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Abstract

In this paper, we propose a new method for principal component analysis (PCA), whose

main objective is to capture natural “blocking” structures in the variables. Further, the

method beyond selecting different variables for different components, also encourages the

loadings of highly correlated variables to have the same magnitude. These two features of-

ten help in interpreting the principal components. To achieve these goals, a fusion penalty

is introduced and the resulting optimization problem solved by an alternating block opti-

mization algorithm. The method is applied to a number of simulated and real datasets and

is shown that it achieves the stated objectives. The supplemental materials for this article

are available online.

Keywords: Principal component analysis; Sparsity; Variable selection; Fusion penalty;

Local quadratic approximation

1 Introduction

Principal component analysis (PCA) is a widely used data analytic technique that aims to

reduce the dimensionality of the data for simplifying further analysis and visualization. It

achieves its goal by constructing a sequence of orthogonal linear combinations of the original

variables, called the principal components (PC), that have maximum variance. The technique

is often used in exploratory mode and hence good interpretability of the resulting principal

components is an important goal. However, it is often hard to achieve this in practice, since

PCA tends to produce principal components that involve all the variables. Further, the orthog-

onality requirement often determines the signs of the variable loadings (coefficients) beyond

the first few components, which makes meaningful interpretation challenging.
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Various alternatives to ordinary PCA have been proposed in the literature to aid inter-

pretation, including rotations of the components (Jollife, 1995), restrictions for their loadings

to take values in the set {−1, 0, 1} (Vines, 2000), and construction of components based on a

subset of the original variables (McCabe, 1984). More recently, variants of PCA that attempt

to select different variables for different components have been proposed and are based on a

regularization framework that penalizes some norm of the PC vectors. Such variants include

SCoTLASS (Jollife et al., 2003) that imposes an ℓ1 penalty on the ordinary PCA loadings

and a recent sparse PCA technique (Zou et al., 2006) that extends the elastic net (Zou and

Hastie, 2005) procedure by relaxing the PCs orthogonality requirement.

In this paper, we propose another version of PCA with sparse components motivated by

the following empirical considerations. In many application areas, some variables are highly

correlated and form natural “blocks”. For example, in the meat spectra example discussed in

Section 4, the spectra exhibit high correlations within the high and low frequency regions, thus

giving rise to such a block structure. Something analogous occurs in the image data, where

the background forms one natural block, and the foreground one or more such blocks. In such

cases, the loadings of the block tend to be of similar magnitude. The proposed technique is

geared towards exploring such block structures and producing sparse principal components

whose loadings are of the same sign and magnitude, thus significantly aiding interpretation

of the results. We call this property fusion and introduce a penalty that forces “fusing” of

loadings of highly correlated variables in addition to forcing small loadings to zero. We refer

to this method as sparse fused PCA (SFPCA).

The remainder of the paper is organized as follows: the technical development and comput-

ing algorithm for our method are presented in Section 2. An illustration of the method based

on simulated data is given in Section 3. In Section 4, we apply the new method to several real

datasets. Finally, some concluding remarks are drawn in Section 5.

2 The Model and its Estimation

2.1 Preliminaries and Sparse Variants of PCA

Let X = (xi,j)n×p be a data matrix comprised of n observations and p variables, whose columns

are assumed to be centered. As noted above, PCA reduces the dimensionality of the data by

constructing linear combinations of the original variables that have maximum variance; i. e.,
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for k = 1, · · · , p, define

αk = arg max
α

V ar(Xα), subject to α′
kαk = 1, α′

kαj = 0 for all j 6= k, (1)

where αk is a p-dimensional vector called factor loadings (PC vectors). The projection of the

data Zk = Xαk is called the k-th principal component. The technique proves most successful

if one can use a small number k ≪ p of components to account for most of the variance and

thus provide a relatively simple explanation of the underlying data structure. Some algebra

shows that the factor loadings can be obtained by solving the following optimization problem

α̂k = arg max
α⊥α1,...,αk−1

αT Σ̂α (2)

where Σ̂ = 1/n(XT X) denotes the sample covariance of the data. The solution of (2) is given

by the eigenvector corresponding to the k-th largest eigenvalue of Σ̂. An alternative way to

derive the PC vectors, which proves useful in subsequent developments, is to solve the following

constrained least squares problem:

min
A

‖X − XAAT ‖2
F , subject to AT A = IK , (3)

where IK denotes a K × K identity matrix, ‖M‖F is the Frobenius norm of a matrix M

(‖M‖2
F =

∑
i,j M2

ij), and A = [α1, . . . , αK ] is a p × K matrix with orthogonal columns. The

estimate Â contains the first K PC vectors, and Ẑ = XÂ the first K principal components.

