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The Bass model has been a standard for analyzing and predicting the market penetration of new products.
We demonstrate the insights to be gained and predictive performance of functional data analysis (FDA), a

new class of nonparametric techniques that has shown impressive results within the statistics community, on
the market penetration of 760 categories drawn from 21 products and 70 countries. We propose a new model
called Functional Regression and compare its performance to several models, including the Classic Bass model,
Estimated Means, Last Observation Projection, a Meta-Bass model, and an Augmented Meta-Bass model for
predicting eight aspects of market penetration. Results (a) validate the logic of FDA in integrating informa-
tion across categories, (b) show that Augmented Functional Regression is superior to the above models, and
(c) product-specific effects are more important than country-specific effects when predicting penetration of an
evolving new product.

Key words : predicting market penetration; global diffusion; Bass model; functional data analysis; functional
principal components; generalized additive models; functional clustering; spline regression; new products

History : Received: October 1, 2007; accepted: January 10, 2008; processed by John Hauser. Published online in
Articles in Advance July 31, 2008.

Introduction
Firms are introducing new products at an increas-
ingly rapid rate. At the same time, the globaliza-
tion of markets has increased the speed at which
new products diffuse across countries, mature, and
die off (Chandrasekaran and Tellis 2008). These two
forces have increased the importance of the accurate
prediction of the market penetration of an evolving
new product. Although research on modeling sales of
new products in marketing has been quite insightful
(Chandrasekaran and Tellis 2007), it is limited in a
few respects. First, most studies rely primarily, if not
exclusively, on the Bass model. Second, prior research,
especially those based on the Bass model, need data
past the peak sales or penetration for stable estimates
and meaningful predictions. Third, prior research has
not indicated how the wealth of accumulated penetra-
tion histories across countries and categories can be
best integrated for good prediction of penetration of
an evolving new product. For example, a vital unan-
swered question is whether a new product’s pene-
tration can be best predicted from past penetration
of (a) similar products in the same country, (b) the
same product in similar countries, (c) the same prod-
uct itself in the same country, or (d) some combination
of these three histories.

The current study attempts to address these limita-
tions. In particular, it makes four contributions to the
literature. First, we illustrate the potential advantages
of using functional data analysis (FDA) techniques
for the analysis of penetration curves (Ramsay and
Silverman 2005). Second, we demonstrate how infor-
mation about the historical evolution of new products
in other categories and countries can be integrated to
predict the evolution of penetration of a new prod-
uct. Third, we compare the predictive performance of
the Bass model versus an FDA approach and some
naïve models. Fourth, we indicate whether informa-
tion about prior countries, other categories, the target
product itself, or a combination of all three is most
important in predicting the penetration of an evolving
new product.
One important aspect of the current study is that

it uses data about market penetration from most of
21 products across 70 countries, for a total of 760 cat-
egories (product × country combinations). The data
include both developed and developing countries
from Europe, Asia, Africa, Australasia, and North
and South America. In scope, this study exceeds the
sample used in prior studies (see Table 1), yet the
approach achieves our goals in a computationally effi-
cient and substantively instructive manner.
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Table 1 Scope of Prior Studies

Authors Categories Countries

Gatignon et al. (1989) 6 consumer durables 14 European countries
Mahajan et al. (1990) Numerous studies
Sultan et al. (1990) 213 applications United States, European

countries
Helsen et al. (1993) 3 consumer durables 11 European countries

and United States
Ganesh and Kumar 1 industrial product 10 European countries,

(1996) United States, Japan
Ganesh et al. (1997) 4 consumer durables 16 European countries
Golder and 31 consumer durables United States

Tellis (1997)
Putsis et al. (1997) 4 consumer durables 10 European countries
Dekimpe et al. (1998) 1 service 74 countries
Kumar et al. (1998) 5 consumer durables 14 European countries
Golder and 10 consumer durables United States

Tellis (1998)
‘Kohli et al. (1999) 32 appliances, house- United States

wares and electronics
Dekimpe et al. (2000) 1 innovation More than 160 countries
Mahajan et al. (2000) Numerous studies
Van den Bulte (2000) 31 consumer durables United States
Talukdar et al. (2002) 6 consumer durables 31 countries
Agarwal and Bayus 30 innovations United States

(2002)
Goldenberg et al. 32 innovations United States

(2002)
Tellis et al. (2003) 10 consumer durables 16 European countries
Golder and 30 consumer durables United States

Tellis (2004)
Stremersch and Tellis 10 consumer durables 16 European countries

(2004)
Van den Bulte and 293 applications 28 countries

Stremersch (2004)
Chandrasekaran and 16 products and 40 countries

Tellis (2007) services

Note. Adapted from Chandrasekaran and Tellis (2008).

Another important aspect of the study is that it
uses FDA to analyze these data. Over the last decade,
FDA has become a very important emerging field in
statistics, although it is not well known in the market-
ing literature. FDA provides a set of techniques that
can improve the prediction of future items of inter-
est, especially in cases where prior longitudinal data
are available for the same products, data are available
from histories of similar products, or complete data
are not available for some years. The central paradigm
of FDA is to treat each function or curve as the unit
of observation. We apply the FDA approach by treat-
ing the yearly cumulative penetration data of each
category as 760 curves or functions. By taking this
approach, we can extend several standard statistical
methods for use on the curves themselves.
For instance, we use functional principal com-

ponents analysis (PCA) to identify the patterns of
shapes in the penetration curves. Doing so enables
a meaningful understanding of the variations among
the curves. An additional benefit of the principal

component analysis is that it provides a parsi-
monious, finite-dimensional representation for each
curve. In turn, this allows us to perform functional
regression by treating the functional principal compo-
nent scores as the independent variables and future
characteristics of the curves, such as future penetra-
tion or time to takeoff, as the dependent variable. We
show that this approach to prediction is more accurate
than the traditional approach of using information
from only one curve. It also provides a deeper under-
standing of the evolutions of the penetration curves.
Finally, we perform functional clustering by group-

ing the curves into clusters with similar patterns of
evolution in penetration. The groups we form show
strong clustering among certain products and provide
further insights into the patterns of evolution in pen-
etration. In particular, plotting the principal compo-
nent scores allows us to visually assess the level of
clustering among different products for all 760 curves
simultaneously. Such a visual representation would
be impossible using the original curves.
The rest of the paper is organized as follows. The

next three sections present the method, data, and
results. The last section discusses the limitations and
implications of the research.

Method
We present the method in five sections. The first three
sections outline various applications of FDA. Fig-
ure 1 provides a flowchart of the implementation of
our three FDA techniques. The first section describes
functional principal components. The second section
shows how the functional principal component scores
can be used to perform functional regression for pre-
dictions. The third section illustrates how the PCA
scores can be used to perform functional cluster anal-
ysis and hence identify groupings among curves. The
fourth section describes the alternate models against
which we test the predictive performance of the FDA
models. The last section details the method used for
carrying out predictions.

