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IMPROVED VARIABLE SELECTION WITH FORWARD-LASSO
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Recently, considerable interest has focused on variable selection methods
in regression situations where the number of predictors, p, is large relative
to the number of observations, n. Two commonly applied variable selection
approaches are the Lasso, which computes highly shrunk regression coeffi-
cients, and Forward Selection, which uses no shrinkage. We propose a new
approach, “Forward-Lasso Adaptive SHrinkage” (FLASH), which includes
the Lasso and Forward Selection as special cases, and can be used in both
the linear regression and the Generalized Linear Model domains. As with
the Lasso and Forward Selection, FLASH iteratively adds one variable to the
model in a hierarchical fashion but, unlike these methods, at each step adjusts
the level of shrinkage so as to optimize the selection of the next variable. We
first present FLASH in the linear regression setting and show that it can be
fitted using a variant of the computationally efficient LARS algorithm. Then,
we extend FLASH to the GLM domain and demonstrate, through numerous
simulations and real world data sets, as well as some theoretical analysis, that
FLASH generally outperforms many competing approaches.

1. Introduction. Consider the traditional linear regression model

Yi = β0 +
p∑

j=1

Xijβj + εi, i = 1, . . . , n,(1)

with p predictors and n observations. Recently attention has focused on the sce-
nario where p is large relative to n. In this situation there are many methods that
outperform ordinary least squares (OLS) [Frank and Friedman (1993)]. One com-
mon approach is to assume that the true number of regression coefficients, that is,
the number of nonzero βj ’s, is small, in which case estimation results can be im-
proved by performing variable selection. Many classical variable selection meth-
ods, such as Forward Selection, have been proposed. More recently, interest has
focused on an alternative class of penalization methods, the most well known of
which is the Lasso [Tibshirani (1996)]. In addition to minimizing the usual sum
of squares, the Lasso imposes an L1 penalty on the coefficients, which has the ef-
fect of automatically performing variable selection by setting certain coefficients
to zero and shrinking the remainder. While the shrinkage approach can work well,
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it has been shown that in sparse settings the Lasso often over-shrinks the coeffi-
cients. Numerous alternatives and extensions have been suggested. A few exam-
ples include SCAD [Fan and Li (2001)], the Elastic Net [Zou and Hastie (2005)],
the Adaptive Lasso [Zou (2006)], the Dantzig selector [Candes and Tao (2007)],
the Relaxed Lasso [Meinshausen (2007)], VISA [Radchenko and James (2008)]
and the Double Dantzig [James and Radchenko (2009)].

The Lasso has been made particularly appealing by the advent of the LARS
algorithm [Efron et al. (2004)] which provides a highly efficient means to simul-
taneously produce the set of Lasso fits for all values of the tuning parameter. The
LARS algorithm starts with an empty set of variables and then adds the predictor,
say, Xj , most highly correlated with the response. Next, the corresponding esti-
mated coefficient, β̂j , is adjusted in the direction of the least squares solution. The
algorithm “breaks” when the absolute correlation between Xj and the residual vec-
tor, Y−Xβ̂ , is reached by the corresponding correlation for another predictor. The
new predictor, say, Xk , is then added to the model, and the coefficients β̂j and β̂k

are increased toward their joint least squares solution until some other variable’s
correlation matches those of Xj and Xk , at which point the new variable is also
added to the model. This process continues until all the correlations have reached
zero, which corresponds to the ordinary least squares solution.

By comparison, a common version of Forward Selection also starts with an
empty model and then iteratively adds to the model the variable most highly cor-
related with the current residual vector. Next, the residuals are recomputed using
the ordinary least squares solution, based on the currently selected variables. This
algorithm repeats until all the variables have been added to the model. In compar-
ing Forward Selection with LARS, one observes that the main difference is that
the former method drives the regression estimates for the currently selected vari-
ables all the way to the least squares solution, while LARS only moves them part
way in this direction. Hence, the Lasso estimates the residual vector using shrunk
regression coefficients, while Forward Selection uses unshrunk estimates. Which
approach is superior? In Section 2 we show that, even for toy examples with no
noise in the response, neither universally dominates the other. In some situations
the Lasso’s high level of shrinkage produces the best results, while in other cases
unshrunk estimates work better.

In this paper we suggest viewing the Lasso and Forward Selection as two ex-
tremes on a continuum of possible model selection rules. Instead of selecting can-
didate models using either highly shrunk or else completely unshrunk coefficients,
we propose a methodology that can adaptively adjust the level of shrinkage at each
step in the algorithm. We call our approach “Forward-Lasso Adaptive SHrinkage”
(FLASH). As with LARS, our algorithm selects the variable most highly correlated
with the residuals and drives the selected coefficients toward the least squares so-
lution. However, instead of stopping at the highly shrunk Lasso point or the zero
shrinkage Forward Selection point, FLASH uses the data to adaptively choose, at
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each step, the optimal level of shrinkage before selecting the next variable. FLASH
includes Forward Selection and the Lasso as special cases, yet has the same order
of computational cost as the Lasso. After introducing FLASH in the linear regres-
sion setting, we then extend it to the Generalized Linear Models (GLM) domain.
Thus, FLASH can also be used to perform variable selection in high dimensional
classification problems using, for example, a logistic regression framework. This
significantly expands the range of problems that FLASH can be applied to. We
show through extensive simulation studies, as well as theoretical arguments, that
FLASH significantly outperforms Forward Selection, the Lasso and many alterna-
tive methods, in both the regression and the GLM domains.

