.2.



| Coefficient || Estimate Std. Error t P-value|

Bo 5268.66 355.2 14.83 < 0.001
B 7.60 22 339 0001
B ~27.85 9.8 —2.85 0.004
Bis ~12.69 70 -1.80 0071
Bia ~1.62 54 —0.30 0.765
Bis 36.73 8.8 4.18 <0.001
Bis 27.89 187 149 0.136

Table 3: Estimated coefficients and significance levels for the Mayo Clinic trial using life expectancy as
the response. Several of the coefficients are highly significant so there appears to be arelationship between
predictor and response.

A natural cubic splinewith four equally spaced knots, or equivalently six dimensions, was used to create the
basismatrix. The averagetime of observationfor patientswho died was only seven dayslower than for those
who survived, indicating that there was no biasfrom differencesin measurement times between censored and
uncensored people.

The estimated coefficients are shownintable 3. 31 isthe jth element of 3, and givesthe weight applied
to the corresponding element of y in calculating g(1). The standard error estimates were obtained using

Var [EO] ~Var { [E(ATA)] T E(AT)Y|x| = [E(ATA)] T E(ATVar{YE(A) [EATA] T, (19
1

where Aisan mby g+ 1 matrix whoseithrow is(1,y' ). Thevariouscomponentsof (18) are estimated during
the fitting procedure so no extra computationsare required. Equation (18) only makes use of the uncensored
responses Yy, . .. , Ym, and ignores the partial information provided by the censored responses. Asaresult it
may tend to somewhat overestimate the standard errors. However, despite this fact, when the asymptotic
normality of the maximum likelihood estimates is used to calculate the p-values, there are severa highly
significant coefficients. In addition to p-valuesfor individual coefficientsit ispossibleto estimate the overall
significance level of thefit using the fact that

1Var(B;) 7B, (19)

will asymptotically have axﬁ distributionunder the hypothesisof no relationship between x andY. Note that
Var (3;) can becalculated from (18). For thisdataset (19) givesavalueof 68.75withacorresponding p-value
of lessthan 0.001. Thereis strong evidence of arelationship between bilirubin levelsand life expectancy.

Generalized linear models can be used to either gain insightsinto the rel ationship between predictor and
response or to estimate the response given values of a predictor. Unfortunately, there is no simple way to
relate the coefficientsin table 3 to the predictor, bilirubin. The best we can say isthat arelationship between
x and Y exists. We address this problem in detail in section 5. However, using the FGLM method to make
predictionsis straight forward. Censored responses are estimated by using (8) and uncensored responses by
using E(Y|x) from (7).

Thisdata set was collected to study the effectiveness of the drug D-penicillamine. To test whether there
was any effect from the drug on life expectancy wefit thefunctiona censoringmodel separately tothe control
and treatment groups and estimated life expectancy on the censored observations. There was no apparent
improvement for those on the medication. In fact there was some evidence that the treatment group may be
performing worse than the control group with a mean life expectancy of 4237 daysfor the former and 4618



for the latter. However, the mean survival times are not significantly different at the 5% level. In section 6
we directly examine the drug effect by extending the model to include multiple predictors.

4.3 Functional Logistic Regression Example

In this section we illustrate the binary response version of FGLM to mode five year survival on the PBC
data set. The framework isidentical to that of section 4.2 except that now Y equals one or zero depending
on whether the patient did or did not survive five years from date of registration. Three individuals who
were studied for less than five years were removed from the data set. Aswith regular logistic regression the
standard errors of 3y and [3; can be estimated using the diagonal elements of the inverse Hessian,

-1
Pol m(l-m) (-
v [Bl]N(ZE[W<1—w>w m(l—m)viviTD ’ (20)

where g = P(Y; = 1|x;). The Hessian is computed during thefitting process so no extra calculations are re-
quired. Itispossibleto estimatethe overall significancelevel of thefit using (19) whereVar (3, ) iscalculated
from (20). For this response the chi-square statistic is 22.54 with a corresponding p-value of 0.002. Hence
thereis strong evidence of arelationship between bilirubin observations and the probability of an individua
surviving five years.