To impose sparsity on the PC vectors, Jollife et al. (2003) proposed SCoTLASS, which

adds an ℓ1-norm constraint to objective function (2), i.e., for any 1 ≤ k ≤ K, solve:

max
α⊥α1,...,αk−1

αT Σ̂α , subject to ‖α‖1 ≤ t , (4)

where ‖α‖1 =
∑p

j=1 |αj | is the ℓ1 norm of the vector α. Due to the singularity property

of the ℓ1 norm, the constraint ‖α‖1 ≤ t shrinks some components of α to zero for small

enough values of t. Therefore, objective function (2) produces sparse PC vectors. However,

Zou et al. (2006) noted that in many cases, SCoTLASS fails to achieve sufficient sparsity,

thus complicating the interpretation of the results. One possible explanation stems from the

orthogonality constraint of the PC vectors that is not fully compatible with the desired sparsity

condition. Hence, Zou et al. (2006) proposed an alternative way to estimate sparse PC vectors,

by relaxing the orthogonality requirement. Their procedure amounts to solving the following

3



regularized regression problem:

arg min
A,B

‖X − XBAT ‖2
F + λ1

K∑

k=1

‖βk‖1 + λ2

K∑

k=1

‖βk‖
2
2

subject to AT A = IK , (5)

where βk is a p-dimensional column vector and B = [β1, β2, . . . , βK ]. The l2 penalty
∑K

k=1 ‖βk‖
2
2

regularizes the loss function to avoid singular solutions, whenever n < p. If λ1 = 0, objective

function (5) reduces to the ordinary PCA problem and the columns of B̂ are proportional to

the first K ordinary PC vectors (Zou et al., 2006); otherwise, the ℓ1 penalty ‖βk‖1 imposes

sparsity on the elements of B̂, i.e., it shrinks some loadings exactly to zero. In addition, the

first term in (5) can be written as

‖X − XBAT ‖2
F = ‖XA − XB‖2

F + ‖A⊥‖
2
F

=
K∑

k=1

‖Xαk − Xβk‖
2
F + ‖A⊥‖

2
F

= n

K∑

k=1

(αk − βk)
T Σ̂(αk − βk) + ‖A⊥‖

2
F (6)

where A⊥ is any orthonormal matrix such that [A,A⊥] is a p × p orthonormal matrix. The

quantity (αk − βk)
T Σ̂(αk − βk), 1 ≤ k ≤ p measures the difference between αk and βk.

Therefore, although there is no direct constraint on the column orthogonality in B, the loss

function shrinks the difference between A and B and this results in the columns of B becoming

closer to orthogonal. Numerical examples in Zou et al. (2006) indicate that sparse PCA

produces more zero loadings than SCoTLASS. However, both techniques cannot accommodate

block structures in the variables, as the numerical results in Section 3 suggest. Next, we

introduce a variant of sparse PCA called sparse fused PCA (SFPCA) that addresses this issue.

2.2 Sparse Fused Loadings

Our proposal is based on solving the following optimization problem:

min
A,B

‖X − XBAT ‖2
F + λ1

K∑

k=1

‖βk‖1 + λ2

K∑

k=1

∑

s<t

|ρs,t||βs,k − sign(ρs,t)βt,k| ,

subject to AT A = IK , (7)

where ‖X − XBAT ‖2
F =

∑n
i=1 ‖xi − ABT xi‖

2
2; ρs,t denotes the sample correlation between

variables Xs and Xt and sign(·) the sign function. The first penalty in (7) is the sum of l1 norms
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of the K PC vectors. It aims to shrink the elements of the PC vectors to zero, thus ensuring

sparsity of the resulting solution. The second penalty is a linear combination of K generalized

fusion penalties. This penalty shrinks the difference between βs,k and βt,k, if the correlation

between variables Xs and Xt is positive; the higher the correlation, the heavier the penalty for

on the difference of coefficients. If the correlation is negative, the penalty encourages βs,k and