Our paper is structured as follows. In Section 2 we demonstrate that neither
Forward Selection nor the Lasso universally dominate each other. We present the
FLASH methodology in the linear regression setting and outline an algorithm for
efficiently constructing its path. Some theoretical properties of FLASH are also
discussed. Then in Section 3 we present a detailed simulation study to examine the
practical performance of FLASH in comparison to Forward Selection, the Lasso
and other competing methods. FLASH is extended to the GLM setting in Section 4
and further simulation results are provided. In Section 5 FLASH is demonstrated
on several real world data sets, predicting baseball salaries, real estate prices and
whether an internet image is an advertisement. These data sets all have many pre-
dictors, up to p = 1430, and involve both linear regression and GLM scenarios.
We end with a discussion in Section 6.

2. Methodology. Using suitable location and scale transformations, we can
standardize the data so that the response, Y, and each predictor, Xj , are mean zero
with ‖Xj‖ = 1. Throughout the paper we assume that this standardization holds.
However, all numerical results are presented on the original scale of the data.

2.1. Lasso versus Forward Selection. As discussed in the introduction, both
the LARS implementation of the Lasso and the Forward Selection algorithm
choose the variable with the highest absolute correlation and then drive the selected
regression coefficients toward the least squares solution. The key difference is that
Forward Selection produces unshrunk estimates by utilizing the least squares so-
lution while the Lasso uses shrunk estimates by only driving the coefficients part
way. Which approach works better? It is not hard to show that even in simple
settings neither approach dominates the other.

Consider, for example, a scenario involving a linear model with two signal pre-
dictors, one noise variable and no error term. Denote by ρS1,S2 the correlation
between the signal predictors and let ρSi,Nj

denote the correlation between the ith
signal and j th noise variable. Provided the coefficient for the first signal variable
is large enough, this variable is the one most highly correlated with the response,
thus it is the first selected by both the Lasso and Forward Selection. In this setting
one can directly calculate the values of ρS1,S2, ρS1,N1 and ρS2,N1 where the Lasso
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FIG. 1. Plots showing regions where the Lasso and Forward Selection will identify the correct
model for different correlation structures. Points above the dashed lines correspond to the Lasso
regions. Points between the dash dot lines correspond to Forward Selection. The solid lines provide
the regions of feasible correlation combinations.

or Forward Selection selects the “correct” set of variables. Figure 1 provides an
illustration for three different values of ρS1,N1 . The regions between the dash dot
curves correspond to the values of ρS1,S2 and ρS2,N1 where Forward Selection will
identify the correct model. Alternatively, the regions above the dashed curve rep-
resent the same situations for the Lasso. The solid lines encompass the regions of
feasible correlation combinations. Even in this simplified example it is clear that
there are many cases where Forward Selection succeeds and the Lasso fails, and
vice versa.

Figure 2 graphically illustrates how the Lasso, Forward Selection or both meth-
ods could fail, using the same simple setup with one additional noise variable. For
each plot the four lines represent the absolute correlation between the correspond-
ing variable and the residual vector; solid lines for signal variables and dashed lines
for noise variables. The left-hand side of the plot corresponds to the null model
with all coefficients set to zero, and the lines show how the correlations change
as coefficients are adjusted toward the least squares solution. Each plot represents
different values of ρS1,N1 and ρS1,N2 . The values for the other relevant parameters
are fixed for all four plots at β1 = 2, β2 = 1, ρS1,S2 = 0.5, ρS2,N1 = ρS2,N2 = 0.8.

In all four plots the black solid line, representing the first signal variable, has the
maximal correlation for the null model, so both the Lasso and Forward Selection
choose this variable first and drive its coefficient toward the least squares solution.
However, the Lasso stops when the black line intersects with one of the other
variables and adds that variable next, the first vertical dotted line in each plot, while
Forward Selection drives the black line to zero, that is, the least squares solution,
and then selects the variable with the maximal correlation, the second dotted line.
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FIG. 2. Absolute correlations of the two signal variables (black and gray solid) and two noise
variables (black and gray dashed) for different values of ρS1N1 and ρS1N2 in the example considered
in Section 2.1. The first dotted vertical indicates the Lasso break point, and the second dotted vertical
corresponds to Forward Selection. The line (other than black solid) with the highest value at the break
point indicates the variable selected by the corresponding method. The Lasso succeeds only in (a)
and (c), and Forward only in (a) and (b).