Once again, interpretation of the [3; coefficients poses a problem which we address in Section 5. How-
ever, prediction of responses can still be achieved with relative ease. Generally one predictsY = 1 iff

= Ryy(Y = 1) = Ey(1+exp(—Bo—B1Yy)) ' > 0.

Itispossibleto estimate Ttin avariety of ways. The most accurate approachistosimulateys, . .. , Yy, from (6)
and produce the Monte Carlo estimate,

12 _
e = 3 (1+em(—Bo—Biy)) (21)
j:
Equation (21) can be calculated quickly for moderate n. However, it may be computationally expensiveif a
large number of estimates are required. A simple alternative isto use the biased “plug in” approximation,

Thiug = (1+exp(—PBo — BLE(Yx))) %,

where E(y|x) isgiven by (6). It can be shown that Tt g > 0.5 iff 1 > 0.5. Hence, if prediction of Y isthe
sole objective and computational speed is an issue Tt g may be used. However, if accurate probability esti-
mates are required the more precise Monte Carlo procedure is preferable. The functional logistic regression
approach producesfairly accurate predictionsfor the PBC datawith only 15 out of 166 patientsmisclassified.

5 Assessing therelationship between predictor and response

Althoughtheresultsfrom sections4.2 and 4.3 clearly showed arel ationshi p between bilirubinlevel sand both
lifeexpectancy and five year survival, they gave no simpleway of understanding theform of therelationship.
For instance, in standard linear regression a positivesign on the 3 coefficient indicates a positiverel ationship
between x and Y, but for FGLM thereisno such simple explanation. In this section we devel op two methods
toimprovetheinterpretability of the FGLM results. In section 5.1 we use afunctional principal components

10



decomposition of the predictor curves and in section 5.2 we show how to compute the weight function w; (t)
from (3). Thefunction w, (t) isthe analogue of the coefficientsin a standard linear regression.

5.1 Functional principal components
We can decompose the covariance matrix of they:’sinto
= ADAT,

where A is the g by q matrix of eigenvectors of I' and D is the diagonal matrix of eigenvalues. Then an
alternative parameterization of yis

y=Aa,
where Var (a) = D. Under this formulation the functional generalized linear model of section 2.1 can be
rewritten as
O a yi6i—b(®)
p(ylieh(p) - exp( a((p) —I_C(yh(p)
g(Hi) = B()‘I'BS.TGU a; ~ N(0,D)
Xildi = S(u,+diz+--+0ig) +&, &~ N(0,07l) (22)
where
Bo=PBo+Biky, ad By =ATB,. (29)

Note that (22) provides afunctional principal components decomposition of X(t) (Shi et al., 1996; Ramsay
and Silverman, 1997; James et al., 2000). This model is easily fit by implementing the EM agorithm of
section 3, performing an eigenvalue decomposition of the fitted I to produce A and D, and using (23) to
obtain the transformed coefficients. Thismodel’s principa advantageisthat each [3 coefficient has anatural
interpretation in terms of the functiona principal component curves of the predictor. For example, if the
identity link is used, 3, givesthe average increase in'Y; for a one unit increase in aj;. From (22) we note
that a one unit increase in aj; will cause X (t) to increase by s(t) T8, above the population average. Hence,
14 can beinterpreted as the average increase in Y; when X; (t) increases by s(t) 78;.

Figure lillustratesthe principal components approach on thefits of sections4.2 and 4.3 where bilirubin
was used as a predictor of life expectancy and five year survival. The plot gives the mean and first three
principal component curves, for bilirubinlevels, with life expectancy astheresponse. The curveswhen using
five year survival as the response where almost identical. The dotted lines correspond to 90% pointwise
confidence intervals. They were produced by generating bootstrapped y's from a normal distribution with
mean Y, and variancel” and then using thesey’sto estimateanew variance matrix I * and hence new principal
component curves. This procedure was repeated 100 times and at each time point the 5th and 95th largest
valuesfor the curves were taken as the upper and lower confidence bounds. Upon examining the mean curve
it appears that the average bilirubin level isincreasing over time. Liver failureis generally associated with
increasing bilirubin levels so, as awhole, the population is getting sicker.