βt,k to have similar magnitudes, but different signs. It is natural to encourage the loadings of

highly correlated variables to be close, since two perfectly correlated variables with the same

variance have equal loadings. First, highly correlated variables on the same scale pushing the

loadings to the same value has the same effect as setting small regression coefficients to 0 in

lasso: fitted model accuracy is not affected much, but interpretation is improved and overfitting

avoided. Second, by definition of principal components, the k-th PC vector maximizes the

variance of
∑p

j=1 βj,kXj subject to the orthogonality constraint. Since Xj ’s are centered, one

can show that this variance equals to
∑p

j=1 β2
j,kV ar(Xj) + 2

∑
s<t βs,kβt,kCov(Xs,Xt). Thus,

in order to maximize the variance, we need the sign of βs,kβt,k to match the sign of Cor(Xs,Xt)

(as far as the orthogonality constraint will allow). Finally, note that if two variables are highly

correlated but have substantially different variances, their loadings will have different scales

and won’t be fused to the same value, which is the correct behavior for PCA on unscaled data.

If this behavior is undesirable in a particular application, data should be standardized first

(just like in regular PCA, it is the user’s decision whether to standardize the data).

The effect of the fusion penalty, due to the singularity property of the ℓ1 norm, is that

some terms in the sum are shrunken exactly to zero, resulting in some loadings having identical

magnitudes. Therefore, the penalty aims at blocking the loadings into groups and “fusing”

similar variables together for ease of interpretation. Finally, if ρs,t = 0 for any |t − s| > 1 and

ρs,s+1 is a constant for all s, then the generalized fusion penalty reduces to the fusion penalty

(Land and Friedman, 1996; Tibshirani et al., 2005).

Note that one can use other types of weights in the generalized fusion penalty, including

partial correlations or other similarity measures Li and Li (2008).

2.3 Optimization of the Objective Function

We discuss next how to optimize the posited objective function. It is achieved through alter-

nating optimization over A and B, analagously to the sparse PCA algorithm. Overall, the

algorithm proceeds as follows.
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The Algorithm

Step 1. Initialize Â by setting it to the ordinary PCA solution.

Step 2. Given A, minimizing the objective function (7) over B is equivalent to solving the

following K separate problems:

min
βk

‖Y ∗
k − Xβk‖

2 + λ1‖βk‖1 + λ2

∑

s<t

|ρs,t||βs,k − sign(ρs,t)βt,k| (8)

where Y ∗
k = Xαk. The solution to (8) is nontrivial, and is discussed in Section 2.4. This step

updates the estimate B̂.

Step 3. Given the value of B, minimizing (7) over A is equivalent to solving

arg min
A

‖X − XBAT ‖2 , subject to AT A = IK . (9)

The solution can be derived by a reduced rank Procrustes rotation (Zou et al., 2006). Specif-

ically, we compute the singular value decomposition (SVD) of XT XB = UDV T and the

solution to (9) is given by Â = UV T . This step updates the estimate Â.

Step 4. Repeat Steps 2-3 until convergence.

2.4 Estimation of B Given A

Objective function (8) can be solved by quadratic programming. However, this approach

can be inefficient in practice; thus, we propose a more efficient algorithm — local quadratic

approximation (LQA) (Fan and Li, 2001). This method has been employed in a number of

variable selection procedures for regression and its convergence properties have been studied

by Fan and Li (2001) and Hunter and Li (2005). The LQA method approximates the objective

function locally via a quadratic form. Notice that

∑

s<t

|ρs,t||βs,k − sign(ρs,t)βt,k|

=
∑

s<t

|ρs,t|

|βs,k − sign(ρs,t)βt,k|
(βs,k − sign(ρs,t)βt,k)2

=
∑

s<t

|w
(k)
s,t |(βs,k − sign(ws,t)βt,k)2 (10)

where w
(k)
s,t = ρs,t/|βs,k − sign(ρs,t)βt,k| and consequently sign(w

(k)
s,t ) = sign(ρs,t).

After some algebra, one can show that (10) can be written as βT L(k)β, where L(k) = D(k)−

W (k), W (k) = (ws,t)p×p with diagonal elements equal to zero, and D(k) = diag(
∑

t6=1 |w1,t|, . . . ,
∑

t6=p |wp,t|).
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Similarly, we have ‖βk‖1 =
∑p

j=1 |βj,k| =
∑p

j=1 ω
(k)
j β2

j,k = βT Ω(k)β, where ω
(k)
j = 1/|βj,k|

and Ω(k) = diag(ω
(k)
1 , . . . , ω

(k)
p ). Then, (8) can be written as

min
βk

‖Y ∗
k − Xβk‖

2
2 + λ1β

T Ω(k)β + λ2β
T L(k)β. (11)

Notice that (11) takes the form of a least squares problem involving two generalized ridge

penalties; hence, its closed form solution is given by

β̂k = (XT X + λ1Ω
(k) + λ2L

(k))−1XT Y ∗
k . (12)

Notice that both Ω(k) and L(k) depend on the unknown parameter βk. Specifically, LQA

iteratively updates βk, L(k) and Ω(k) as follows, which constitute Step 2 of the algorithm.