For a method to choose the correct model it must select the second signal variable,
represented by the gray solid line. In Figure 2(a) the gray solid line is the highest at
both the Lasso and Forward Selection stopping points, so both methods choose the
correct model. However, in Figure 2(b) the Lasso selects the black dashed noise
variable, while Forward Selection still chooses the correct model. Alternatively,
in Figure 2(c) the Lasso correctly selects the gray signal variable, while Forward
Selection chooses the gray dashed noise variable. Finally, in Figure 2(d) both the
Lasso and Forward Selection incorrectly select noise variables.

2.2. An adaptive shrinkage methodology. A key observation from Figure 2 is
that in all four plots the correct solid grey signal variable has the maximal cor-
relation for at least some levels of shrinkage, even in situations where the Lasso
and Forward Selection fail to identify the correct model. This example illustrates
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that choosing the variable most highly correlated with the residuals can work well
provided the correct level of shrinkage is used. This observation motivates our
“Forward-Lasso Adaptive SHrinkage” (FLASH) methodology.

Like the Lasso and Forward Selection, FLASH begins with the null model con-
taining no variables and then implements the following procedure:

1. At each step add to the model the variable most highly correlated with the
current residual vector.

2. Move the coefficients for the currently selected variables a given distance in the
direction toward the corresponding ordinary least squares solution.

3. Repeat steps 1 and 2 until all variables have been added to the model.

The FLASH algorithm is similar to that for LARS and Forward Selection. The
main difference revolves around the distance that the coefficients are driven to-
ward the least squares solution. For the lth step in the FLASH algorithm this dis-
tance is determined by a tuning parameter, δl . Setting δl = 0 corresponds to the
Lasso stopping rule, that is, driving the coefficients until the maximum of their
absolute correlations intersect with that of another variable. Alternatively, δl = 1
corresponds to the Forward Selection approach where the coefficients are set equal
to the corresponding least squares solution. However, setting δl = 1

2 , for example,
causes the coefficients to be driven half way between the Lasso and the Forward
Selection stopping points. As a result, FLASH can adjust the level of shrinkage not
just on the final model coefficients, as used previously in, for example, the Relaxed
Lasso, but also at each step during the selection of potential candidate models.

Figure 3 illustrates potential coefficient paths, for the first two variables se-
lected, for each of the three different approaches. The horizontal solid line in each

FIG. 3. Example coefficient paths for a two variable example using Forward Selection (crosses),
the Lasso (triangles) and FLASH (circles).
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plot shows the path for the first variable selected, β1. The first plot illustrates For-
ward Selection where β1 is driven all the way to the least squares solution, rep-
resented by the first cross. Alternatively, the Lasso (second plot) only drives β1 a
quarter of the way to the least squares solution. Finally, the third plot shows one
possible FLASH solution. Here we have marked δ1 = 0 for the Lasso solution
and δ1 = 1 for the Forward Selection estimate. In this case we set δ1 = 1

2 and,
hence, the corresponding FLASH estimate for β1 is half way between the Lasso
and Forward Selection coefficients. The sloped solid line on each plot illustrates
the continuation of the paths to estimate both β1 and β2. Again, Forward Selection
drives β1 and β2 to their joint least squares solution, while the Lasso estimate only
moves part way in this direction. The final plot shows the FLASH estimate, again
setting δ2 = 1

2 .
In the following section we describe two different approaches for letting the data

select the optimal level of shrinkage at each step. In some situations, for example,
where a subset of the true variables has a high signal, we may wish to adopt the
Forward Selection approach with no shrinkage. In other situations, for example,
where there is a lot of noise, the highly shrunk Lasso estimates may be preferred.
But, as we show in the simulation results, often a level of shrinkage between these
two extremes gives superior results. Another strength of FLASH is that its coef-
ficient path can be efficiently computed using a variant of the LARS algorithm,
which we outline next.

We use index l to denote each step of the algorithm, but for simplicity of the
notation we omit this index wherever the meaning is clear without it. Throughout
the algorithm index set A represents the correlations that are being driven toward
zero, vector cA contains the values of these correlations, and XA denotes the ma-
trix consisting of the columns of X associated with the set A. We refer to this set
and the corresponding correlations as “active.” Note that the active absolute corre-
lations are driven toward zero at rates that are proportional to their magnitudes:

1. Initialize β1 = 0, A = ∅ and l = 1.
2. Update the active set A by including the index of the (new) maximal

absolute correlation. Compute the |A|-dimensional direction vector hA =
(XT

AXA)−1cA. Let h be the p-dimensional vector with the components cor-
responding to A given by hA, and the remainder set to zero.

3. Compute γL, the Lasso distance to travel in direction h until a new absolute
correlation is maximal. We provide the formulas in the Appendix, where we
also show that γF , the Forward Selection distance to travel in direction h until
the active correlations reach zero, equals one. Define γ = γL + δl(1 − γL) and
let β l+1 = β l + γ h. Set l ← l + 1.

