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Abstract

A new family of plug-in classi�cation techniques has recently been developed in the statistics and
machine learning literature. A plug-in classi�cation technique (PICT) is a method that takes a standard
classi�er (such as LDA or TREES) and plugs it into an algorithm to produce a new classi�er. The
standard classi�er is known as the Base Classi�er. These methods often produce large improvements
over using a single classi�er. In this paper we investigate one of these methods and give some motivation
for its success.

1 Introduction

A new family of classi�ers has recently been developed in the statistics and machine learning communities.
They involve taking a standard classi�er (such as LDA or TREES) and plugging it into an algorithm to
produce a new classi�er. We refer to these Plug in Classi�cation Techniques as PICTs and the plugged in
classi�er as the Base Classi�er.

Several members of this family have recently received a great deal of discussion in the literature. Some
examples include the Bagging algorithm (Breiman (1996b)), the AdaBoost algorithm (Freund and Schapire
(1995)) and the ECOC algorithm (Dietterich and Bakiri (1995)). In this paper we investigate the latter
procedure and give motivation for its success.

Dietterich and Bakiri (1995) suggested the following PICT, motivated by Error Correcting Coding Theory,
for solving k class classi�cation problems using binary classi�ers.

� Produce a k by B (B large) binary coding matrix, i.e. a matrix of zeros and ones. We will denote this
matrix by Z, its i; jth component by Zij , its ith row by Zi and its jth column by Zj . The following
is a possible coding matrix for a 10 class problem.

Class Z1 Z2 Z3 Z4 Z5 Z6 : : : Z15

0 1 1 0 0 0 0 : : : 1
1 0 0 1 1 1 1 : : : 0
2 1 0 0 1 0 0 : : : 1
3 0 0 1 1 0 1 : : : 1
4 1 1 1 0 1 0 : : : 0
5 0 1 0 0 1 1 : : : 0
6 1 0 1 1 1 0 : : : 1
7 0 0 0 1 1 1 : : : 0
8 1 1 0 1 0 1 : : : 1
9 0 1 1 1 0 0 : : : 0

�The authors were partially supported by grant DMS-9504495 from the National Science Foundation, and grant ROI-CA-

72028-01 from the National Institutes of Health.
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� Use the �rst column of the coding matrix (Z1) to create two super groups by assigning all classes with
a one in the corresponding element of Z1 to super group one and all other classes to super group zero.
So for example, with the above coding matrix, we would assign classes 0, 2, 4, 6 and 8 to super group
one and the others to super group zero.

� Train your Base Classi�er on the new two class problem.

� Repeat the process for each of the B columns (Z1;Z2; : : : ;ZB) to produce B trained classi�ers.

� To a new test point apply each of the B classi�ers. Each classi�er will produce p̂j which is the estimated
probability the test point comes from the jth super group one. This will produce a vector of probability
estimates, p̂ = (p̂1; p̂2; : : : ; p̂B)

T .

� To classify the point calculate Li =
PB

j=1 jp̂j � Zij j for each of the k classes (i.e. for i from 1 to k).
This is the L1 distance between p̂ and Zi (the ith row of Z). Classify to the class with lowest L1
distance or equivalently argmini Li.

We call this the ECOC PICT. Each row in the coding matrix corresponds to a unique (non-minimal)
coding for the appropriate class. Dietterich's motivation was that this allowed errors in individual classi�ers
to be corrected so if a small number of classi�ers gave a bad �t they did not unduly inuence the �nal
classi�cation. Several Base Classi�ers have been tested. The best results were obtained by using trees, so all
the experiments in this paper use a standard CART classi�er. Note however, that the theorems are general
to any Base Classi�er.

In the past it has been assumed that the improvements shown by this method were attributable to the
error coding structure and much e�ort has been devoted to choosing an optimal coding matrix. In this paper
we develop results which suggest that a randomized coding matrix should match (or exceed) the performance
of a designed matrix.

2 The Coding Matrix

Empirical results (see Dietterich and Bakiri (1995)) suggest that the ECOC PICT can produce large im-
provements over a standard k class tree classi�er. However, they do not shed any light on why this should
be the case. The coding matrix, Z, is central to the PICT. In the past, the usual approach has been to
choose Z so that the separation between rows (Zi) is as large as possible (in terms of Hamming distance)
on the basis that this allows the largest number of errors to be corrected. In the next two sections we will
examine tradeo�s between a designed (deterministic) and a completely randomized matrix.