Functional Principal Components
FDA is a collection of techniques in statistics for the
analysis of curves or functions. Most FDA techniques
assume that the curves have been observed at all
time points, but in practice this is rarely the case. In
some instances, curves might not be observed over
all time periods. In other cases, the curves might
be observed only over discrete intervals (e.g., annual
estimates of adoption of new products). Because we
have many observations for each curve, we first use a
simple smoothing spline approach to generate a con-
tinuous smooth curve from our discrete observations.
For example, a smoothing spline can be fit to a curve
plotting the penetration of CD players, given 10 years
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Figure 1 Flowchart of the Implementation of the Three FDA Techniques

Use standard k-means
clustering to cluster

all the curves

Use jump approach to identify
optimal number of clusters

Interpret clusters and
draw conclusions

Functional clustering
establishes relationships among

the penetration curves

Functional regression establishes
a relationship between predictor

and the item to be predicted

Compare with alternative
functional and nonfunctional

models using tenfold
cross-validation

Make prediction of future
penetration based on results

of functional regression

Functional
regression

Functional
clustering

Modeling of individual curves

Collect data on penetration levels
across time, countries, and products

Functional principal components

Generate a continuous smooth curve
from discrete observations using

smoothing spline approach

Decompose curves into
functional principal scores

of discrete data to obtain its penetration curve. The
full details of our spline implementation are provided
in Appendix A.
We denote by X1�t��X2�t�� � � � �Xn�t� the n smooth

curves that are our approximations to the penetra-
tion curves for each product-country combination and
decompose these curves in the form

Xi�t�=	�t�+
�∑
j=1

eij�j�t� i= 1� � � � �n (1)

subject to the following orthogonality constraints:
∫

�2
j �s� ds = 1 and

∫
�j�s��k�s� ds = 0 for j �= k�

The �j�t�s represent the principal component func-
tions, the eijs, the principal component scores corre-
sponding to the ith curve, and 	�t� the average curve
over the entire population. As with standard principal
components, �1�t� represents the direction of greatest
variability in the curves about their mean. �2�t� repre-
sents the direction with next greatest variability sub-
ject to an orthogonality constraint with �1�t�, etc. The
eijs represent the amount that Xi�t� varies in the direc-
tion defined by �j�t�. Hence, a score of zero indicates
that the shape of Xi�t� is not similar to �j�t�, while
a large score suggests that a high fraction of Xi�t�’s
shape is generated from �j�t�.

To compute the functional principal components,
we divide the time period t = 1 to t = T into p
equally spaced points and evaluate Xi�t� at each of
these time points. Note that the new time points are
not restricted to be yearly observations, because the
smoothing spline estimate can be evaluated at any
point in time. Finally, we perform standard PCA on
this p dimensional data. The resulting principal com-
ponent vectors provide accurate approximations to
the �j�t�s at each of the p grid points, and likewise
the principal component scores represent the eijs. We
opted to set p = T and to evaluate the �j�t�s at the
original yearly time points. Because our penetration
curves were generally smooth, this approach gener-
ated smooth estimates for the �j�t�s.
In theory, n different principal component curves

are needed to perfectly represent all n Xi�t�s. How-
ever, in practice, a small number (D) of components
usually explain a substantial proportion of the vari-
ability (Ramsay and Silverman 2005), which indi-
cates that

Xi�t�≈	�t�+ ei1�1�t�+ ei2�2�t�+ · · ·+ eiD�D�t�

i= 1� � � � �n (2)

for some positive D	 n.
Note that the smooth functions, Xi�t�, are infinite

dimensional in nature even though they are observed
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at only a finite number of time points. However, we
use the eijs in Equation (2) to reduce the infinite
dimensional functional data to a small set of dimen-
sions. This reduction in dimensions is crucial because
it allows us to perform functional clustering and func-
tional regression, as described in the following two
sections. In addition, it provides a parsimonious rep-
resentation because it reduces the number of obser-
vations for each curve from T down to some small
value D.
Note that even though the spline approach will not

work in situations where only one or two time points
are available for each curve, we can compute the func-
tional principal components from sparsely observed
data using other more sophisticated methods (see,
e.g., James et al. 2000, Jank and Shmueli 2006, Ret-
tinger et al. 2008). Hence the methods of functional
clustering and functional regression that we describe
in this paper can be applied even to products with
only one or two years of penetration data.

Functional Regression
We use functional regression to predict several items
of interest, such as future marginal penetration level
in any given year or the year of takeoff. Let Xi�t�
be the smooth spline representation of the ith curve
observed over time such as the first five years of
cumulative penetration for a given category. Let Yi

represent a related item to be predicted, such as the
marginal penetration in year six.
Functional regression establishes a relationship

between predictor, Xi�t�, and the item to be predicted,
Yi, as follows:

Yi = f �Xi�t��+ �i i= 1� � � � �n� (3)

Equation (3) is difficult to work with directly
because Xi�t� is infinite dimensional. However, for
any function f , there exists a corresponding func-
tion g such that f �X�t�� = g�e1� e2� � � ��, where
e1� e2� � � � are the principal component scores of X�t�.
We use this equivalence to perform functional regres-
sion with the functional principal component scores
as the independent variables. This approach is related
to principal components regression, which is often
used for nonfunctional, but high-dimensional, data.
The simplest choice for g would be a linear function
in which case Equation (3) becomes

Yi = �0 +
D∑
j=1

eij�j + �j (4)

for some D≥ 1. A somewhat more powerful model is
produced by assuming that g is an additive, but non-
linear, function (Hastie and Tibshirani 1990). In this
case, Equation (3) becomes

Yi = �0 +
D∑
j=1

gj�eij �+ �j� (5)

where the gjs are nonlinear functions that are esti-
mated as part of the fitting procedure. There are
different ways to model the gjs but one common
approach, which we use in this paper, is the smooth-
ing spline discussed in Appendix A. One advantage
of using Equation (4) or Equation (5) to implement a
functional regression is that once the eijs have been
computed via the functional PCA, we can then use
standard linear or additive regression to relate Yi to
the principal component scores. We can also extend
Equation (5) by adding covariates that contain infor-
mation about the curves beyond the principal com-
ponents, such as product or country characteristics or
marketing variables.

Functional Clustering
We use functional clustering for the purpose of better
understanding the penetration patterns in the data.
In particular, we wish to identify groups of similar
curves and relate them to observed characteristics of
these curves such as the product and country. We
use the principal components described in the previ-
ous section to reduce the potentially large number of
dimensions of variability and cluster all the curves in
the sample.
We apply the standard k-means clustering approach

(MacQueen 1967) to the D-dimensional principal
component scores, ei, described in Equation (2) to
cluster all the curves in the sample. Appendix B pro-
vides more details of k-means clustering.
We use the “jump” approach (Sugar and James

2003) to select the optimal number of clusters, k. We
compute �k = �−Z

k − �−Z
k−1 for a range of values of k,

where �k is given by (B1) and Z is usually taken to
be D/2. Sugar and James (2003) show through the use
of information theory and simulations that setting the
number of clusters equal to the value corresponding
to the largest �k provides an accurate estimate of the
true number of clusters in the data.
Once we compute the cluster centers, we assign

each curve to its closest cluster mean curve. We can
then use Equation (2) to project the centers back into
the original curve space and examine the shape of a
typical curve from each cluster.