Thefirst principal component curve models individualswith bilirubin levels starting above the average
and continuingtoincrease. Thusan individual with average bilirubinlevelswill have an a;, of zero, onewith
bilirubin levels above average and continuing to climb will have a positive a;; and one with bilirubin levels
below average and declining will have a negative a;. Table 4 givesthe transformed coefficients using both
life expectancy and five year survival astheresponse. Noticethat 3/, isnegativefor both responses (—10.41
and —0.016) indicating that, for example, an individual with bilirubin levelsinitially 0.2 mg/dl above the
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Life Expectancy Five Year Survival
Coef. || Estimate Std. Error t P-vaue | Estimate Std. Error t P-vaue
0 4440.2 268.0 16.57 < 0.001 2.88 0.417 6.91 < 0.001
1 -10.41 1.9 -552 <«<0.001| -0.016 0.004 -4.60 < 0.001
1o 0.11 6.1 0.02 0.986 0.021 0.011 2.03 0.043
3 1.54 105 0.15 0.883 | —0.020 0.019 -1.04 0.297
4 —16.53 9.3 -1.77 0.077 || —0.079 0.046 —-1.73 0.083
5 —50.98 146 —-3.50 0.001 || —0.192 0.100 -1.91 0.056
16 11.93 125 0.95 0.340 || —0.007 0.370 —-0.02 0.985

Table4: Transformed coefficients and significance level sfor the Mayo Clinictrial using life expectancy and
five year survival as the response. The first and fifth principal component curves are significant for life ex-
pectancy whilethefirst and second are significant for five year survival.

mean and increasing by day 800 to 0.35 mg/dl above average can be expected to live 104 days below the
average and has an odds ratio of €16 = 0.85 of surviving five years relative to an average person. Since
increasing bilirubin levels are generally associated with liver failurethisisaclinically sensibleresult. The
first principal component explains 91% of the variance in the y's and is highly significant for both the life
expectancy and five year survival responses. Clearly thisis an important predictor.

The second principal component curve model sindividual swith below average bilirubinlevelsat the start
that, relative to the mean, increase and then begin to declineagain. Thiscomponent explainsabout 6% of the
variability inthey sand ismarginally significant for five year survival but not life expectancy. Anindividual
with bilirubinlevelsinitialy 0.2 mg/dl below the mean increasing to 0.4 mg/dl above the mean by day 600
and then declining again will have an odds ratio of €*?1 = 1.23 of surviving five years relative to an average
person. The third component models a cubic pattern. It only explains about 2% of the variability inthey's
and is not a significant predictor.

The other three components explain only a small fraction of the variability in they's. Interestingly the
fifth principal component issignificant for life expectancy. Thissuggeststhat we may be underestimatingthe
standard errorsfor the higher level principal components. Asonewould expect, giventhat they sexhibit less
variability in these directions, the higher level curvesgenerally have greater standard errors. Notice also that
thelife expectancy coefficient 3 = 4440 can now beinterpreted astheexpected survival timeof anindividual
with bilirubinlevels equal to the population average. Also the five year survival coefficient B = 2.88 gives
the probability of an average individual surviving fiveyearsas1/(1+e~288) = 0.95.

5.2 Weight function

Anadternativemethod for visualizingtherel ationship between predictor and responseisto plot thewei ght
function, wj (t). Thisfunction gives the weight placed on the predictor X(t) at each time in determining the
value of the response. High absolute values of the curve indicate times with a large influence while small
values correspond to periodswith littleinfluence. We can model wy (t) using the same spline basis asfor the
predictors X(t) i.e. wy(t) = nis(t). Inthiscase, provided s(t) is an orthogonal basis,

Jenxde=n] [ sst)dey, = nly.
Hence, an alternative formulation of (5) would be
g(H) = Bo+N1V-
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Figure 1: Mean and first three principal component curves for bilirubin. Solid lines are the estimates while the dotted
lines are 90% poi ntwi se confidence intervals.