Some of the results will make use of the following assumption:

ET [p̂j j Z;X ] =

kX
i=1

Zijqi = ZjT
q j = 1; : : : ; B (1)

where qi = P (G = i j X) is the posterior probability that the test observation is from class i given that our
predictor variable is X . Note that T is the training set so the expectation is taken over all possible training
sets of a �xed size with the coding matrix held constant. This is an unbiasedness assumption. It states that
on average our classi�er will estimate the probability of being in super group one correctly. The assumption
is probably not too bad given that trees are considered to have low bias.

2.1 Deterministic Coding Matrix

Let �Di = 1�2Li=B for i = 1; : : : ; k. Notice that argmini Li = argmaxi �Di so using �Di to classify is identical
to the ECOC PICT. Theorem 3 in Section 2.2 explains why this is an intuitive transformation to use.
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Obviously it is not possible for a PICT to outperform the Bayes Classi�er. However, we would hope that,
when we use the Bayes Classi�er as our Base Classi�er for each 2 class problem the PICT would achieve the
Bayes Error Rate. We call this property Bayes Optimality.

De�nition 1 A PICT is said to be Bayes Optimal if, for any test set, it always classi�es to the Bayes Class
when the Bayes Classi�er is our Base Classi�er.

Bayes Optimality implies a type of consistency. Under continuity assumptions, it implies that, if our
Base Classi�er converges to the Bayes Classi�er, as for example, the training sample size increases, then so
will the PICT.

For the ECOC PICT to be Bayes Optimal we need argmaxi qi = argmaxi �Di, when we use the Bayes
Classi�er as our Base Classi�er. However, it can be shown that, if the Bayes Classi�er is our Base Classi�er,
then

�Di = 1� 2

B

X
l 6=i

ql

BX
j=1

(Zlj � Zij)
2 i = 1; : : : ; k

It is not clear from this expression why there should be any guarantee that argmaxi �Di = argmaxi qi. In
fact Theorem 1 tells us that only in very restricted circumstances will the ECOC PICT be Bayes Optimal.

Theorem 1 The Error Coding method is Bayes Optimal i� the Hamming distance between every pair of
rows of the coding matrix is equal.

The Hamming distance between two binary vectors is the number of points where they di�er. For general
B and k there is no known way to generate a matrix with this property so the ECOC PICT will not be
Bayes Optimal.

2.2 Random Coding Matrix

We have seen in the previous section that there are potential problems with using a deterministic matrix.
Now suppose we randomly generate a coding matrix by choosing a zero or one with equal probability for
every coordinate. Let

�i = EZ(1� 2jp̂1 � Zi1j j T ) = EZ( �Di j T )
where the expectation is taken over all possible matrices of a �xed size for a �xed training set. Then �i is
the conditional expectation of �Di and we can prove the following result.

Theorem 2 For a random coding matrix, conditional on T , argmaxi �Di ! argmaxi �i a.s. as B ! 1.
Or in other words, the classi�cation from the ECOC PICT approaches the classi�cation from just using
argmaxi �i a.s.

The theorem is a consequence of the strong law. This leads to Corollary 1 which indicates we have
eliminated the main concern with using a deterministic matrix.

Corollary 1 When the coding matrix is randomly chosen the ECOC PICT is asymptotically Bayes Optimal
i.e. argmaxi �Di ! argmaxi qi a.s. as B !1, provided the Bayes Classi�er is used as the Base Classi�er.

Theorem 2 along with the following result provide motivation for the ECOC procedure.

Theorem 3 Under Assumption 1 for a randomly generated coding matrix

ET ;Z �Di = ET �i = qi i = 1; : : : ; k
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This tells us that �Di is an unbiased estimate of the conditional probability so classifying to the maximum
is in a sense an unbiased estimate of the Bayes classi�cation. Note that the expectation of �Di is taken over
both Z and T while the expectation for �i is only over T .

Now Theorem 2 tells us that for large B the ECOC PICT will be similar to classifying using argmaxi �i.
However what we mean by large depends on the rate of convergence. Theorem 4 tells us that this rate is in
fact exponential.

Theorem 4 If we randomly choose Z then, conditional on T , for any �xed X

PrZ(argmax
i

�Di 6= argmax
i

�ijT ) � (k � 1)e�mB

for some positive constant m.