4. Repeat steps 2 and 3 until all correlations are at zero.

Our attention has recently been drawn to the Forward Iterative Regression and
Shrinkage Technique (FIRST) in Hwang, Zhang and Ghosal (2009), which can
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perform effectively in sparse high-dimensional settings. FIRST also utilizes as-
pects of the Forward Selection and Lasso approaches, but in a rather different fash-
ion than FLASH. For example, in the orthogonal design matrix situation FIRST,
when run to convergence, returns the Lasso fit, while FLASH still produces a con-
tinuum of solutions between those of the Lasso and Forward Selection.

2.3. Modifications to the algorithm. In practice, we propose implementing
FLASH with the following two modifications. First, note that when all δl are set
to zero, the algorithm above reduces to the basic LARS algorithm, which does not
necessarily recover the Lasso path. To ensure that FLASH is a generalization of the
Lasso, we implement FLASH using the same modification as the LARS algorithm
uses to compute the Lasso path, that is, if at any point on the path a coefficient hits
zero, then the corresponding variable is removed from the active set. A detailed
description of this modification is given in the Appendix.

Second, to account for the potential over-shrinkage of the coefficients in a
sparsely estimated model, we implement a “relaxed” version of FLASH, which
extends FLASH analogously to the way that the Relaxed Lasso extends the Lasso.
We unshrink each solution located at a breakpoint of the FLASH path, connect-
ing it via a path with the ordinary least squares solution on the corresponding set
of variables. We do this as soon as the FLASH breakpoint is computed, in other
words, right after the third step of the algorithm. As with the Relaxed Lasso, the
calculation of the corresponding relaxation direction comes at no computational
cost, as it coincides with the current direction of the FLASH path. More specifi-
cally, the original FLASH solution after step 3 is given by β l + γ h, and the cor-
responding OLS solution is given by β l + h. The corresponding relaxation path is
given by linear interpolation between these two points.

For the remainder of this paper, when we refer to FLASH, we mean the mod-
ified version. In our numerical examples the final solution is selected via cross-
validation as a point on one of the relaxation paths, where each of these continuous
paths is replaced by its values on a fixed grid.

2.4. Selection of tuning parameters. An important component of FLASH is
the selection of the δl parameters. Clearly, treating each δl as an independent tun-
ing parameter is not feasible. Many model selection approaches could be utilized.
In this paper we investigate two possible approaches. The first, “global FLASH,”
involves selecting a single value, δ, for all the step sizes, that is, assuming a com-
mon level of shrinkage throughout the steps of the FLASH algorithm. Hence, δ = 0
corresponds to the Lasso and δ = 1 to Forward Selection. Using this approach, we
first choose a grid of δ’s between 0 and 1 and then select the value giving the
lowest residual sum of squares on a validation data set or, alternatively, the lowest
cross-validated error. Global FLASH has the advantage of only needing to select
one δ, which improves its computational efficiency.
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The second approach, “block FLASH,” allows for different values among the
δl’s. However, to make the problem computationally feasible, we constrain each δl

to be either zero or one. The version of block FLASH we focus on exclusively for
the remainder of the paper involves selecting a single “break point” with δl∗ = 1
and setting all remaining δl’s to zero. This has the effect of dividing FLASH into
two stages. In the first stage a series of Lasso steps (i.e., δl = 0) are performed to
select the initial variables. At the end of the first stage a Forward step (i.e., δl∗ = 1)
is performed which has the effect of removing the coefficient shrinkage on the
currently selected variables. In the second stage further variables are selected by
performing a series of Lasso steps. As with global FLASH, block FLASH has
the advantage of only needing to select one tuning parameter, the break point. In
Section 3 we provide simulation results for both versions of FLASH. In practice,
the two methods appear to perform similarly. However, as illustrated below, we are
able to establish some interesting theoretical properties for block FLASH.

Note that for each fixed δ or, correspondingly, each fixed l∗, global and block
FLASH both have the same computational cost as the LARS algorithm. Because
LARS is extremely efficient, so are the FLASH algorithms, in particular, they re-
quire the same order of calculations as LARS if the grid size for δ and the num-
ber of locations for l∗ are finite. We propose using a five value grid for δ, which
worked very well in our simulation study. The upper bound on the number of po-
tential locations for l∗ can be chosen based on the computational complexity of the
problem. Remember that l∗ represents the number of easily identifiable predictors,
so one might reasonably expect a relatively low value.

2.5. Theoretical arguments. In this section we present some variable selection
properties of FLASH, in particular, conditions under which it can be shown to
outperform the Lasso. Throughout this section “probability tending to one” refers
to the scenario of p going to infinity. For the standard case of bounded p, we could
think of n going to infinity instead, although some minor modifications would need
to be made to the statements of the results. Let K index the nonzero coefficients
of β . We will say that an estimator β̂ recovers the correct signed support of β if
sign(β̂) = sign(β), where the equality is understood componentwise.