Step 2(a). Given β̂k from the previous iteration, update Ω̂(k) and L̂(k).

Step 2(b). Given Ω̂(k) and L̂(k), update β̂k by formula (12).

Step 2(c). Repeat Steps 2(a) and 2(b) until convergence.

Step 2(d). Scale β̂k to have unit l2-norm.

Note that to calculate L(k) in step 2(a), we need to calculate ws,t = ρs,t/|βk,s−sign(ρs,t)βk,t|.

When the values of βk,s and sign(ρs,t)βk,t are extremely close, ws,t is numerically singular. In

this case, we replace |βk,s − sign(ρs,t)βk,t| by a very small positive number (e.g. 10−10);

similarly, we replace |βj,k| by a very small positive number if its value is extremely close to 0.

With the new Step 2, the algorithm has two nested loops. However, the inner loop in

Step 2 can be effectively approximated by a one step update (Hunter and Li, 2005), i.e., by

removing step 2(c). In our numerical experiments, we found that this one step update can lead

to significant computational savings without minor sacrifices in terms of numerical accuracy.

2.5 Selection of Tuning Parameters

The proposed procedure involves two tuning parameters. One can always use cross-validation

to select the optimal values, but it can be computationally expensive. We discuss next an

alternative approach for tuning parameter selection based on the Bayesian information criterion

(BIC), which we use in simulations in Section 3. In general, we found solutions from cross-

validation and BIC to be comparable, but BIC solutions tend to be sparser.

Let Aλ1,λ2 = [αλ1,λ2

1 , . . . , αλ1,λ2

K ] and Bλ1,λ2 = [βλ1,λ2

1 , . . . , βλ1,λ2

K ] be the estimates of A and

B in (7), obtained using tuning parameters λ1 and λ2. Let σ̂2
ǫ = 1/n

∑n
i=1 ‖X − XÂÂT ‖2

F ,
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where the columns of Â contain the first K ordinary PC vectors of X. We define the BIC for

sparse PCA as follows:

BIC(λ1, λ2) = ‖X − XBλ1,λ2(Aλ1,λ2)T ‖2
F /σ̂2

ǫ + log(n)dfSPCA (13)

and analogously for SFPCA

BIC(λ1, λ2) = ‖X − XBλ1,λ2(Aλ1,λ2)T ‖2
F /σ̂2

ǫ + log(n)dfSFPCA (14)

where dfSPCA and dfSFPCA denote the degrees of freedom of sparse and sparse-fused PCA

defined as the number of all nonzero/nonzero-distinct elements in Bλ1,λ2 , respectively. These

definitions are similar to df defined for Lasso and fused Lasso (Zou et al., 2007; Tibshirani

et al., 2005).

2.6 Computational Complexity and Convergence

Since XT X only depends on the data, it is calculated once and requires np2 operations. The

estimation of A by solving an SVD takes O(pK2). Calculation of Ω and L in (11) requires

O(p2) operations, while the inverse in (12) is of order O(p3). Therefore, each update in LQA

is of order O(p3K), and the total computational cost is O(np2) + O(p3K).

The convergence of the algorithm essentially follows from standard results. Note that the

loss function is strictly convex in both A and B, and the penalties are convex in B, and thus

the objective function is strictly convex and has a unique global minimum. The integrations

between Step 2 and Step 3 of the Algorithm amount to block coordinate descent, which is

guaranteed to converge for differentiable convex functions (see, e.g., Bazaraa et al. (1993)).

The original objective function has singularities, but the objective function (10) obtained from

the local quadratic approximation that we are actually optimizing is differentiable everywhere,

and thus the convergence of coordinate descent is guaranteed. Thus, we only need to make

sure that each step of the coordinate descent is guaranteed to converge. In Step 3, we are

optimizing the objective function (9) exactly and obtain the solution in closed form. In Step

2, the optimization is iterative, but convergence follows easily by adapting the arguments

of Hunter and Li (2005) for local quadratic approximation obtained from general results for

minorization-maximization algorithms.
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3 Numerical illustration of SFPCA

First, we illustrate the performance of the proposed SFPCA method on a number of synthetic

datasets described next.