Asaresult n, and 3, areidentical and w, (t) can be estimated by using BIs(t). Figure 2 showsaplot of wy (t)
for the PBC data using life expectancy as the response. The weights are negative in the early and late time
periods indicating that people with high bilirubin levelsin these stages have lower life expectancies. This
confirms the results from the previous section. Interestingly, the middle time periods have slightly positive
coefficients indicating higher life expectancy for high bilirubin levels between days 200 to 600. However,
thisresult must beinterpreted carefully because patients with high levelsin thistime period will likely have
high bilirubin levels a the early and late time periods a so.

6 Multiplepredictor variables

The functional generalized linear model of section 2.1 assumes only one functional predictor variable. In
practice one may wish to perform aregression with multiplefunctional and/or finite dimensional predictors.
For the ith person we denote the observations from the jth functional predictor by X;j, the corresponding
spline basismatrix by §; and the vector of fixed dimensional predictors by z;. Then, in analogy with gener-
alizedlinear models, we assumealinear rel ationshi p between predictors. When fitting p functional predictors
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Figure 2: Aplot of wy (t). Thiscurve givesthe weight placed on the bilirubinlevel for anindividual at any given time.

the FGLM model becomes

P60, Q) = exp(y‘eg(i(g@‘ﬁc(yi,cp)),

p
o) = Bo+B§zi+_ZlB,-Tw,-7 ¥ij ~ Ny, 1),
J:
Xij = Sjyij‘|’av QNN(QGE]')-

Here B; denotes the coefficient vector for the jth functional predictor and B, the coefficient vector for the
finite dimensional predictors. The mean and variance of y;; for the jth predictor are given by p; and I'; and
they; J- 'sare assumed independent. Aswith the model of section 2.1, the extended FGLM model can be fit to
alarge variety of response variables. In particular it provides generalizations of multiple linear and logistic
regression as well as censored regression with multiple predictors.

Thefunctional multiple generalized linear model isfit using an EM procedure similar to that of section 3.
Details of the functional multiple linear regression (FMLR) fitting algorithm are provided in appendix A.4.
To aid interpretati on one can decompose each of thefunctiona predictorsinto their respective principa com-
ponent curves and transform the coefficients according to

p
Bo=Bo+ > Bjk;, and B =A[B;, (24)
j=1

where A isthe matrix of eigenvectorsof I';.

Toillustrate this approach we used two functional predictors, bilirubin and albumin levels, aswell asan
indicator of D-penicillamine use, to predict life expectancy. The results are shown in figure 3 and table 5.
Figure 3illustrates the mean curve and first two principal component curvesfor both bilirubin and albumin.
The bilirubin curves are extremely similar to those of section 5. The mean curve for albumin indicates de-
creasing levels. A healthy liver secretes albumin so thisisfurther indication of a sickening population. The
first principal component models individuals with above average albumin levels with a slight increase and
then decrease rel ative to the mean while the second component model s a cubic relationship.
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| Coef. | Est. SdErr t P-value || Coef. | Est. Sd. Err t P-value]

o 43992 3922 1122 < 0.001 ; | —2075 5201 —0.40 0.690

0

B, —11.2 29 -390 <0.001 | 759 277 273 0.006

L 41 93 044 0657 | 644 366 176 0078
Bili- PBj| -61 132 —046 0.646| Alb- B, | 428 468 092  0.360
rubin B, | 454 158 288 0004 |umin B, [ -1007 610 —165  0.099

s| -26 166 —016 0.874 e | —312.6 704 —4.44 <0.001

15 25

Bl 63 66 09 0336 B, | 4989 809 6.17 <0.001

Table 5: Transformed coefficients and significance levels for the PBC data using life expectancy as the re-
sponse and bilirubin, abumin and drug as the predictors. The first and fourth principal component curves
aresignificant for bilirubinwhilethefirst, fifth and sixth are significant for albumin. Drug isnot a significant
predictor.