Note that Theorem 4 does not depend on Assumption 1. This tells us that the error rate for the ECOC
PICT is equal to the error rate using argmaxi �i plus a term which decreases exponentially in the limit.
This result can be proved using Hoe�ding's inequality (Hoe�ding (1963)).

Of course Theorem 4 only gives an upper bound on the error rate and does not necessarily indi-
cate the behavior for smaller values of B. Under certain conditions a Taylor expansion indicates that
Pr(argmaxi �Di 6= argmaxi �i) � 0:5�m

p
B for small values of m

p
B. So we might expect that for smaller

values of B the error rate decreases as some power of B but that as B increases the change looks more and
more exponential.

To test this hypothesis we calculated the error rates for 6 di�erent values of B (15; 26; 40; 70; 100; 200) on
the LETTER data set (available from the Irvine Repository of machine learning). For each value of B we
generated 5 random matrices and 5 corresponding error rates. Figure 1 illustrates the results. Each point is
the average over 20 random training sets. Here we have two curves. The lower curve is the best �t of 1=

p
B

to the �rst four groups. It �ts those groups well but under-predicts errors for the last two groups. The
upper curve is the best �t of 1=B to the last four groups. It �ts those groups well but over-predicts errors
for the �rst two groups. This supports our hypothesis that the error rate is moving through the powers of
B towards an exponential �t.

We can see from the �gure that even for relatively low values of B the reduction in error rate has slowed
substantially. This indicates that almost all the remaining misclassi�cations are a result of the error rate of
argmaxi �i which we can not reduce by changing the coding matrix.

The coding matrix can be viewed as a method for sampling from the distribution of 1� 2jp̂j � Zij j. If
we sample randomly we will estimate �i (its mean). It is well known that the optimal way to estimate such
a parameter is by random sampling so it is not possible to improve on this by designing the coding matrix.
Of course it may be possible to improve on argmaxi �i by using the training data to inuence the sampling
procedure and hence estimating a di�erent quantity. However, a designed coding matrix does not use the
training data.

3 Why does the ECOC PICT work?

The easiest way to motivate why the ECOC PICT works, in the case of tree classi�ers, is to consider a very
similar method which we call the Substitution PICT. We will show that under certain conditions the ECOC
PICT is very similar to the Substitution PICT and then motivate the success of the latter.

3.1 The Substitution PICT

The Substitution PICT works in the following way :
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Figure 1: Best �t curves for rates 1=
p
B and 1=B

Substitution Algorithm
� Produce a random binary coding matrix as with the ECOC PICT.

� Use the �rst column of the coding matrix (Z1) to create two super groups by
assigning all classes with a one in the corresponding element of Z1 to super group
one and all other classes to super group zero.

� Train your tree classi�er on the new two class problem and repeat the process for
each of the B columns. Each tree will form a partitioning of the predictor space.

� Now retain the partitioning of the predictor space that each tree has produced.
Feed back into the trees the original k class training data. Use the training data
to form probability estimates, just as one would do for any tree classi�er. The
only di�erence here is the rule that has been used to create the partitioning.

� To a new test point apply each of the B classi�ers. The jth classi�er will produce
a k class probability estimate, pij , which is the estimated probability the test point
comes from the ith class.

� To classify the point calculate

pSi =
1

B

BX
j=1

pij (2)

and classify to argmaxi p
S
i
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Figure 2: Error rates on the simulated data set for the tree method, Substitution PICT and ECOC PICT
plotted against B (on log scale)

In summary, the Substitution PICT uses the coding matrix to form many di�erent partitionings of the
predictor space. Then, for each partitioning, it forms k class probability estimates by examining the propor-
tions of each class, among the training data, that fall in the same region as the test point. The probability
estimates are then combined by averaging over all the trees for each class. The �nal classi�cation is to the
maximum probability estimate.

Theorem 5 shows that under certain conditions the ECOC PICT can be thought of as an approximation
to the Substitution PICT.

Theorem 5 Suppose that pij is independent from Zj (the jth column of Z), for all i and j. In other words
the distribution of pij conditional on Zj is identical to the unconditional distribution. Then

EZ [p
S
i j T ] = EZ [ �Di j T ] = �i

Therefore as B approaches in�nity the ECOC PICT and Substitution PICT will converge for any given
training set; i.e. they will give identical classi�cation rules.