Simulation 1

This simulation scenario is adopted from Zou et al. (2006). Three latent variables are generated

as follows:

V1 ∼ N(0, 290),

V2 ∼ N(0, 300),

V3 = −0.3V1 + 0.6V2 + ǫ,

where V1, V2 and ǫ are independent, and ǫ ∼ N(0, 1). Next, ten observable variables are

constructed as follows:

Xj =






V1 + ej , if 1 ≤ j ≤ 4;

V2 + ej , if 5 ≤ j ≤ 8;

V3 + ej , if j = 9, 10;

where ǫj, 1 ≤ j ≤ 10 are i.i.d. N(0, 1). The variance of the three latent variables are 290, 300

and 38, respectively. Notice that by construction, variables X1 through X4 form a block with

a constant within-block pairwise correlation of .997 (“block 1”), while variables X5 through

X8 and X9, X10 form another two blocks (“block 2” and “block 3”, respectively). Ideally, a

sparse first PC should pick up block 2 variables with equal loadings, while a sparse second PC

should consist of block 1 variables with equal loadings, since the variance of V2 is larger than

that of V1.

Zou et al. (2006) compared sparse PCA with ordinary PCA and SCoTLASS using the true

covariance matrix. In our simulation, we opted for the more realistic procedure of generating 20

samples according to the above description and repeated the simulation 50 times. PC vectors

from ordinary PCA, sparse PCA and SFPCA were computed from these simulated datasets

and the results are shown in Table 1, along with the ordinary PC vectors computed from the

true covariance matrix. The table entries correspond to the median and the median absolute

deviation (in parentheses) of the loadings over 50 replications. To measure the variation of the

loadings within block 1 and 2, we also calculated the standard deviation among the loadings
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within these blocks and record their medians and median absolute deviations in rows “Block

1” and “Block 2”, respectively. The proportions of adjusted variance and adjusted cumulative

variance are reported as “AV (%)” and “ACV (%)”. Adjusted variance was defined by Zou

et al. (2006) as follows: let B̂ be the first K modified PC vectors. Using the QR decomposition,

we have XB̂ = QR, where Q is orthonormal and R is upper triangular. Then the adjusted

variance of the k-th PC equals R2
k,k.

The tuning parameters were selected by minimizing the Bayesian information criterion

(BIC) defined in Section 2.5, using a grid search over {2−10, 2−9, . . . , 210} for λ1 and {10−3, . . . , 103}

for λ2, respectively.

Table 1 shows that both SFPCA and sparse PCA recover the correct sparse structure of the

loadings in the first two PC vectors. The median standard deviations within block 2 in PC 1

and block 1 in PC 2 equal to zero, which implies that SFPCA accurately recovers the loadings

within the block. In contrast, the median standard deviations within block 2 in PC 1 and

within block 1 in PC 2 reveal that the loadings estimated by sparse PCA exhibit significant

variation.

As discussed in Section 2, the PC vectors from both sparse PCA and SFPCA are not

exactly orthogonal due to the penalties employed. To study the deviation from orthogonality,

the histogram of pairwise angles between the first four PC vectors obtained from SFPCA was

obtained (available as supplemental material). It can be seen that the first two PCs are always

orthogonal, while the fourth PC is essentially always orthogonal to the remaining three. The

third component is the most variable, sometimes being close to the first, and at other times

close to the second PC. This distribution of angles is consistent with the structure of the

simulation and in general will be dependent on the underlying structure of the data.

Simulation 2

This example is a high-dimensional version (p > n) of simulation 1. We define

Xj =






V1 + ej , if 1 ≤ j ≤ 20;

V2 + ej , if 21 ≤ j ≤ 40;

V3 + ej , if 41 ≤ j ≤ 50;

where ǫj , 1 ≤ j ≤ 50 are i.i.d. N(0, 1). Then 20 samples were generated in each of the

50 repetitions. The factor loadings estimated from this simulation are illustrated in Figure 1.