We will take a common approach of imposing bounds on the maximum absolute
correlation between two predictors. Define S as the number of signal variables,
μ = maxj>k |XT

j Xk| and let ξ be an arbitrarily small positive constant. The results
of Zhao and Yu (2006) and Wainwright (2009) imply that if

min
j∈K

|βj | > c1

√
S logp(2)

and μ < μL(1 − ξ) with μL = 1/[2S − 1], then the Lasso solution corresponding
to an appropriate choice of the tuning parameter will recover the correct signed
support of β with probability tending to one. Here the constant c1 does not change
with n and p, and its value is provided in the supplemental article [Radchenko
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and James (2010)]. On the other hand, the number of true nonzero coefficients,
S, is allowed to grow together with n and p. Note that condition (2) is stated
for the rescaled coefficients that correspond to the standardized predictor vectors.
On the original scale the right-hand side in (2) would be of order

√
(S logp)/n.

Suppose, for example, that S is bounded and p grows polynomially in n. In this
case the lower bound on the magnitudes of the nonzero coefficients, expressed on
the original scale, goes to zero at the rate

√
(logn)/n.

The correlation bound above is tight in the sense that for each μ ≥ μL there are
values of XT X and sign(β) such that the Lasso fails to recover the correct signed
support. In the following claim we identify a class of such counterexamples.

CLAIM 1. Let ρ be a constant satisfying ρ ≥ μL and let j be an arbitrary in-
dex in Kc. Suppose that all the pairwise correlations among the predictors indexed
by K ∪{j} equal −ρ, and all the signs of the nonzero coefficients of β are negative.
Then, with probability at least 1/2, no Lasso solution recovers the correct signed
support of β .

The proof of the claim is provided in the supplemental article [Radchenko and
James (2010)]. Note that for ρ < 1/S the correlation matrix can be easily made
positive definite by setting all the nonspecified pairwise correlations to zero.

Our Theorem 1 establishes that, under an additional assumption on the magni-
tudes of the nonzero coefficients, block FLASH can work in the situations where
the Lasso fails. The intuition behind this additional assumption is that for many
regression problems there will be some signal variables that are relatively easy to
identify, while the remainder pose more difficulties. The block FLASH procedure
utilizes the first group of signal variables in a more efficient fashion and hence
is better able to identify the remaining predictors. To mathematically quantify this
intuition, suppose that there exist indexes a and b, such that the corresponding true
coefficients are nonzero and have a significant separation in the magnitudes, that
is, a large value of |βa/βb|. We will refer to the coefficients {βj : |βj | ≥ |βa|} as
large, and the coefficients {βj : 0 < |βj | ≤ |βb|} as small. Theorem 1 below states
that if the ratio |βa/βb| is sufficiently large, then the block FLASH procedure will
correctly identify the signal variables under a weaker assumption on the maximal
pairwise correlation. More specifically, at the first stage the procedure will identify
all the large nonzero coefficients and not pick up any noise, and at the second stage
it will pick up the remaining nonzero coefficients without bringing in the noise. As
we discuss at the end of the section, the new correlation bound, μFL, is strictly
larger than the Lasso bound, μL.

THEOREM 1. Suppose that condition (2) holds, inequality |βa/βb| > c3
√

S is
satisfied for an arbitrary pair of true nonzero coefficients, and μ < μFL(1 − ξ)

for some arbitrary constant ξ . Then, with an appropriate choice of the tuning
parameters, the block FLASH estimator recovers the correct signed support of
β with probability tending to one.
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Here the constant c3 does not change with n and p, and its value is provided
in the supplemental article [Radchenko and James (2010)] together with the proof
of the theorem. Like the corresponding Lasso result in Wainwright (2009), our
theorem can handle subgaussian errors, that is, the tails of the error distribution
are required to decay at least as fast as those of a gaussian distribution. Relative
to the Lasso result, the only new assumption is on the separation between the
large and the small coefficients. Consequently, we are able to relax the requirement
on the pairwise correlations. According to Claim 1, the new assumption does not
allow us to relax the pairwise correlation requirement for the Lasso, as the nonzero
coefficients of β affect the claim only through their signs. Applying Theorem 1 in
the setup of the claim yields that the correct signed support of β can be recovered
for all ρ < μFL. In other words, under an additional assumption on the magnitudes
of the nonzero coefficients, block FLASH succeeds for ρ ∈ [μL,μFL), where the
Lasso fails.

The correlation bound in Theorem 1 can be taken as

μFL = min
{

1

2(1 − q2)S − 1
,

1

(2 − q1)S

}
.(3)

Here q1 and q2 are the fractions of large and small coefficients, respectively, among
all the nonzero coefficients. More specifically, q1 = |{βj : |βj | ≥ |βa|}|/S and q2 =
|{βj : 0 < |βj | ≤ |βb|}|/S. Observe that μFL > μL when q1S > 1. In fact, the proof
of Theorem 1 reveals that the best possible value of μFL is strictly above μL for
all positive q1.

3. Simulation results. In this section we present a detailed simulation study
comparing FLASH to five natural competing approaches. We implemented both
the global (FLASHG) and the block (FLASHB) versions of our method discussed
in Section 2.4. The tuning parameter δ in FLASHG was selected from a grid of five
possible values, {0,0.25,0.5,0.75,1}. We also tried a {0,1} grid corresponding
to the Lasso and Forward Selection, and a {0,0.5,1} grid, but the results were
inferior, so we do not report them here.