The theorem basicly states that under suitable conditions both pSi and �Di are unbiased estimates of �i and
both will converge to �i almost surely. Both pSi and �Di are averages over random variables. In general the
variance of pij is lower than that of 1 � 2jp̂i � Zij j so one would expect that the Substitution PICT will
outperform the ECOC PICT for lower values of B. Figure 2 illustrates that this is indeed the case.

It is unlikely the assumption of independence is realistic. However, empirically it is well known that trees
are unstable and a small change in the training data can cause a large change in the structure of the tree so
it may be reasonable to suppose that the correlation between pij and Z

j is low.

To test this empirically we ran the ECOC and Substitution PICTs on a simulated data set. The data set
was composed of 26 classes. Each class was distributed as a bivariate normal with identity covariance matrix
and uniformly distributed means. Each training data set consisted of 10 observations from each class. Figure
3 shows a plot of the estimated probabilities for each of the 26 classes and 1040 test data points averaged
over 10 training data sets. The probability estimates are calculated based on a matrix with 100 columns
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Figure 3: Probability estimates from both the ECOC and Substitution PICTs

(i.e. B = 100). Only points where the true posterior probability is greater than 0:01 have been plotted
since classes with insigni�cant probabilities are unlikely to a�ect the classi�cation. If the two methods were
producing identical estimates we would expect the data points to lie on the dotted 45 degree line. Clearly
this is not the case. The Substitution PICT is systematically shrinking the probability estimates. However
there is a very clear linear relationship (R2 � 95%) and since we are only interested in the argmax for each
test point we might expect similar classi�cations. This is indeed the case. Fewer than 4% of points are
correctly classi�ed by one method but not the other.

3.2 Why does the Substitution PICT work?

The Substitution PICT is an example of a family of classi�cation techniques known as Majority Vote Clas-
si�ers. A Majority Vote Classi�er works by producing a large number of classi�cations and then classifying
to the class that receives the greatest number of votes or classi�cations. (This voting may be weighted
or unweighted). Some recent examples of such classi�ers are Boosting (Freund and Schapire (1995)) and
Bagging (Breiman (1996b)). Majority Vote Classi�ers have shown a great deal of promise and a number of
people have attempted to explain their success. The explanations generally fall into one of two categories
which we call Classical (Kong and Dietterich (1995), Breiman (1996)) and Modern (Schapire and Freund et
al. (1997), Breiman (1997)). The Classical theories rely on generalizations of bias and variance concepts as
used in regression, while the Modern theories develop explanations that are more speci�c to classi�ers. To
date we do not believe that any one theory provides a comprehensive explanation. Here we present some
ideas that fall in the Classical category. They are not intended as a rigorous theory but as an attempt to
gain some insight.

The fact that pSi is an average of probability estimates suggests that a reduction in variability, without
a complementary increase in bias, may be an explanation for the success of the Substitution PICT. This
observation alone can not provide the answer, however, because it has been clearly demonstrated (see for
example Friedman (1996)) that a reduction in variance of the probability estimates does not necessarily
correspond to a reduction in the error rate. The quantity that we are interested in is not the individual
probabilities but argmaxj pj . Now i = argmaxj pj i� pi � pj > 0 8j 6= i. So what we are really interested
in are the random variables pi � pj . However, even the variances of these variables are not enough because
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variance is not independent of scale. For example by dividing all the probabilities by 2 we could reduce the
variance by a factor of 4 but the probability that pi� pj > 0 would remain unchanged. A better quantity to
consider is the coe�cient of variation,

CV (pi � pj) =

s
V ar(pi � pj)

(E(pi � pj))2

If the probability estimates are normally distributed there is a direct correspondence between CV (pi � pj)
and the error rate i.e. the lower CV (pi � pj) the lower the error rate. An assumption of normality may
not be too bad, but in any case we would expect a similar relationship for any reasonable distribution. For
example, if pTi is the probability estimate for the ith class from an ordinary k class tree classi�er, we might
suppose that the Substitution PICT will have a superior performance provided

CVT ;Z(p
S
i � pSj ) < CVT (p

T
i � pTj ) (3)

Note that CV is calculated over both T and Z for the Substitution probabilities but only over T for the
tree probabilities. To examine when (3) might hold we use the following semi-parametric model for the
probability estimates,

pSi = �Sf(qi) + �S�
S
i ET ;Z�

S
i = 0

pTi = �T f(qi) + �T �
T
i ET �

T
i = 0

where f is an arbitrary increasing function, �S and �T are positive constants and �
S = (�S

1
; : : : ; �Sk ) and

�
T = (�T1 ; : : : ; �

T
k ) have arbitrary but identical distributions. Recall that qi = P (G = i j X). This model

makes few assumptions about the speci�c form of the probability estimates but does assume that the ratio
EpSi =Ep

T
i is constant and that the error terms (�S and �T) have the same distribution.