10



Sparse PCA and SFPCA produce similar sparse structures in the loadings. However, compared

with the “jumpy” loadings from sparse PCA, the loadings estimated by SFPCA are smooth

and easier for interpretation.
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Figure 1: Factor loadings of the first (left column) and second (right column) PC vectors

estimated by ordinary PCA from the true covariance (first row), ordinary PCA from the sample

covariance (second row), sparse PCA (third row) and SFPCA (fourth row). The horizontal axis

is the variables and the vertical axis is the value of the loadings. Each colored curve represents

the PC vector in one replication. The median loadings over 50 repetitions are represented by

the black bold lines.
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4 Application of SFPCA to Real Datasets

Drivers Dataset

This dataset provides information about the physical size and age of 38 drivers along with

a response variable, seat position in a car. (Faraway, 2004). For the purposes of PCA, the

response variable was excluded from the analysis. The eight available variables on driver

characteristics are age, weight, height in shoes, height in bare feet, seated height, lower arm

length, thigh length, and lower leg length. All height/length variables are highly correlated

(average correlation among these variables is about 0.8) and form a natural block; hence, we

expect them to have similar loadings. SFPCA was applied to this dataset and compared its

results with those obtained from ordinary PCA and sparse PCA (Table 2).

Correlation

F
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0
2

4
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8

Figure 2: The histogram of the pairwise correlations between the height/length variables:

weight, height in shoes, height in bare feet, seated height, lower arm length, thigh length, and

lower leg length.

It can be seen that ordinary PCA captures the block structure in the first PC, but the

factor loadings exhibit significant variation. Interestingly, the factor loadings from sparse PCA

exhibit even greater variability, while the percentage of total variance explained by the first PC

is only 55%, as opposed to 70% by ordinary PCA. On the other hand, SPFCA exhibits good
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performance in terms of goodness of fit (68.7%) and clearly reveals a single block structure in

the “size” variables.

Pitprops Dataset

The pitprops dataset, introduced in Jeffers (1967), has become a classic example of the diffi-

culties in interpretation of principal components. In this dataset, the sizes and properties of

180 pitprops (lumbers used to support the roofs of tunnels in coal mines) are recorded. The

available variables are: the top diameter of the prop (topdiam), the length of the prop (length),

the moisture content of the prop (moist), the specific gravity of the timber at the time of the

test (testsg), the oven-dry specific gravity of the timber (ovensg), the number of annual rings at

the top of the prop (ringtop), the number of annual rings at the base of the prop (ringbut), the

maximum bow (bowmax), the distance of the point of maximum bow from the top of the prop

(bowdist), the number of knot whorls (whorls), the length of clear prop from the top of the

prop (clear), the average number of knots per whorl (knots) and the average diameter of the

knots (diaknot). The first six PCs from regular PCA account for 87% of the total variability

(measured by cumulative proportion of total variance explained).

We applied SPFCA and sparse PCA to the dataset and the results are given in Table 3.

The loadings from SFPCA show a sparse structure similar to that of sparse PCA, but the first

three PCs from SFPCA involve fewer variables than those of SPCA. The equal loadings within

blocks assigned by SFPCA produce a clear picture for interpretation purposes. Referring

to the interpretation in Jeffers (1967), the first PC gives the same loadings to “topdiam”,

“length”, “ringbut”, “bowmax”, “bowdist” and “whorls” and provides a general measure of

size; the second PC assigns equal loadings to “moist” and “testsg” and measures the degree

of seasoning; the third PC, giving equal loadings to “ovensg” and “ringtop”, accounts for the

rate of the growth and the strength of the timber; the following three PCs represent “clear”,

“knots” and “diaknot”, respectively.

Meat Spectrum Data

In this section, we apply SFPCA to a dataset involving spectra obtained from meat analysis

(Borggaard and Thodberg, 1992; Thodberg, 1996). In recent decades, spectrometry techniques

have been widely used to identify the fat content in pork, because it has proved significantly

cheaper and more efficient than traditional analytical chemistry methods. In this dataset, 215

13



samples were analyzed by a Tecator near-infrared spectrometer which measured the spectrum

of light transmitted through a sample of minced pork meat. The spectrum gives the absorbance

at 100 wavelength channels in the range of 850 to 1050 nm.

The adjusted cumulative total variances explained by the first two PCs from ordinary PCA,

sparse PCA and SFPCA are 99.6%, 98.9% and 98.4%, respectively. Since wavelengths are

naturally ordered, a natural way to display the loadings is to plot them against the wavelength.

The plot of the first two PCs for the 100 wavelength channels is shown in Figure 3.

SFPCA smoothes the ordinary PC vectors producing piece-wise linear curves which are

easier to interpret. The SFPCA results show clearly that the first PC represents the overall

mean over different wavelengths while the second PC represents a contrast between the low

and high frequencies. On the other hand, the high variability in the loadings produces by

sparse PCA makes the PC curves difficult to interpret.
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Figure 3: Comparison of the first (left panel) and second (right panel) PC vectors from ordinary

PCA (dashed line), sparse PCA (dotted line) and SFPCA (solid line).