The standard errorsin table 5 are cal culated using (18) where theith row of Aisnow (1,¥iq, ... ,Yip, Z).
We note that for both bilirubin and albumin thefirst principal component is highly significant. The negative
coefficient for 37, and positive coefficient for 3}, imply increased life expectancy for individua swith lower
bilirubin and higher albumin levels, both clinically sensible results. There is strong evidence that abumin
and bilirubinare both significant predictorsfor life expectancy. One may a so directly gauge the effect of the
drug D-penicillamine on life expectancy by examining 3z. The estimated coefficient is negative suggesting
that the drug may actually reduce life expectancy, athough the result is not statistically significant. Finaly,
notice that 314, B25 and Bos are al significant. Since the first three principal components explain ailmost all
the variability in bilirubin and albumin levelsit seems likely that the model has underestimated the standard
errors of these coefficients.

7 Missing data

This paper has focused on the situation where the predictors have a functiona form so that a spline basis
matrix § is appropriate. However, through the use of an alternative basis matrix, this methodology may be
extended immediately to GLM with finite dimensional predictors that suffer from missing data. For finite,
g-dimensional predictors, there will in general be no reason to assume a particular functional relationship
between observations from adjacent dimensions so a spline basis matrix would be inappropriate. For an ob-
servation x;, with the first m dimensions observed and the remaining g— m missing, a natural choice would
beto replace § by an m by g matrix with the first m columns consisting of the identity matrix and remain-
ing entries zero. This parameterization alowsthe datato directly model any relationship between different
dimensions through the covariance matrix . Using this basis matrix, the model of section 2.1 provides a
natural representation of the relationship between a predictor, containing missing data, and aresponse which
meansthat the FGL M fitting procedure can beimplemented immediately in thissetting. TheFGLM approach
providesthree useful toolsfor working with missing data. First, it enables GLMsto befit when missing data
ispresentinthe predictors. Second, the estimated y' s can be used to imputethe missing observations. Finally,
the eigen-decomposition of I" provides a method for performing principal components on missing data.

A simulation study was conducted to illustratethe improvements that are possible when using FGLM to
perform linear regression with missing predictor values. Six simulations were conducted. For each a train-
ing data set was created by randomly sampling 50 y'sfrom amean zero five-dimensiona multivariatenormal
distribution. The first three data sets had correl ations between each dimension of 0.5 while the other three
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Method p=.5 p=.9

5% miss. | 10% miss. | 20% miss. || 5% miss. | 10% miss. | 20% miss.
Substitution 2.02 3.92 8.08 1.40 2.89 7.51
FGLM 1.64 2.28 5.20 0.32 0.61 0.92
Optimal 1.40 2.21 4.79 0.30 0.52 0.75

Table6: Resultsfrom missing datasimulations. The FGLM approach achieves squared deviationsvery close
to that of the optimal fit while the substitution method has consistently higher deviations.

had correlations of 0.9. The responseswere produced as alinear combination of the y' s plus a small amount
of random normal noise. Finally, the predictors were created by randomly removing a fixed percentage of
the elements from each y, to simulate the missing data, and adding random normal measurement errors to
theremaining elements. Three procedures were fit to these data sets. Thefirst, asimple approach commonly
applied in practice, substituted the mean of each dimension for any missing observations before applying a
standard linear regression fit. We call this method substitution regression. The second was the FGLM ap-
proach using the basis matrix described earlier. The final method was the optimal fit where the responseis
predicted using thetrue distribution from which the datawere simulated. Thisprocedure givesthe best possi-
ble estimates but cannot be used on real problems. We compared the fitted modelsfor each of the procedures
using aseparatetest set of 1000 observationsdrawn from the same distributionasthetraining data. The mean
squared deviations between predictionsand actual responses, standardized in the same manner astable 2, are
shownintable6. Thefirst three columns show resultsfor acorrelation of 0.5 and datamissing at randomwith
probabilities 5%, 10% and 20% whilethe remaining three columns correspond to a correlation of 0.9. Notice
that the FGLM approach is producing deviations very close to the lowest possible. The substitution regres-
sion method produces consistently higher deviations. Aswe would expect the FGLM approach providesthe
greatest advantages over the substitution method when there are larger correl ations between dimensionsand
higher percentages of missing data.
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A Appendix

A.1 Functional SimpleLinear Regression Algorithm

When Y is assumed to have a normal distribution with the identity link function then the distribution of y
conditional on x and Y is normal with
-1