Comparing Alternative Models
To fully understand the advantages of FDA, we
compare two implementations or models of FDA
with five nonfunctional models. We name the two
functional models—Functional Regression and Aug-
mented Functional Regression—and the five nonfunc-
tional models—Estimated Mean, Last Observation
Projection, Classic Bass, Meta-Bass, and Augmented
Meta-Bass. Table 2 classifies all the models based on
their use of information across curves and nature of
the model.
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Table 2 Classification of Models

Analysis of curves
Uses information
across curves Nonfunctional analysis Functional analysis

No Classic Bass
Yes Estimation Mean Functional Regression

Last Observation Projection Augmented Functional
Meta-Bass Regression
Augmented Meta-Bass

The Functional Regression approach has three main
strengths. First, it is able to incorporate information
from other products to improve prediction accuracy.
Second, it implements a nonparametric fitting proce-
dure so it is not restricted by parametric assumptions.
Third, it uses the functional nature of the penetration
curves. We chose the five comparison models to
gain an understanding of the gains from each of
these strengths. For example, Classic Bass is paramet-
ric, does not use information from other products,
and is nonfunctional so it provides a baseline case
where none of the strengths are present. The Meta-
Bass and Augmented Meta-Bass models extend Clas-
sic Bass to incorporate information from other prod-
ucts but are still parametric and nonfunctional so they
illustrate the improvement from borrowing strength
across curves. The Last Observation Projection model
uses information from all products and is also non-
parametric, so it illustrates the improvement from the
first two strengths of FDA.

Estimated Mean. The Estimated Mean is a simple
model, which fits the mean of the item to be predicted
in the estimation sample as the predicted value of the
item in the holdout sample. So, for example, to predict
marginal penetration in year T + 1, we use the mean
marginal penetration in year T + 1 among all curves
in the estimation sample. Specifically, the prediction
for the ith observation in the holdout sample, �Yi, is
given by

�Yi = Y � (6)

where Y is the mean across all countries and products
on the estimation sample. Note that this is a very sim-
ple model, which does not use any information from
the first T periods of data.

Last Observation Projection. The Last Observation
Projection is another simple model, which estimates
the item to be predicted from only the last observation
in each penetration curve. To do so, we first relate the
item to be predicted, Yi, to the final observed pene-
tration level, Xi�T �, in the estimation sample. To esti-
mate this relationship, we explore both a standard
linear model (Equation (7)) as well as a more flexible

nonlinear model (Equation (8)),

Yi = �0 +�1Xi�T �+ �i� (7)

Yi = �0 + g�Xi�T ��+ �i� (8)

We use the nonlinear model for our final results. For
the prediction, we use the estimated g from Equation
(8) and the final observed penetration level (Xi�T �) in
the holdout sample to get the predicted item in the
holdout sample.
Note that this is a slightly superior model to the

Estimated Mean, because it uses at least the last obser-
vation from each curve to be predicted. However, it
still does not use any other prior data from the curve.
We also tested out a linear regression model incorpo-
rating all T time periods, Xi�1�� � � � �Xi�T �, as indepen-
dent variables. We have not reported the results here
because while this approach worked slightly better on
some items and slightly worse on others, the overall
results were not substantively different from the Last
Observation predictions.

Classic Bass. The Classic Bass Model (Bass 1969)
fits each curve in the sample separately by estimating
the following model:

s�t�=m�F �t�− F �t− 1��+ ��t��

F �t�= 1− e−�p+q�t

1+ �q/p�e−�p+q�t
� (9)

where t = time period, s�t�=marginal penetration at
time t, p= coefficient of innovation, q = coefficient of
imitation, and m= final cumulative penetration.
We estimate the model via the genetic algorithm

because Venkatesan et al. (2004) provide convincing
evidence that the genetic algorithm provides the best
method for fitting the Bass model relative to all prior
estimation methods. For each curve, we use the first
T years of data to estimate the three Bass parameters,
m, p, and q. We then predict the next five years of
penetration levels by plugging the estimated parame-
ters back into the Bass model and evaluating at times
T + 1 through T + 5. We predict the time of peak
marginal penetration by using t = log�q/p�/�p+q� and
the peak marginal penetration using s =m�p+q�2/4q.
We do not predict time to takeoff with the Classic
Bass model. Note that the Classic Bass model does not
distinguish between holdout and estimation samples
because each curve is fit individually without using
information from other curves.

Meta-Bass. In the Meta-Bass model, we extend the
Classic Bass model to use information across curves.
To do so, we first estimate m, p, and q for each curve
using the genetic algorithm, as outlined above. Then,
for each item to be predicted, we fit the nonlinear
additive model

Yi = �0 + g1�mi�+ g2�pi�+ g3�qi�+ �i (10)
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to the estimation sample, where g1, g2, and g3 are
smoothing splines as defined previously. We use the
estimated parameters from this additive model and
the estimates of m, p, and q for each curve in the hold-
out sample to compute the corresponding item to be
predicted for each of the holdout curves. Note that
the estimation of m, p, and q can also be done using
a Bayesian formulation with a prior on !m�p� q".

Augmented Meta-Bass. The Augmented Meta-
Bass is the same nonlinear additive model used for
the Meta-Bass, except that we add an indicator vari-
able for each of the R products to which each curve
belongs; thus

Yi = �0 + g1�mi�+ g2�pi�+ g3�qi�+
R−1∑
r=1

%r Iir + �i� (11)

where Iir = 1 if the ith curve belongs to product r ,
and 0 otherwise, and the %rs are regression coefficients
that are estimated as part of the model-fitting proce-
dure. Note that the Meta-Bass and Augmented Meta-
Bass are extensions of the Classic Bass that make use
of all of the information across curves, rather than just
using each curve individually. Because using informa-
tion across curves is an essential feature of functional
regression, doing so puts the Meta-Bass and the Aug-
mented Bass on the same platform as the FDA models
(see Table 2).

Functional Regression. For the Functional Regres-
sion model, we compute four principal component
scores, the first two each on the penetration curves,
Xi�t�, and on the velocity curves, X ′

i �t�. The prin-
cipal component scores on the velocity curves are
computed in an identical fashion to that for the pen-
etration curves, except that we use the derivative of
Xi�t�. We then use these four scores as the indepen-
dent variables in an additive regression model, as
shown in Equation (5), on the estimation sample. We
then use the estimated parameters of this equation
and the data from the curves in the holdout sample
to compute the items to be predicted in the holdout
sample.

Augmented Functional Regression. Our second
functional approach enhances the power of Func-
tional Regression by adding an indicator variable for
each of the R products to which each curve belongs,
as with the Augmented Meta-Bass model. Hence the
Augmented Functional Regression model involves
estimating a nonlinear additive model on the estima-
tion sample as follows:

Yi = �0 +
4∑

j=1
gj�eij �+

R−1∑
r=1

%r Itr + �i� (12)

where the gjs are smoothing splines. We then com-
pute the items to be predicted for each curve in

the holdout sample from the estimated values of the
above parameters and the data in each curve in the
holdout sample. This model is directly comparable to
Augmented Meta-Bass because both models use infor-
mation across curves and from products.

Method for Prediction
We explain the specific procedure for carrying out the
prediction in three parts: items being predicted, com-
putation of errors, and partitioning of sample.

Items Being Predicted. We first truncate each
curve at the T th year. We use the penetration in years
1 to T to estimate the model and predict the marginal
change in penetration for years T +1 to T +5. For each
curve, we also predict the number of years to take-
off, the years to peak marginal penetration, and the
level of peak marginal penetration. Takeoff is the first
turning point in sales, marking the transition from the
introductory to the growth stage of the product life-
cycle. We identify the year of takeoff based on the def-
inition proposed by Golder and Tellis (1997). Thus we
predict a total of eight items for each of seven mod-
els, for a total of 56 model items. We do this whole
process once each for T = 5 years and T = 10 years.