We compared FLASH to VISA, the Relaxed Lasso (Relaxo), the Adaptive Lasso
(Adaptive), Forward Selection (Forward) and the Lasso. The Adaptive Lasso in-
volves a preliminary step where the weights are typically chosen by performing
a least squares fit to the data. This is not feasible for p > n, so we selected the
weights using either the simple linear regression fits, as suggested in Huang, Ma
and Zhang (2008), or a ridge regression fit, as suggested in Zou (2006). The ridged
fits dominated so we only report results for the latter method here.

Our simulated data consisted of five parameters which we varied: the num-
ber of variables (p = 100 or p = 200), the number of training observations
(n = 50, n = 70 or n = 100), the correlations among the columns of the design
matrix (ρ = 0 or ρ = 0.5), the number of nonzero regression coefficients (S = 10
or S = 30) and the standard deviation among the coefficients (σβ = 0.5, σβ = 0.7
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or σβ = 1). We tested most combinations of the parameters and report a represen-
tative sample of the results. The rows of the design matrix were generated from
a mean zero normal distribution with a correlation matrix whose off-diagonal el-
ements were equal to ρ. The error terms were sampled from the standard normal
distribution, while the regression coefficients were generated from a mean zero
normal with variance σ 2

β . For each simulated data set we randomly generated a
validation data set with half as many observations as the training data and selected
the various tuning parameters for each method as those that gave the lowest mean
squared error between the response and predictions on the validation data. In par-
ticular, both the relaxation parameter and the number of steps in the algorithm for
the FLASH methods and the Relaxed Lasso were selected using a validation set.
For each method and simulation we computed three statistics, averaged over 200
data sets: False Positive, the number of variables with zero coefficients incorrectly
included in the final model; False Negative, the number of variables with nonzero
coefficients left out of the model; and L2 square, the squared L2 distance between
the estimated coefficients and the truth. Table 1 provides the results.

The first four simulations corresponded to ρ = 0, while the next four were gen-
erated using ρ = 0.5. The ninth simulation was a denser case with S = 30. Finally,
the last four simulations represent harder problems with σβ = 0.7 or 0.5, reducing
the signal to noise ratio from 10 to 4.9 and 2.5, respectively. For the L2 square
statistic we performed tests of statistical significance, comparing each method to
the best FLASH approach. For each simulation we placed in bold the L2 square
value for the best method and any other method that was not statistically worse
at the 5% level of significance. For example, in the first simulation with 100 vari-
ables and 100 observations both versions of FLASH and Forward were statistically
indistinguishable from each other. However, in the third simulation with 100 vari-
ables and 50 observations FLASHG was statistically superior to all other methods.
Most of the standard errors for the L2 square statistic were relatively low, approx-
imately 4% of the statistic’s value. However, as has been observed previously, we
found that the Forward method often gave more variable estimates than the other
approaches, with some standard errors as high as 8% of the statistic’s value.

None of the thirteen simulations contained a situation where one of the compet-
ing methods was statistically superior to FLASH, while in ten of the simulations
FLASH was statistically superior to all other methods. In general, Forward Se-
lection performed well in the easiest scenarios with large n, zero correlation, ρ,
and higher signal, σβ = 1. In particular, Forward Selection performed very poorly
in the denser S = 30 scenario, while this was a favorable situation for the Lasso.
FLASH was still superior to both methods in this simulation setup. The Adaptive
Lasso, VISA and Relaxo all provided improvements over the Lasso, though the lat-
ter two methods generated the largest increase in performance. The two versions
of FLASH performed at a similar level, though FLASHG seemed slightly better
in the sparser cases, while FLASHB was superior in the denser S = 30 situation.
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TABLE 1
Simulation results for each method. L2 square denotes the squared L2 distance between the

estimated coefficients and the truth, averaged over the 200 simulated data sets. For each simulation
scenario we placed in bold the best L2 square value together with the L2 square value for any other

method that was not statistically worse at the 5% level of significance

Simulation Statistic FLASHG FLASHB VISA Relaxo Adaptive Forward Lasso

n = 100, p = 100 False-Pos 1.92 3.32 3.23 3.7 9.9 1.11 18.68
S = 10, ρ = 0 False-Neg 2.12 1.89 2.26 2.26 1.84 2.33 1.27
σβ = 1 L2-sq 0.249 0.249 0.292 0.308 0.342 0.244 0.436

n = 100, p = 200 False-Pos 1.99 3.91 3.53 3.87 12.61 1.07 21.18
S = 10, ρ = 0 False-Neg 2.32 2.09 2.44 2.45 2.44 2.48 1.64
σβ = 1 L2-sq 0.267 0.286 0.353 0.366 0.524 0.266 0.606

n = 50, p = 100 False-Pos 2.65 6.17 4.88 5.1 10.39 1.71 15.41
S = 10, ρ = 0 False-Neg 3.3 2.9 3.38 3.4 3.08 3.79 2.42
σβ = 1 L2-sq 0.775 0.848 0.996 1.021 1.228 0.929 1.285