Var(yx,Y) = |[r4S's/0Z+BiB]/02|

E(YX.Y) = Var(yx.Y) [, +S'x/02 + By(y—Bo)/0F]
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Hence
Vy = [riegs/o+piel/el] 25)
Bio= Vi [Ty S/ + By — Bo) /03] (26)

Furthermore, (11) reducesto

1 N
=5 3. |09} + (1~ Bo— B1¥) /. (27)
Hence, using standard least squares, the maximization of the expected value of (11) is achieved using (28)
and (29),
BO:|:|: N ZIVIT :|_1|:Ziyi:| 28
o= sy sottan] [ #9
213 To 2, T
0f = <3 | (Y~ Bo— BI%)?+ BIVyB| (29)

Thusthefunctional linear regression algorithm iterates through a two step procedure until the param-
eters have converged.

1. Inthe E-step {; and V, are calculated according to (26) and (25) using the current estimates of the
parameters.

2. Then in the M-step the parameters 0%, ., I, Bo, B, and o are calculated using (14), (15), (16), (28)
and (29) respectively.

3. Returnto 1. unlessthe parameters have converged.

A.2 Functional Censored Regression Algorithm

The functional censored regression model isamost identical to that of linear regression with the exception
that a portion of the responses are assumed censored and hence missing. The EM algorithm has been com-
monly applied to this problem when the predictor has finite dimension (Schmee and Hahn, 1979). One till
estimates 02, My and I using (14), (15) and (16). Likewise, for responses that have been observed y; and
are still calculated using (26) and (25). Thereis no simple closed form solution for ¥ and \,, when the re-
sponseiscensored but they may still be computed using asimpleform of Monte Carlo estimation. For theith
censored response, generateasample, vj, . . . , Yy, according to the distributiongiven by (6). Thenan unbiased
estimate for y; is,

L SYiPO > Gl
TSPt aly)

(30)
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where P(Y; > ¢i|y*) = 1—¢(%). Similarly V, can be estimated using

Sy TPMY > aly) o

, = -VVi . 31
i ZT:]_P(YI > Ci|y]!<) ylyl ( )
Bo and 3; are estimated using a similar equation to (28),
[Bo] _ [ NS ] N [ STyt 3 e ECYIY > ) @
By Sivi YW +¥90) S %Y+ S E(WYYE > cixi) |

where E(Yi|Y; > ¢i,x;) isgiven by (8) and E(V;Y;|Y; > Gi,X;) can be estimated using the above mentioned

Monte Carlo approach with

ST YIE(YY > ¢,y P(Y > cily;)
3j=1P(Yi > cily}) 7

E(YiY > ¢, %) = (33)

and
C’yCP((Ci —Bo- Bl\’f)/c’y)

E(Y[Y > c,) = Bo+B1Y] + :
1- o (6 Bo— By, /y)

Finally o7 is estimated using

2
Oy

N m
N D EEYx) = g |5 (0%~ B0 B+ BV y) %lEs|Y>c.7x.>] (34

where an unbiased estimate of E(€2]Y; > ¢, X;) is obtained using the Monte Carlo approach with

n
2i=1

P > i)+ 0y (e~ o BTy 0 (S )|
TTPOC> )

Thusthe functional censored regression algorithm iterates through a two step procedure until the pa-
rameters have converged.

E(E)Y; > 6,X) =

(35)

1. Inthe E-step we cal culate the expected values and variances of they;’s using (26), (30), (25) and (31)
and the conditional expectations of Y;, Yiy, and €2 given Y; > ¢; using (8), (33) and (35)

2. Then in the M-step the parameters, 02, Hy: I, Bo, By and 032,, are estimated using (14), (15), (16), (32)
and (34) respectively.

3. Returnto 1. unlessthe parameters have converged.

This procedure is an example of Monte Carlo EM (Tanner, 1994).

A.3 Functional Logistic Regression Algorithm

As with the previous two agorithms, the logistic regression fitting procedure estimates 02, My and " using
(14), (15) and (16). Thereis no closed form solution for y; or Vy, so we again make use of Monte Carlo.
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For theith response, generate asample, v;, . .. , ys, according to the distribution given by (6). Then unbiased
estimates for y; and V, are given by,

= ZTzlny(Y:yiND
! ZT:].P(Y: y||yf)
where P(Y = y;|yj) is calculated from (9).