Computation of Errors. For each of these 56 model
items to be predicted, we compute the mean absolute
deviation (MAD) over all penetration curves; i.e.,

MAD= 1
n

n∑
i=1

�Yi − �Yi�� (13)

where Yi is a particular item for curve i and �Yi is the
corresponding estimate using a given model.

Partitioning of Sample. We use tenfold cross-
validation by randomly partitioning the curves into
10 equal groups. We hold out one group, estimate
each of the models on the remaining nine groups
using data from years 1 to T , and then form predic-
tions on the held out group for years T + 1 to T + 5.
We repeat this process 10 times, for each of the 10 held
out groups of data. T is the same for all countries
and products. Figure 2 provides a graphical descrip-
tion of our process. For each of the 56 model items,
we compute the MAD as an average of these 10 iter-
ations. Note that k-fold cross-validation is superior to
simple splitting of data into one holdout and training
group, because all the data are used (randomly) as a
holdout once.

Data
This section details our sample, sources, and proce-
dure for data collection.
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Figure 2 Analytic Framework Demonstrating Tenfold Cross-Validation

8 Items for prediction

•  Time to peak penetration
•  Peak penetration

•  Estimated Mean
•  Last Observation
      Projection
•  Classic Bass
•  Meta-Bass
•  Augmented Meta-
      Bass
•  Functional

Regression
•  Augmented
     Functional
     Regression

Time

Holdout
sample (10%)

Training periodCross-validated

Penetration
curve over

time

Penetration

Estimation
sample (90%)

Testing period

•  Time to takeoff
• T+1 to 5 periods

7  Prediction
models

Figure 3 Distribution and Classification of Countries

N. America, W. Europe
and Australasia
Eastern Europe

East Asia

West Asia

South America

Developing Asia

Africa

Data not available

Notes.

Cluster Countries

North America, Western
Europe, and Australasia

Canada, United States, Mexico, Austria, Belgium, Denmark, Finland, France, Germany,
Greece, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey,
UK, Australia, New Zealand

Eastern Europe Belarus, Bulgaria, Croatia, Czech Rep., Estonia, Hungary, Latvia, Lithuania, Poland,
Romania, Russia, Slovakia, Slovenia, Ukraine

East Asia China, Hong Kong, Japan, South Korea, Singapore, Taiwan
West Asia Israel, Jordan, Kuwait, S. Arabia, U.A.E.
South America Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
Africa Algeria, Egypt, Morocco, Nigeria, Tunisia
Developing Asia Azerbaijan, India, Indonesia, Kazakhstan, Malaysia, Pakistan, Philippines, Thailand,

Turkmenistan, Vietnam
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Sample
Most of the prior studies are limited in scope in terms
of both product type and geographical breadth (see
Table 1). We collect data on 760 categories drawn
from 21 products (see Table 3) and 70 countries (see
Figure 3). The sample includes a broad sample from
three categories: household white goods, computers
and communication, and entertainment and lifestyle.

Sources
The information required for this study is penetra-
tion rates of different products introduced in differ-
ent markets from the year of introduction to at least
some time after the takeoff. The primary source of
our data is the Global Market Information Database
of Euromonitor International, which is an integrated
online information system that provides business
intelligence on countries, consumers, and lifestyles.
We also use press releases, industry reports, and
archived records to identify the year of introduction
from databases like Factiva and Productscan.

Procedure
We follow the general rules for data collection for
the historical method (Golder 2000). We explain spe-
cific problems we encounter and the rules we use to
resolve them. We screen the categories to be used by
three criteria. First, we suspect that all curves that
have penetration rates above 1% in the first year
might have missing early years of data. So for these
categories, we check the year of introduction from
historical reports or press releases. We exclude all cat-
egories where data are not available from the first
year of introduction. Second, we exclude from our
analysis any categories that do not contain at least
T + 5 years of observations or have not reached peak
marginal penetration. Third, the data from this source
are available only from 1977. Hence we exclude all
categories where the product had been introduced or
taken off earlier than 1977.

Table 3 Sample Categories

Entertainment and Household white Computers and
lifestyle goods communication

Cable TV Air conditioner Internet personal
computer (PC)

Camera Dishwasher PC
CD player Freezer Fax
Color TV Microwave oven Satellite TV
DVD player Tumble drier Telephone
Hi-Fi stereo Vacuum cleaner
Video camera Washing machine
Videotape recorder
Video game console

Results
We present the results on functional principal compo-
nents, functional regression, and functional clustering.

Functional Principal Components
Figures 4(a) and 4(b) provide plots of �1�t� and �2�t�
computed from the first 10 years of observations on
the 760 penetration curves. The first principal compo-
nent represents the amount by which a curve’s pene-
tration, at year 10, is above or below the global year 10
average of all 760 curves. Categories with a positive
score on the first component end up with above aver-
age last-period penetration levels, while those with
negative scores have below average last-period pene-
tration. Alternatively, the second principal component
represents the way the penetration levels evolve. Cat-
egories with a positive score on the second compo-
nent grow most rapidly in the early years but slow
down by year 10, while those with a negative score
are associated with slow initial growth and a rapid
increase toward year 10.
An alternative way of visualizing these curves is

presented in Figures 4(c) and 4(d). Here, the black
line corresponds to 	�t�, the average penetration level
over all 760 curves. The red lines represent 	�t� ±
'j�j�t�, where 'j is a constant proportional to the
standard deviation of eij . Figure 4(c) shows that cat-
egories with a positive value for ei1 will have above
average last period penetration levels at year 10,
while ones with a negative ei1 will remain stagnant
over time and will have last period penetration levels
below the overall average. Alternatively, Figure 4(d)
shows that categories with a positive value for ei2 will
grow somewhat faster than average to begin with but
then fall below average after 10 years, while curves
with a negative ei2 will have the opposite pattern.
Remarkably, �1�t� and �2�t� together explain more

than 99% of the variability in the smoothed pene-
tration curves, which indicates that ei1 and ei2 provide
a highly accurate two-dimensional representation
of Xi�t�. However, it should be noted that the smooth-
ing spline approach removes some of the variability
in the data, so �1�t� and �2�t� explain somewhat less
than 99% of the variation in the observed penetra-
tion data. As mentioned previously, one can also com-
pute principal components for the velocity curves of
the penetration levels. When we perform this decom-
position on the penetration curves, the principal
components of X ′

i �t� have a very similar structure to
those for Xi�t�.