Under this modeling assumption it can be shown that (3) holds i�

�S
�S

<
�T
�T

(4)

(4) states that the standardized variance of the Substitution PICT is less than that for the tree classi�er.
Note that (4) is also equivalent to the signal to noise ratio of the k class tree classi�er being less than that
of the Substitution PICT.

The question remains, under what conditions will (4) hold? The probability estimates from the Substi-
tution PICT are formed from an average of B correlated random variables (pij) so we know that �S (which
depends on B) will decrease to a positive limit as B increases. Intuitively this suggests that (4) will hold
provided

1. B is large enough (so we are close to the limit),

2.

 =
V arT (p

T
i =�T )

V arT ;Z(pi1=�S)

is large enough (so the standardized variance of pij is not too large relative to that of p
T
i ),

3. and � = CorrT ;Z(pi1; pi2) is low enough (so that a large enough reduction can be achieved by averag-
ing).

Note that  is the ratio of the squared noise to signal ratio (NSR) of the k class tree classi�er to that of a
single tree from the Substitution PICT. In fact we can formalize this intuition in the following theorem.
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Theorem 6 Under the previously stated semi-parametric model assumptions, (3) and (4) will hold i�

� <  (� is small relative to ) (5)

and

B � 1� �

 � �
(B is large enough) (6)

Further more, if either k = 2 (there are only 2 classes) or the error terms are normally distributed, then (5)
and (6) are su�cient to guarantee a reduction in the error rate.

Now there is reason to believe that in general � will be small. This is a result of the empirical variability of
tree classi�ers. A small change in the training set can cause a large change in the structure of the tree and
also the �nal probability estimates. So by changing the super group coding we might expect a probability
estimate that is fairly unrelated to previous estimates and hence a low correlation.

To test the accuracy of this theory we examined the results from the simulation performed in Section
3.1. We wished to estimate  and �. For this data it was clear that f could be well approximated by a linear
function so our estimates for �S and �T were obtained using least squares. The following table summarizes
our estimates for the variance and standardizing (�) terms from the simulated data set.

Classi�er V ar(pi) � V ar(pi=�)

Substitution PICT 0:0515 0:3558 0:4068
Tree Method 0:0626 0:8225 0:0925

The table indicates that, when we account for the shrinkage in the Substitution PICT probability esti-
mates (�S = 0:3558 vs �T = 0:8225), the NSR for a single tree from the Substitution PICT is over 4 times
that of an ordinary k class tree (0:4068 vs 0:0925). In other words the estimate for  is ̂ = 0:227 so the
signal to noise ratio of a single tree in the Substitution PICT is only about a quarter of that from an ordinary
tree classi�er. However, the estimate for � was very low at 0:125.

It is clear that � is less than  so provided B is large enough we expect to see an improvement by using
the Substitution PICT. From Theorem 6 we can estimate the required size of B as

B � 1� �̂

̂ � �̂
� 9

We see from Figure 2 that the Substitution error rate drops below that of the tree classi�er at almost exactly
this point, providing some validation for the theory.

4 Conclusion

The ECOC PICT was originally envisioned as an adaption of error coding ideas to classi�cation problems.
Our results indicate that the error coding matrix is simply a method for randomly sampling from a �xed
distribution. This idea is very similar to the Bootstrap where one randomly samples B times from the
empirical distribution for a �xed data set. There one is trying to estimate the variability of some parameter.
The estimate will have two sources of error, randomness caused by sampling from the empirical distribution
and the randomness from the data set itself. In our case we have the same two sources of error, error caused
by sampling from 1� 2jp̂j � Zij j to estimate �i and errors caused by using �i to classify. In both cases the
�rst sort of error will decline rapidly and it is the second type which is of primary interest. It is possible to
motivate the reduction in error rate from using argmaxi �i in terms of a decrease in variability, provided B
is large enough and our correlation (�) is small enough.
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