In analogy with theiteratively re-weighted | east squares approach used to fit standard logistic regression
problems, the expected value of (11) can be maximized by choosing 3o and (3; such that

SNV PY =YY o
Zj_l (Y yI|W) t

and Vi =

(36)

E (ATWA) [EO] = E(ATWZ) (37)
1

whereAisanN by g+ 1 matrix whoseithrowis(1,y' ), W isadiagonal matrix withtheith diagonal (1),

Z isavector with ith lement Bo+ V"B, + (Vi — T5) /T5(1— 15) and 15 = P(Y; = 1|;). Since 1§ depends on

the current parameter estimate an iterative approach must be taken to solvethisequation where 3o and 3, are

updated by incrementing them by,

-1
T L (AT ) T (1-To)Y Yi(yi—T5)
(E(AWA)) "E(AWZ) (ZE [ 1-m)y; Tﬁ(l—Tﬁ)ViViTD = [Zi (¥ —Tﬁ)\’i] -

Implementing (37) requirescalculating E(Tg (1—1%)), E(Tg (1 - T5)Y;), E(T6 (1 —T5) iy ), E(yi — T5) and E((y; —
T)Y;). These quantitiesare estimated using

Y= UiP(Y = yily))

STPY=YIV,) (39
where
P(Y = 1)y))(1- P(Y = 1}y!)) for E(T(1— 1))
YiP(Y=1ly))(1-P(Y = 1]y}))) for E(Tg(1—T5)y;)
Uj= vy TRP(Y=1]y)(1-P(Y=1]y})) for E(m(1-m)yY)
(i —P(Y=1}y})) for E(y; — %)
yi (i —P(Y =1ly})) for E((yi — Th)Vi)-

Thusthefunctional logisticregression algorithm iterates through atwo step procedure until the param-
eters have converged.

1. In the E-step the expected value and variance of the y;’s are calculated using (36) and the expected
valuesof 4 (1— 1), T5(1— T5)Y;, 6 (1 — T)y,y",yi — 75 and (y; — T5)y; are calculated using (39).

2. IntheM-step theparameters a2, Hy, [, Boand B, areestimated using equations(14), (15), (16) and (37).
3. Returnto 1. unlessthe parameters have converged.

In practice we have found that one step of (38) provides areasonable estimate of the coefficients. Thissaves
agreat deal of computation as the various expected values only have to be calculated once per M-step.
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A.4 Functional MultipleLinear Regression Algorithm
Lety " = (V,... ,Yip)- WhenY is assumed to have anormal distributionwith theidentity link function then
the distribution of y/, conditional on x; j andj, isnormal with
My + Sxin /0% + (Y — Bo — B;Zi)Bl/o)Z/)
E(¥i]xij, i) = Var (¥[xij, %) * : : (40)
ralbp-p + S-I;)Xip/c’)z(p‘l' (Y, —Bo— B;Zi)Bp/o)zl)
and
Mo+ S1S1/0% +BiBI/0y BiB3/0f - BuBy/0}
Var (y{|xij, ¥i) = : : 5 (41)
B,B1/0? BoB2/0F -+ T +SSp/0%+ByBy/0F
Therefore y; = E(y;j[xij, Yi) and Vy, = Var(y;j[xij, Yi) can be computed using (40) and (41). Thisin turn
allows o7, and I to be calculated using

) 1 X o NT 0 T

%= Z—mi;[(xn—sj\’ij) (Xii—Si\’ii)“race(sl'v"ijsi)}’ “2
1Y

b= w2 (43)
1N . o T

ry = N_;(vyﬁ(w,-—u,-)(vu—uﬂ)- “

Finally Bo,By,. .. By, Bz and o are estimated using,

Bo 1
Bl 1 yiT ZIT Zlyl
=YE[v v e {ziyiEvir (45)
Bp T \z zy' z7 YiViz
Bz
and
0= 5 ((—Bo-Blz— 3 BIH2+ 3 BTV (46)
y_|\|iZl I~ Po— Pz j;]yI] J_;injl :

Thus the functional multiple linear regression algorithm iterates through a two step procedure until
the parameters have converged.