Functional Regression
This section presents the performance of the seven
models on the eight items to be predicted. Tables 4(a)
and 4(b) present the cross-validated MAD scores for
each model using cutoffs of T = 5 and T = 10 years
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Figure 4 Illustration of First Two Functional Principal Component Curves (Based on 10 Years of Training Data)
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of training data, respectively. We also compute the
fraction of curves for which Augmented Functional
Regression outperforms each of the other methods
(see Tables 5(a) and 5(b)).
To assess the ability of FDA to predict items

of penetration curves, we compare the Functional
Regression model to the five nonfunctional mod-
els. Functional Regression is superior to Estimation
Mean, Last Observation Projection, and Classic Bass
at predicting all eight items at both cutoff times (see
Table 4). The reason is that the Estimation Mean and
the Last Observation Projection use minimal informa-
tion from prior time periods, while Classic Bass uses
no information across curves. Functional Regression
is also better than Meta-Bass on all items for both cut-
off times, except for time to peak marginal penetration
at cutoff time T = 10 years.
The performance of Functional Regression is mixed

when compared with Augmented Meta-Bass. At the
cutoff of T = 5 years, Functional Regression is supe-
rior to Augmented Meta-Bass for the T +1, T +2, and
T + 3 years, similar for T + 4 years, but inferior for
the other four items (see Tables 4(a) and 5(a)). At the
cutoff of T = 10 years, Functional Regression outper-
forms Augmented Meta-Bass for T + 1 through T + 5
years as well as time to takeoff but not for time to
peak marginal penetration and peak marginal pene-
tration (see Tables 4(b) and 5(b)). The reason is that

the Augmented Meta-Bass uses information about
product while the Functional Regression does not.
On the other hand, with the sole exception of the

Classical Bass predicting year T + 1 with cutoff of
T = 10, the Augmented Functional Regression model
is superior to all nonfunctional models, including
Augmented Meta-Bass, for every item to be predicted
and for both cutoff times. The Augmented Functional
Regression is also superior to Functional Regression,
except in three instances where it is equal or slightly
inferior (for T + 1 years at cutoff of T = 5 years and
T + 1, T + 4 years at cutoff of T = 10 years). The
superiority over Functional Regression is most notice-
able in the time to takeoff and time to peak marginal
penetration.
When considering Table 5, Augmented Functional

Regression is superior for at least 50% of the curves
in 91 out of the 94 possible comparisons with other
models. It appears that the Functional Regression
model is slightly superior for predicting T + 1, but
the augmented version is preferable for any longer
range predictions. Most of the differences in Tables
4 and 5 are highly statistically significant. We also
tested out the Augmented Functional Regression
model with the addition of a predictor for geographic
region as defined in the clustering section but found
that the performance deteriorated slightly. In sum-
mary, the Augmented Functional Regression model
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Table 4 MAD by Model and Item

Method

Last Augmented
Item to be Estimation Observation Classic Augmented Functional Functional
predicted Mean Projection Bass Meta-Bass Meta-Bass Regression Regression

(a) Using 5 years (T = 5) of training data

T + 1 9�08 4�05 3�01 7�47 7�52 2�43 2�48
T + 2 12�39 7�49 7�18 10�50 10�01 5�46 5�12
T + 3 14�49 10�01 12�40 12�74 11�20 8�14 6�87
T + 4 17�35 13�74 17�27 16�08 12�16 11�75 8�29
T + 5 19�57 17�28 19�52 19�52 13�99 15�82 9�85
Takeoff 3�36 2�84 NA 2�69 2�41 2�66 2�35
Peak time 5�82 5�09 9�55 4�65 3�36 4�62 3�18
Peak marginal 33�88 31�95 140�07 34�40 24�49 29�38 20�70
penetration

(b) Using 10 years (T = 10) of training data

T + 1 10�83 5�37 4�02 8�17 8�17 4�17 4�70
T + 2 11�19 6�59 6�38 8�69 8�73 5�48 5�69
T + 3 11�56 7�25 8�43 10�90 10�83 6�31 6�11
T + 4 11�58 8�44 11�02 9�40 9�26 8�08 7�81
T + 5 11�65 9�72 11�96 11�48 11�11 9�07 8�40
Takeoff 3�61 2�93 NA 2�95 2�86 2�69 2�51
Peak time 4�69 3�95 7�54 3�50 2�94 3�66 2�92
Peak marginal 26�66 23�65 42�71 25�99 22�32 23�18 18�18

penetration

Notes. All results, except those for Takeoff and Peak time, have been multiplied by 103. Using an alternative metric for
error, the mean squared error, yields similar results.

Table 5 Superiority of Augmented Functional Regression over Other Models

Method

Item to be Estimation Last Observation Classic Augmented Functional
predicted Mean Projection Bass Meta-Bass Meta-Bass Regression

(a) Fraction of curves for which Augmented Functional Regression
outperforms other models using 5 years of training data

T + 1 0�89 0�68 0�50 0�83 0�84 0�52
T + 2 0�79 0�70 0�50 0�77 0�76 0�58
T + 3 0�77 0�72 0�53 0�72 0�73 0�68
T + 4 0�77 0�77 0�61 0�74 0�70 0�74
T + 5 0�79 0�80 0�64 0�75 0�74 0�78
Takeoff 0�63 0�63 NA 0�58 0�53 0�60
Peak time 0�76 0�69 0�76 0�66 0�53 0�67
Peak marginal 0�70 0�69 0�66 0�72 0�59 0�69

penetration

(b) Fraction of curves for which Augmented Functional Regression
outperforms other models using 10 years of training data

T + 1 0�87 0�51 0�33 0�72 0�74 0�36
T + 2 0�81 0�62 0�50 0�72 0�75 0�50
T + 3 0�79 0�63 0�56 0�70 0�70 0�57
T + 4 0�75 0�61 0�64 0�62 0�62 0�59
T + 5 0�67 0�61 0�62 0�62 0�62 0�60
Takeoff 0�67 0�60 NA 0�58 0�57 0�52
Peak time 0�69 0�61 0�77 0�53 0�49 0�56
Peak marginal 0�72 0�67 0�63 0�66 0�60 0�68

penetration
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Figure 5 Illustration of Functional Clustering
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Notes. (a) The shapes of the average penetration curves within each of the six clusters. (b) The first two principal component scores for all 760 curves.
A different color and plotting symbol has been used for each cluster with a black solid circle for the cluster centers. (c) Same as (b) but with different symbols
for each product.

outperforms other models in more than 96% of the
comparisons with six alternate models to predict
seven items across two cutoff times.

Functional Clustering
Figure 5 provides several approaches to viewing the
results from the functional clustering using k-means
on ei1 and ei2. The “jump” approach of Sugar and
James (2003) suggests between six and nine clusters.
We opt for six to provide the most parsimonious rep-
resentation (see Table 6). Figure 5(a) plots the centers
of the six clusters on the original time domain. The
figure illustrates the pattern of growth of a typical
curve in each cluster. Alternatively, Figure 5(b) plots
all 760 curves in the reduced two-dimensional space,
using the same colors as Figure 5(a) to represent each
cluster. The six cluster centers are represented as solid
black circles.
Each cluster differs from the other clusters in the

pattern of penetration over time. Broadly speaking,
Clusters 1–3 represent high-growth products, while
the last three correspond to lower growth rates. Clus-
ter 1 takes on large values in both the first and second
principal component dimensions. Recall that a posi-
tive value in the first dimension corresponds to over-
all high last-period penetration, while a positive value
in the second dimension represents a fast growth at
the beginning but a slowdown by year 10. The black
curve in Figure 5(a) shows this pattern with the fastest
overall growth but a slight slowdown by year 10.
Cluster 2 is close to zero for the second dimension,
indicating no overall slowdown, as we can see from
the pink curve. Clusters 3 and 4 provide an interesting

contrast: Cluster 3 has a negative value in the second
dimension, while Cluster 4 is positive. This suggests
a slow start for Cluster 3 but with increasing momen-
tum by year 10 and the opposite pattern for Clus-
ter 4. Figure 5(a) shows precisely this pattern, with
Cluster 4 starting ahead of Cluster 3 but then falling
rapidly behind. Cluster 5 represents a moderate rate
of growth, while Cluster 6, which contains the largest
number of products, corresponds to a much slower
improvement in penetration.