n = 50, p = 200 False-Pos 3.73 7.24 6.46 6.84 12.89 1.71 18.54
S = 10, ρ = 0 False-Neg 3.83 3.4 4.06 4.04 3.81 4.57 3.04
σβ = 1 L2-sq 1.057 1.089 1.477 1.496 1.999 1.365 1.934

n = 100, p = 100 False-Pos 3.13 4.79 6.33 6.53 10.41 1.32 19.66
S = 10, ρ = 0.5 False-Neg 2.59 2.33 2.48 2.45 2.21 3.02 1.62
σβ = 1 L2-sq 0.527 0.546 0.629 0.656 0.661 0.581 0.797

n = 100, p = 200 False-Pos 3.35 6.35 7.06 7.33 11.82 1.27 21.72
S = 10, ρ = 0.5 False-Neg 3.12 2.88 3.06 3.11 3.01 3.57 2.23
σβ = 1 L2-sq 0.608 0.673 0.752 0.785 0.872 0.655 1.029

n = 50, p = 100 False-Pos 5.12 8.31 7.23 7.44 11.27 2.42 16.2
S = 10, ρ = 0.5 False-Neg 3.95 3.38 3.79 3.88 3.53 4.82 2.99
σβ = 1 L2-sq 1.732 1.743 1.84 1.901 2.088 2.38 2.199

n = 50, p = 200 False-Pos 5.82 9.62 8.8 8.77 12.91 2.37 18.28
S = 10, ρ = 0.5 False-Neg 5.14 4.45 5.04 5.12 4.9 6.25 4.34
σβ = 1 L2-sq 2.399 2.35 2.648 2.7 2.851 3.094 2.934

n = 50, p = 100 False-Pos 10.6 13.73 11.34 12.09 15.62 4.39 17.16
S = 30, ρ = 0 False-Neg 14.23 12.1 14.12 13.89 12.91 21.7 11.95
σβ = 1 L2-sq 10.559 9.051 10.749 10.743 11.132 19.792 11.316

n = 100, p = 100 False-Pos 3.54 4.72 6.09 6.19 10.52 1.84 17.86
S = 10, ρ = 0.5 False-Neg 3.73 3.54 3.51 3.56 3.34 4.24 2.46
σβ = 0.7 L2-sq 0.625 0.624 0.692 0.705 0.724 0.707 0.787

n = 100, p = 200 False-Pos 4.06 6.21 7.11 7.48 11.69 1.68 21.46
S = 10, ρ = 0.5 False-Neg 4.05 3.81 3.87 3.93 3.7 4.68 3
σβ = 0.7 L2-sq 0.686 0.731 0.788 0.794 0.799 0.77 0.922

n = 100, p = 100 False-Pos 3.81 4.88 6.11 5.93 9.65 1.99 15.78
S = 10, ρ = 0.5 False-Neg 4.74 4.49 4.46 4.51 4.16 5.48 3.42
σβ = 0.5 L2-sq 0.559 0.545 0.576 0.584 0.596 0.683 0.633

n = 100, p = 200 False-Pos 3.69 5.25 5.76 6.13 10.11 1.54 17.73
S = 10, ρ = 0.5 False-Neg 5.38 5.08 5.29 5.32 4.88 6.03 4.24
σβ = 0.5 L2-sq 0.664 0.662 0.696 0.709 0.715 0.761 0.769
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FLASHG also required less computational effort, because its path only needed to
be computed once for each of the five potential values of δ.

Overall, Forward Selection had low false positive but high false negative rates.
In comparison to VISA and Relaxo, FLASHG had the lowest false positive rates
and similar or lower false negative rates. Alternatively, FLASHB had very low false
negative rates and similar false positive rates. Overall, FLASH selected sparser
models than VISA, the Relaxed Lasso and the Adaptive Lasso, and significantly
sparser models than the Lasso.

4. Extending to generalized linear models.

4.1. Methodology. In the generalized linear model framework for a response
variable, Y , with distribution

p(y; θ,φ) = exp
(

yθ − b(θ)

a(φ)
+ c(y,φ)

)
,

one models the relationship between predictor and response as g(μi) =∑p
j=1 Xijβj , where μi = E(Y ; θi, φ) = b′(θi), and g is referred to as the link func-

tion. Common examples of g include the identity link used for normal response
data and the logistic link used for binary response data. For notational simplicity
we will assume that g is chosen as the canonical link, though all the ideas general-
ize naturally to other link functions. The coefficient vector β is generally estimated
by maximizing the log likelihood function,

l(β) =
n∑

i=1

(
YiXT

i β − b(XT
i β)

)
.(4)

However, when p is large relative to n, the maximum likelihood approach suffers
from problems similar to those of the least squares approach in linear regression.
First, maximizing (4) will not produce any coefficients that are exactly zero, so no
variable selection is performed. As a result, the final model is less interpretable
and probably less accurate. Second, for large p the variance of the estimated coef-
ficients will become large and when p > n, function (4) has no unique minimum.