USPS Handwritten Digit Data

In this example, the three PCA methods are compared on the USPS handwritten digit data

set (Hull, 1994). This data set was collected by the US Postal Service (USPS) and contains

11,000 gray scale digital images of the ten digits at 16 × 16 pixel resolution. We focused on

the digit “3” and sampled 20 images at random, thus operating in a large p, small n setting.
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While BIC gave good results for most data sets we examined, for the USPS data it tended to

under shrink the coefficient estimates. However, we found that cross-validation produced good

results and was computationally feasible, so we used five- fold cross-validation to select the

optimal tuning parameters for SPCA and SFPCA. The optimal tuning parameter for SPCA

turned out to be equal to zero, so here SPCA coincides with ordinary PCA. The reconstructed

images by the first and second principal components (“eigen-images”) arranged in the original

spatial order are shown in Figure 4. It can be seen that SFPCA achieves a fairly strong fusing

effect for the background pixels, thus producing a smoother, cleaner background image. This

is confirmed by the results in Table 4 that give the proportion of distinct elements in the first

two principal components for PCA and SFPCA. Notice that since PCA does not impose any

sparsity or fusion, the resulting proportion is 100%, compared to those for SFPCA (35.5% and

22.7% for the first and second PCs, respectively).

5 Concluding Remarks

In this paper, a method is developed to estimate principal components that capture block

structures in the variables, which aids in the interpretation of the data analysis results. To

achieve this goal, the orthogonality requirement is relaxed and an ℓ1 penalty is imposed on

the norm of the PC vectors, as well as a “fusion” penalty driven by variable correlations.

Application of the method to both synthetic and real data sets illustrates its advantages when

it comes to interpretation.

The idea of sparse fused loadings is also applicable in a number of other unsupervised

learning techniques, including canonical correlation and factor analysis, as well as regression

analysis, classification techniques (e.g., LDA and SVM) and survival analysis (e.g., Cox model

and Buckley-James model). We note that Daye and Jeng (2009) proposed a weighted fusion

penalty for variable selection in a regression model. Unlike the generalized fusion penalty which

penalizes the pairwise Manhattan distances between the variables, their method penalizes

the pairwise Euclidean distances, and thus would not necessarily shrink the coefficients of

highly correlated variables to identical values. Similarly, Tutz and Ulbricht (2009) proposed

a BlockBoost method, whose penalty also tends to fuse the pairwise difference between the

regression coefficients. In particular, when these pairwise correlations are close to ±1, the

solution of BlockBoost is closed to that of Daye and Jeng (2009).
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Table 1: Results for simulation 1. “PCA-T” corresponds to the ordinary PCA estimation

from the true covariance matrix. “PCA-S” corresponds to the ordinary PCA estimation from

the sample covariance matrix. “SPCA” represents the sparse PCA, and “SFPCA” represents

the sparse fused PCA. “AV” is the adjusted variance, and “ACV” is the adjusted cumulative

variance. The row“Block 1” shows the standard deviation of the loadings of variables 1 to 4,

and “Block 2” shows the same for variables 5 to 8. In each row, the top entry is the median

and the bottom entry in parentheses is the median absolute deviation over 50 replications.

Loadings
PC 1 PC 2

PCA-T PCA-S SPCA SFPCA PCA-T PCA-S SPCA SFPCA

1
0.055 -0.123 0 0 0.488 0.447 0.506 0.500

(—) (0.162) (0) (0) (—) (0.032) (0.072) (0)

2
0.055 -0.127 0 0 0.488 0.444 0.492 0.500

(—) (0.161) (0) (0) (—) (0.031) (0.085) (0)

3
0.055 -0.129 0 0 0.488 0.448 0.491 0.500

(—) (0.161) (0) (0) (—) (0.033) (0.085) (0)

4
0.055 -0.125 0 0 0.488 0.442 0.493 0.500

(—) (0.159) (0) (0) (—) (0.032) (0.089) (0)

5
-0.453 0.376 0.422 0.487 0.089 0.164 0 0

(—) (0.040) (0.021) (0.015) (—) (0.131) (0) (0)

6
-0.453 0.374 0.415 0.487 0.089 0.165 0 0

(—) (0.038) (0.021) (0.016) (—) (0.133) (0) (0)

7
-0.453 0.375 0.417 0.487 0.089 0.161 0 0

(—) (0.040) (0.019) (0.015) (—) (0.133) (0) (0)