Table 6 Proportions of Each Type of Product Within Each Cluster

Clusters (%)

Product type 1 2 3 4 5 6

Cable TV 16�7 16�7 10�5 7�7 8�9 4�2
CD player 8�3 16�7 18�4 15�4 10�3 2�0
DVD player 8�3 16�7 44�7 5�1 20�5 2�7
Internet PC 58�3 36�1 10�5 7�7 8�2 5�6
Satellite TV 0�0 2�8 10�5 16�7 15�1 5�3
Videotape recorder 8�3 11�1 5�3 7�7 2�1 0�0
Camera 0�0 0�0 0�0 0�0 0�7 1�8
Color TV 0�0 0�0 0�0 2�6 0�7 2�4
Fax 0�0 0�0 0�0 3�8 2�1 0�0
Hi-Fi stereo 0�0 0�0 0�0 2�6 1�4 7�6
PC 0�0 0�0 0�0 2�6 4�8 8�9
Telephone 0�0 0�0 0�0 0�0 1�4 2�7
Video camera 0�0 0�0 0�0 2�6 4�8 1�8
Video game console 0�0 0�0 0�0 19�2 11�0 2�2
Air conditioner 0�0 0�0 0�0 0�0 0�7 12�9
Freezer 0�0 0�0 0�0 0�0 0�0 7�1
Microwave oven 0�0 0�0 0�0 3�8 4�1 11�1
Tumble drier 0�0 0�0 0�0 1�3 1�4 3�6
Vacuum cleaner 0�0 0�0 0�0 0�0 0�0 5�1
Washing machine 0�0 0�0 0�0 1�3 0�7 2�0

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Sood, James, and Tellis: Functional Regression: A New Model for Predicting Market Penetration of New Products
Marketing Science 28(1), pp. 36–51, © 2009 INFORMS 47

We also examine whether the penetration pat-
terns differ across products. Figure 5(c) illustrates the
growth patterns for the 21 different products in the
sample. We plot all 760 curves in our two-dimensional
space using a different plotting symbol for each prod-
uct. There are very clear patterns within the same
product. For example, the green stars correspond to
Internet-compatible PCs and have almost uniformly
large values on the first dimension, indicating rapid
increases in penetration levels. Notice that one prod-
uct might have both positive and negative values for
the second dimension, suggesting more rapid take-
off in some markets over others. Alternatively, the
yellow squares represent DVD players and have a
very tight clustering with almost uniformly moder-
ate scores on the first principal component and nega-
tive scores on the second principal component. These
results suggest a slow initial growth with much more
rapid expansion toward year 10. The tighter cluster-
ing suggests that the takeoff for these products is
largely similar across different markets in the sam-
ple. Finally, the blue solid dots, representing video-
tape recorders, show the opposite pattern with large
positive scores on the second dimension, suggesting
fast initial growth but then a slowdown in later years.
Curves for each product are from a variety of

countries. Table 6 provides the fraction of curves of
each product that fall within each of the six clusters.
The functional clustering suggests three groups: fast
growth electronics, slower growth electronics, and
household goods. The first three clusters capture a
group of six fast-growth electronics products, with
Cluster 1 primarily Internet PCs, Cluster 2 a mix-
ture, and Cluster 3 mainly DVD players. The other
three clusters capture a group of slow-growth prod-
ucts: video game consoles, satellite TV, and CD play-
ers make up the bulk of Cluster 4. Cluster 5 contains
many products but seems to concentrate principally
on countries with slower growth for CD and DVD
players, satellite TV, and video game consoles. Finally,
Cluster 6, the slowest growth cluster, contains the vast
bulk of household appliances.
Similarly, we also examine whether the penetra-

tion patterns differ across countries. We categorize the
data into seven economic groupings (see Table 7 and
Figure 3). For each group, Table 7 shows the frac-
tion of curves that fall in each of the six clusters. For
example, for countries from Africa and developing
Asia, 86% of curves fall into the slowest growth Clus-
ter 6. In contrast, North American, Western Europe,
and Australasia have curves that are more spread out
over the six clusters, with only 31% in the slowest
growth Cluster 6.

Table 7 Distribution of Each Economic Grouping over Clusters

Clusters (%)

Economic groupings 1 2 3 4 5 6

N. America, W. Europe, 5�1 10�8 13�6 15�9 23�3 31�2
and Australasia

Eastern Europe 0�0 3�4 3�4 8�0 24�7 60�3
East Asia 5�1 8�5 3�4 20�3 13�6 49�2
West Asia 0�0 6�7 11�1 13�3 22�2 46�7
South America 0�0 0�0 0�9 10�0 23�6 65�5
Africa 0�0 0�0 0�0 3�1 10�9 85�9
Developing Asia 0�0 2�3 0�0 3�8 8�3 85�6

Discussion
Predicting the market penetration of new products is
currently growing in importance because of increas-
ing globalization, rapid introduction of new products,
and rapid obsolescence of newly introduced prod-
ucts. Moreover, good record keeping has generated
a wealth of new product penetration histories. The
Bass model has been the standard model for ana-
lyzing such histories. However, the literature has not
shown how exactly researchers should integrate the
rich record of penetration histories across categories
with the penetration of an evolving new product to
predict future characteristics of its penetration. FDA,
which has gained significant importance in statistics,
is well suited for this task. Our goal is to demonstrate
and assess the merit of FDA for predicting the market
penetration of new products and compare it with the
Bass model.
We compare the predictive performance of Func-

tional Regression and Augmented Functional Regres-
sion with five other models—two simple or naïve
models, the Classic Bass model, the Meta-Bass model,
and the Augmented Meta-Bass model—on eight items
to be predicted.
Our analysis leads to the following three important

results:
(1) The essential logic of integrating information

across categories, which is the foundation of FDA,
provides superior prediction for an evolving new
product.
(2) Specifically, an evolving category can be best

predicted by integrating information from (a) past
penetration of that category, (b) past penetration of
other categories, and (c) knowledge of the product
to which it belongs, via the framework of functional
regression.
(3) For a vast variety of items that need to be

predicted, the Augmented Functional Regression is
distinctly superior to a variety of models, including
simple or naïve models Classic and Enhanced Bass
models and Functional Regression.
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Figure 6 Comparison of Predictive Accuracy of Classic Bass Model and Functional Regression Model
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Implications
Our functional regression has at least two clear man-
agerial implications. First, our method can be used
to make more accurate predictions of the future tra-
jectory for both existing products and new products
with only a few years of observations. One could also
make predictions for the evolution of a new product
without any data, based on the previously observed
principal component scores of similar products. Sec-
ond, although we have not done so here, it would be
conceptually simple to add additional variables such

as pricing and advertising information to the Func-
tional Regression model. The addition of these vari-
ables would allow a manager not only to passively
predict but to also control future penetration levels.
Our results raise the following questions with fur-

ther managerial and research implications.
First, why don’t simple extrapolative models work

well for prediction, as some researchers assert they
do (Fader and Hardie 2005; Armstrong 1984, 1978;
Armstrong and Lusk 1983)? Our analysis makes it
clear that there are two dimensions of information
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that are not captured by simple models. One, there is
valuable information in the prior history of the new
product, which as the Bass model suggests, proba-
bly arises from consumers’ innovative and imitative
tendencies. Two, there is intrinsic information across
products and countries, which might be used effec-
tively to predict the penetration of an evolving new
product. Despite their intuitive appeal, simple models
that do not capture these sources of information will
fail to predict well.
Second, why does the Classic Bass model not work