1. Inthe E-step the expected value and variance of they;’s are calculated using (40) and (41).

2. In the M-step the parameters crfj ;Hj and I'j are estimated using equations (42), (43) and (44) and
Bo, By, -, Bp, Bz are estimated using (45). Finally, 0§ is estimated using (46).

3. Returnto 1. unlessthe parameters have converged.

21



References

Cessie, S. L. and Houwelingen, J. C. V. (1994). Logistic regression for correlated binary data. Applied
Satistics 43, 95-108.

Dempster, A. P, Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data viathe
EM agorithm. Journal of the Royal Statistical Society, Ser. B 39, 1-22.

Diggle, P J, Liand, K. Y., and Zeger, S. L. (1994). Analysis of Longitudinal Data. New York: Oxford
University Press.

Fahrmeir, L. and Tutz, G. (1994). Multivariate Statistical Modeling Based on Generalized Linear Models.
Springer-Verlag.

Fleming and Harrrington (1991). Counting Processes and Survival Analysis. Wiley.

Gao, F, Wahba, G., Klein, R, and Klein, B. (2001). Smoothing spline ANOVA for multivariate bernoulli
observations with applicationsto opthalmology data. Journal of the American Statistical Association
96, 127-147.

Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models: A
roughness penalty approach. Chapman and Hall: London.

Hastie, T. and Mallows, C. (1993). Comment on “a statistica view of some chemometricsregressiontools’.
Technometrics 35, 140-143.

Hastie, T. J. and Tibshirani, R. J. (1993). Varying-coefficient models (with discussion). Journal of the Royal
Satistical Society, Series B 55, 757—796.

Hoover, D. R., Rice, J. A.,, Wu, C. O., and Yang, L. P. (1998). Nonparametric smoothing estimates of time-
varying coefficient modelswith logitudinal data. Biometrika 85, 809-822.

James, G. M. and Hastie, T. J. (2001). Functional linear discriminant analysisfor irregularly sampled curves.
Journal of the Royal Statistical Society, Series B 63, 533-550.

James, G. M., Hastie, T. J,, and Sugar, C. A. (2000). Principal component modelsfor sparse functional data.
Biometrika 87, 587—602.

Jones, B. and Kenward, M. G. (1989). Design and Analysis of Cross-Over Trials. London: Chapman Hall.
Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963-974.

Liang, K. Y.and Zeger, S. L. (1986). Longitudinal dataanalysisusing generalized linear models. Biometrika
73,13-22.

Lin, D.Y.and Ying, Z. (2001). Semiparametric and nonparametric regression analysis of longitudinal data.
Journal of the American Satistical Association 96, 103—-113.

McCullagh, P. and Nelder, J. (1989). Generalized Linear Models. Chapman and Hall, London, 2nd edn.

Moyeed, R. A. and Diggle, P. J. (1994). Rates of convergence in semi-parametric modeling of longitudinal
data. Australian Journal of Satistics 36, 75-93.

Ramsay, J. O. and Silverman, B. W. (1997). Functional Data Analysis. Springer.

22



Schmee, J. and Hahn, G. (1979). A simple method for regression analysiswith censored data. Technometrics
21, 417-432.

Shi, M., Weiss, R., and Taylor, J. (1996). An analysisof paediatric cd4 countsfor acquired immune deficiency
syndrome using flexible random curves. Applied Statistics 45, 2, 151-164.

Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve
fitting (with discussion). R. Statist. Soc. B 47, 1-52.

Tanner, M. (1994). Toolsfor Satistical Inference. Springer, 2nd edn.

Wu, C. O., Chiang, C. T., and Hoover, D. R. (1998). Asymptotic confidence regions for kernel smoothing
of avarying-coefficient model with longitudinal data. Journal of the American Statistical Association

93, 1388-1402.

Zeger, S. L. and Diggle, P. J. (1994). Semiparametric modelsfor longitudinal date with applicationsto CD4
cell numbersin HIV seroconverters. Biometrics 50, 689—699.

23