8
-0.453 0.376 0.417 0.487 0.089 0.159 0 0

(—) (0.038) (0.020) (0.015) (—) (0.127) (0) (0)

9
-0.289 0.389 0.382 0.155 -0.093 -0.015 0 0

(—) (0.025) (0.021) (0.122) (—) (0.132) (0) (0)

10
-0.289 0.389 0.388 0.155 -0.093 -0.009 0 0

(—) (0.026) (0.027) (0.119) (—) (0.127) (0) (0)

Block 1
0 0.003 0 0 0 0.002 0.064 0

(—) (0.003) (0) (0) (—) (0.002) (0.050) (0)

Block 2
0 0.001 0.014 0 0 0.004 0 0

(—) (0.001) (0.014) (0) (—) (0.003) (0) (0)

AV (%)
42.7 61.9 57.6 47.3 40.3 37.7 37.1 36.7

(—) (4.4) (1.0) (6.3) (—) (4.2) (2.2) (1.5)

ACV (%)
42.7 61.9 57.6 47.3 83.0 99.5 95.1 83.7

(—) (4.4) (1.0) (6.3) (—) (0.1) (2.7) (6.1)
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Table 2: Numerical results for the drivers example.

Variables
PC 1 PC 2

PCA SPCA SFPCA PCA SPCA SFPCA

Age 0.007 0.876 0.970 1.000

Weight 0.367 0.284 0.378 0.045

HtShoes 0.411 0.139 0.378 -0.106

Ht 0.412 0.764 0.378 -0.112

Seated 0.381 0.313 0.378 -0.218

Arm 0.349 0.208 0.378 0.374 0.242

Thigh 0.328 0.247 0.378 0.125

Leg 0.390 0.341 0.378 -0.056

AV (%) 70.9 55.0 68.7 15.5 14.2 12.2

ACV (%) 70.9 55.0 68.7 86.4 69.2 80.8
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Table 3: Numerical results for the pitprops example.

Variables
PC 1 PC 2 PC 3

PCA SPCA SFPCA PCA SPCA SFPCA PCA SPCA SFPCA

topdiam 0.404 0.477 0.408 0.218 -0.207

length 0.406 0.476 0.408 0.186 -0.235

moist 0.124 0.541 0.785 0.707 0.141

testsg 0.173 0.456 0.620 0.707 0.352

ovensg 0.057 -0.177 -0.170 0.481 0.640 0.707

ringtop 0.284 0.052 -0.014 0.475 0.589 0.707

ringbut 0.400 0.250 0.408 -0.190 0.253 0.492

bowmax 0.294 0.344 0.408 -0.189 -0.021 -0.243

bowdist 0.357 0.416 0.408 0.017 -0.208

whorls 0.379 0.400 0.408 -0.248 -0.119

clear -0.011 0.205 -0.070

knots -0.115 0.343 0.013 0.092 -0.015

diaknot -0.113 0.309 -0.326 -0.308519

AV (%) 32.4 28.0 31.5 18.3 14.4 15.1 14.4 13.3 10.1

ACV (%) 32.4 28.0 31.5 50.7 42.0 46.6 65.1 55.3 56.7

Variables
PC 4 PC 5 PC 6

PCA SPCA SFPCA PCA SPCA SFPCA PCA SPCA SFPCA

topdiam -0.091 0.083 0.120

length -0.103 0.113 0.163

moist 0.078 -0.350 -0.276

testsg 0.055 -0.356 -0.054

ovensg 0.049 -0.176 0.626

ringtop -0.063 0.316 0.052

ringbut -0.065 0.215 0.003

bowmax 0.286 -0.185 -0.055

bowdist 0.097 0.106 0.034

whorls -0.205 -0.156 -0.173

clear 0.804 1.000 1.000 0.343 0.175

knots -0.301 0.600 1.000 1.000 -0.170

diaknot -0.303 -0.08 0.626 1.000 1.000

AV (%) 8.5 7.4 8.0 7.0 6.8 7.3 6.3 6.2 7.0

ACV (%) 73.6 62.7 64.7 80.6 69.5 72.0 86.9 75.8 79.0

Table 4: The proportion of distinct elements in the eigen-images of digit “3” estimated by

PCA and SFPCA, respectively.

PC PCA (%) SFPCA (%)

1 100 35.5

2 100 22.7
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PC 1, AV=0.32

PC 2, AV=0.10

SFPC 1, AV=0.27

SFPC 2, AV=0.05

Figure 4: The first two eigen-images of digit “3” estimated by PCA and SFPCA, respectively.
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