as well for prediction? We suspect that it does not
fully capture the two dimensions of information. One,
the Classic Bass model ignores other categories. This
fact is borne out by the superiority of the Meta-Bass
and the Augmented Meta-Bass in predicting items
further into the future. Both of these latter models
capture information from other categories. Thus, even
in a parametric setting, increased predictive accuracy
can be gained by incorporating information from mul-
tiple categories, especially when predicting further
into the future. Two, the Classic Bass model is rel-
atively flexible but nevertheless parametric, so it is
limited in the range of shapes that it can take on. In
particular, it is constrained to symmetric shapes for
certain values of p and q. The relatively strong per-
formance of the Last Observation Projection model
shows that removing the parametric assumptions can
cause additional improvements. In line with that
result, FDA provides higher flexibility by using a
nonparametric approach. So it can capture a vari-
ety of flexible patterns without overfitting, with the
help of the principal components as explained earlier.
The main disadvantage of a nonparametric method is
that the increased flexibility can produce variability in
the estimates. However, Functional Regression builds
strength across the 760 curves to mitigate the problem
of variability while generating more flexible estimates
than those produced by the Classic Bass model.
Third, why does the Augmented Functional Regres-

sion outperform Functional Regression, especially for
items further into the future? The probable reason
is that a particular product has a distinct pattern
of penetration over time. Adding knowledge of that
product further stabilizes the variability of predic-
tions around their true value. This pattern can be seen
in both the improvement of Augmented Meta-Bass
over Meta-Bass and Augmented Functional Regres-
sion over Functional Regression. Also note that the
improvement is greatest in peak marginal penetration,
an item that arguably is most closely associated with
a product.
Fourth, why is product seemingly more relevant for

predicting market penetration than is country? The
probable reason is that the evolution of market pene-
tration seems to follow more distinct patterns by the

nature of the product than by the country. For exam-
ple, electronic products with universal appeal diffuse
rapidly across countries both large and small and
developed and developing. On the other hand, cultur-
ally sensitive products such as food appliances diffuse
slowly overall and very differently across countries.
Moreover, our data are only after 1977. Because of
increasing industrialization of developing countries
and flattening of the world economy, intercountry dif-
ferences are much smaller after 1977 than before it.
Fifth, is the exclusion of marketing variables a limi-

tation of Functional Regression? We posit that it is not.
Indeed, we show the superiority of Augmented Func-
tional Regression, which includes a covariate for the
product to which the curve belongs. In like manner,
this model could also include covariates for market-
ing variables such as price, quality, or advertising.
To illustrate some of the above points, Figure 6

demonstrates six plots of the predictive performance
of the Classic Bass model (red) and the Functional
Regression model (green) relative to actual (blue).
These six plots are drawn from among those where
Functional Regression does the best. For each plot, the
first 10 periods are fitted on the estimation sample,
while the last five periods are predictions on the hold-
out sample. Both models do well in the estimation
periods. However, performance varies dramatically in
the holdout periods.
Note how for curves, 676, 557, and 126, a generally

flat curve with a late takeoff in the last two periods,
tricks the Classic Bass into overpredicting penetration
for the holdout period. However, Functional Regres-
sion, which draws strength from other categories, is
not so influenced by the last two periods. Also, note
how for curves 582, 572, and 121, the parameteriza-
tion of the Bass model leads it to predict symmetric
curves, which are quite far from the actual.
This study has the following limitations. First,

while the data are from a single source, the source
itself does not record data before 1977. Indeed, we
drop categories in some countries where we con-
sider the year of introduction precedes 1977. We also
drop categories in countries where penetration is not
high enough until 2006, so the data are not balanced
by country. Thus, substantive estimates about time
to takeoff or about penetration by countries must
be made with caution. However, that fact should
not affect the comparison of the models, because
all models have access to the same data. Second,
depending on the release patterns of a particular
product, the product predictor used in Augmented
Meta-Bass and Augmented Functional Regression
may or may not be available. Third, our data do
not include any marketing variables. However, the
strength of the Augmented Functional Regression is
that it can include such marketing variables. Fourth,
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our approach applies to the prediction of market pen-
etration using only aggregate historical data. Other
approaches exist to predict based on survey and
experimental data (Hauser et al. 2006) and disaggre-
gate historical data (Tellis and Franses 2006). Future
research could address how better improvements
can be obtained by using such information when
available. Fifth, future research could also address
functional regression for predicting the evolution of
underlying technologies (e.g., Sood and Tellis 2005).
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Appendix A. Modeling of Individual Curves
Suppose that a curve, X�t�, has been measured at times t =
1�2� � � � � T . Then, the smoothing spline estimate is defined
as the function, h�t�, that minimizes

T∑
t=1

�X�t�−h�t��2 +)
∫
!h′′�s�"2 ds (A1)

for a given value of ) > 0 (Hastie et al. 2001). The first
squared error term in Equation (A1) forces h�t� to provide
a close fit to the observed data, while the second integrated
second-derivative term penalizes curvature in h�t�. The tun-
ing parameter ) determines the relative importance of the
two components in the fitting procedure. Large values of )
force a h�t� to be chosen such that the second derivative is
close to zero. Hence, as ) gets larger, h�t� becomes closer
to a straight line, which minimizes the second derivative
at zero. Smaller values of ) place more emphasis on h�t�s
that minimize the squared error term and hence produce
more flexible estimates. We follow the standard practice of
choosing ) as the value that provides the smallest cross-
validated residual sum of squared errors (Hastie et al. 2001).
Remarkably, even though Equation (A1) is minimized over
all smooth functions, it has been shown that its solution is
uniquely given by a finite-dimensional, natural cubic spline
(Green and Silverman 1994), which allows the smoothing
spline to be easily computed. A cubic spline is formed by
dividing the time period into L regions, where larger values
of L generate a more flexible spline. Within the lth region,
a cubic polynomial of the form

h�t�= al + blt+ clt
2 + dlt

3 (A2)

is fit to the data. Different coefficients, al, bl, cl, and dl are
used for each region, subject to the constraints that h�t�
must be continuous at the boundary points of the regions
and also have continuous first and second derivatives. In
a natural cubic spline, the second derivative of each poly-
nomial is also set to zero at the end points of the time
period. In the more complicated situation where the curves
are sparsely observed over time (e.g., because of a different
data-generating process or data limitations), a number of
alternatives have been proposed. For example, James et al.

(2000) suggest a random effects approach when computing
sparsely observed curves.

Appendix B. k-Means Clustering
k-means clustering works by locating D-dimensional clus-
ter centers c1� � � � � ck, which minimize the sum of squared
distances between each observation and its closest cluster
center, i.e., find c1� � � � � ck to minimize

�k =
n∑

i=1
min

c1�c2�����ck
�ei − cj�2� (B1)

We use an iterative algorithm to minimize �. First, we
choose an initial set of candidate centers, c1� � � � � ck, by ran-
domly selecting k of the eis and assign each curve to its
closest center. Then, for each cluster, we define a new center
by taking the average overall curves currently assigned to
that cluster. We continue this algorithm until additional iter-
ations do not yield significant changes in the cluster centers.

References
Agarwal, R., B. L. Bayus. 2002. Market evolution and sales takeoff

of product innovations. Management Sci. 48(8) 1024–1041.
Armstrong, J. S. 1978. Forecasting with econometric methods: Folk-

lore versus fact. J. Bus. 51(4) 549–564.
Armstrong, J. S. 1984. Forecasting by extrapolation: Conclusions

from 25 years of research. Interfaces 14(6) 52–66.
Armstrong, J. S., E. J. Lusk. 1983. The accuracy of alternative extrap-

olation models: Analysis of forecasting competition through
open peer review. J. Forecasting 2(3) 259–262.

Bass, F. M. 1969. A new product growth for model consumer
durables. Management Sci. 15(5) 215–227.

Chandrasekaran, D., G. J. Tellis. 2007. Diffusion of new products:
A critical review of models, drivers, and findings. Rev. Market-
ing 39–80.

Chandrasekaran, D., G. J. Tellis. 2008. Global takeoff of new prod-
ucts: Culture, economics, or vanishing differences. Marketing
Sci. Forthcoming.

Dekimpe, M., P. Parker, M. Sarvary. 1998. Staged estimation of inter-
national diffusion models: An application to global cellular
telephone adoption. Tech. Forecasting Soc. Change 57 105–132.

Dekimpe, M., P. Parker, M. Sarvary. 2000. Global diffusion of tech-
nological innovations: A coupled-hazard approach. J. Market-
ing Res. 37(1) 47–59.

Fader, P. S., B. G. Hardie. 2005. The value of simple models in
new product forecasting and customer-base analysis: Research
articles. Appl. Stochastic Model. Bus. Ind. 21(4–5) 461–473.

Ganesh, J., V. Kumar. 1996. Capturing the cross-national learn-
ing effect: An analysis of an industrial technology diffusion.
J. Acad. Marketing Sci. 24(4) 328–337.

Ganesh, J., V. Kumar, V. Subramaniam. 1997. Learning effect in
multinational diffusion of consumer durables: An exploratory
investigation. J. Acad. Marketing Sci. 25(3) 214–228.

Gatignon, H., J. Eliashberg, T. S. Robertson. 1989. Modeling multi-
national diffusion patterns: An efficient methodology. Market-
ing Sci. 8(3) 231–247.

Goldenberg, J., B. Libai, E. Muller. 2002. Riding the saddle: How
cross-market communications can create a major slump in
sales. J. Marketing 66 1–16.

Golder, P. N. 2000. Historical method in marketing research with
new evidence on long-term market share stability. J. Marketing
Res. 37(May) 156–172.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Sood, James, and Tellis: Functional Regression: A New Model for Predicting Market Penetration of New Products
Marketing Science 28(1), pp. 36–51, © 2009 INFORMS 51

Golder, P. N., G. J. Tellis. 1997. Will it ever fly? Modeling the takeoff
of really new consumer durables. Marketing Sci. 16(3) 256–270.

Golder, P. N., G. J. Tellis. 1998. Beyond diffusion: An affordability
model of the growth of new consumer durables. J. Forecasting
17(3–4) 259–280.

Golder, P. N., G. J. Tellis. 2004. Going, going, gone: Cascades, dif-
fusion, and turning points of the product life cycle. Marketing
Sci. 3(2) 207–218.

Green, P. J., B. W. Silverman. 1994. Nonparametric Regression and
Generalized Linear Models. Chapman and Hall, New York.

Hastie, T. J., R. J. Tibshirani. 1990. Generalized Additive Models.
Chapman and Hall, London.

Hastie, T. J., R. J. Tibshirani, J. Friedman. 2001. The Elements of Sta-
tistical Learning0 Data Mining, Inference and Prediction. Springer-
Verlag, New York.

Hauser, J. R., G. J. Tellis, A. Griffin. 2006. Research on innova-
tion: A review and agenda for marketing science. Marketing
Sci. 25(6) 687–717.

Helsen, K., K. Jedidi, W. DeSarbo. 1993. A new approach to country
segmentation utilizing multinational diffusion patterns. J. Mar-
keting 57(4) 60–71.

James, G. M., T. Hastie, C. A. Sugar. 2000. Principal component
models for sparse functional data. Biometrika 87 587–602.

Jank, W., G. Shmueli. 2006. Functional data analysis in electronic
commerce research. Statistical Sci. 21(2) 155–166.

Kohli, R., D. Lehmann, J. Pae. 1999. Extent and impact of incubation
time in new product diffusion. J. Product Innovation Manage-
ment 16 134–144.

Kumar, V., J. Ganesh, R. Echambadi. 1998. Cross-national diffusion
research: What do we know and how certain are we? J. Product
Innovation Management 15 255–268.

MacQueen, J. B. 1967. Some methods for classification and analysis
of multivariate observations. Proc. 5th Berkeley Sympos. Math.
Statist. Probab., Vol. 1. University of California Press, Berkeley,
281–297.

Mahajan, V., E. Muller, F. M. Bass. 1990. New product diffusion
models in marketing: A review and directions for research.
J. Marketing 54 1–26.

Mahajan, V., E. Muller, Y. Wind. 2000. New product diffusion mod-
els: From theory to practice. V. Mahajan, E. Muller, Y. Wind, eds.
New Product Diffusion Models. Kluwer Academic, Boston, 3–24.

Putsis, W. P., Jr., S. Balasubramanian, E. Kaplan, S. Sen. 1997. Mix-
ing behavior in cross-country diffusion. Marketing Sci. 16(4)
354–369.

Ramsay, J. O., B. W. Silverman. 2005. Functional Data Analysis,
2nd ed. Springer-Verlag, New York.

Rettinger, F., W. Jank, G. Tutz, G. Shmueli. 2008. Smoothing sparse
and unevenly-sampled curves using semiparametric mixed
models: An application to online auctions. J. Roy. Statist. Soc.
Ser. C. 57(2) 127–148.

Sood, A., G. J. Tellis. 2005. Technological evolution and radical
innovation. J. Marketing 69(3) 152–168.

Stremersch, S., G. J. Tellis. 2004. Managing international growth of
new products. Internat. J. Res. Marketing 21(4) 421–438.

Sugar, C. A., G. M. James. 2003. Finding the number of clusters in
a data set: An information-theoretic approach. J. Amer. Statist.
Assoc. 98 750–763.

Sultan, F., J. U. Farley, D. R. Lehmann. 1990. A meta-analysis of
diffusion models. J. Marketing Res. 27 70–77.

Talukdar, D., K. Sudhir, A. Ainslie. 2002. Investigating new product
diffusion across products and countries. Marketing Sci. 21(1)
97–114.

Tellis, G. J., P. H. Franses. 2006. Optimal data interval for advertis-
ing response models. Marketing Sci. 25(3) 217–229.

Tellis, G. J., S. Stremersch, E. Yin. 2003. The international takeoff
of new products: The role of economics, culture and country
innovativeness. Marketing Sci. 22(2) 188–208.

Van den Bulte, C. 2000. New product diffusion acceleration: Mea-
surement and analysis. Marketing Sci. 19(4) 366–380.

Van den Bulte, C., S. Stremersch. 2004. Social contagion and income
heterogeneity in new product diffusion: A meta-analytic test.
Marketing Sci. 23(4) 530–544.

Venkatesan, R., T. V. Krishnan, V. Kumar. 2004. Evolutionary esti-
mation of macro-level diffusion models using genetic algo-
rithms: An alternative to nonlinear least squares.Marketing Sci.
23(12) 451–464.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.