Various solutions have been proposed. Park and Hastie (2007) discuss a natural
GLM extension of the Lasso (GLasso) where, for a fixed λ, they choose β to
minimize

l(β, λ) = −l(β) + λ‖β‖1.(5)

The coefficient paths for the GLasso are not generally piecewise linear, but Park
and Hastie present an algorithm for approximating the true path. Forward Selection
can also be easily extended to the GLM domain by starting with an empty set of
variables and, at step l, adding to the model the variable that maximizes the j th
partial derivative of the log likelihood, l′j (β̂ l). One then sets β̂ l+1 equal to the
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maximum likelihood solution corresponding to the currently selected variables and
repeats. Note that l′j (β̂ l) = XT

j (Y − μ̂), which is just the correlation between the
j th predictor and the residuals. When using Gaussian errors with the identity link
function, μ̂ = Xβ , so this algorithm reduces back to standard Forward Selection
in the regression setting.

The GLM versions of the Lasso and Forward Selection also suggest a natural
extension of FLASH to this domain. In the GLM FLASH algorithm we again start
with an empty set of variables, A1, and β̂1 = 0. Then at step l we add to the
model the variable that maximizes the j th partial derivative of the log likelihood,
l′j (β̂ l), that is, the variable with maximal correlation. Finally, we drive β̂ l+1 in the
direction toward the maximum likelihood solution with the distance determined by
δl . Again, δl = 0 corresponds to shifting β̂ l as far as the Lasso stopping point, while
δl = 1 represents the maximum likelihood solution. However, one key difference
between the GLM and standard versions of FLASH is that, because the coefficient
paths are no longer piecewise linear, the coefficients do not move in a linear fashion
toward the maximum likelihood solution.

Figure 4 provides a pictorial example in the same two variable domain as for
Figure 3. The GLasso still significantly shrinks the coefficients relative to the For-
ward Selection approach. Alternatively, FLASH provides an in between level of
shrinkage. However, notice that the coefficient paths now move in a curved fashion
toward the maximum likelihood solution. It is possible to compute this nonlinear
path on a grid of tuning parameters, and we present the precise algorithm in the
Appendix.

The block FLASH approach is particularly appealing in the GLM setting, be-
cause it is both conceptually simple and easy to implement. With this method

FIG. 4. Example coefficient paths for a two variable GLM example using Forward Selection
(crosses), the Lasso (triangles) and FLASH (circles).
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FLASH follows the GLasso path for the first l∗ − 1 steps, that is, δ1 = δ2 = · · · =
δl∗−1 = 0. At this point the maximum likelihood solution for the currently selected
variables is computed, that is, δl∗ = 1. Finally, the GLasso path is followed again
with zero penalty on the variables corresponding to Al∗ , that is, δl∗+1 = · · · = 0.
We compute the GLM version of block FLASH using two implementations of the
R function glmnet(·) [Friedman, Hastie and Tibshirani (2010)], which uses a co-
ordinate descent algorithm to minimize (5). We first use glmnet(·) to compute the
path prior to l∗ and then make a second call to the function to compute the path
after l∗, placing zero penalty on the variables selected in the first step.

4.2. Simulation study. In this section we provide a simulation comparison of
the block GLM FLASH method with several other standard GLM approaches. In
particular, we compared FLASH to “GLasso,” “GRelaxo,” “GForward” and the
standard “GLM.” GLasso is implemented using the R function glmnet(·). GRe-
laxo takes the same sequence of models suggested by GLasso but unshrinks the
final coefficient estimates using a standard GLM fit to the nonzero coefficients.
GForward uses the approach outlined previously.

We simulated responses from the Bernoulli distribution using the logistic link
function. The data were generated with p = 100 variables, but we increased the
sample size to n = 400 as the Bernoulli response provided less information com-
pared to the Gaussian response. The correlation among the predictors was set to
either ρ = 0 or ρ = 0.5, and the number of true signal variables was set to either
S = 10 or S = 15. Finally, the nonzero regression coefficients were randomly sam-
pled from either a point mass distribution, with probability a half of being 0.5 or
−0.5, or the standard normal distribution. The tuning parameters for all methods
were selected as those that minimized the “deviance” on a validation data set with
n = 200 observations. In all other respects the simulation setup was the same as
the one we used in the linear regression setting.

The results from five different simulations are provided in Table 2. Standard
GLM performs very poorly. Note we have reported the median errors for this
method because the algorithm did not converge properly for some simulations.
GForward was competitive with FLASHB when using uncorrelated predictors but
deteriorated in the correlated situation. In all scenarios FLASHB either had the
lowest L2-sq statistic or was not statistically different from the best. In the last two
simulations it was statistically superior to all the other approaches.

5. Empirical analysis. We implemented the global, block and GLM versions
of FLASH on three different real world data sets. The first contained salaries of
professional baseball players (obtained from StatLib, Department of Statistics,
CMU). For each player a number of statistics were recorded, such as career runs
batted in, walks, hits, at bats, etc. We then used these variables to predict salaries.
After including all possible interaction terms, the data set contained n = 263 ob-
servations and p = 153 predictors.
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TABLE 2
Simulation results for each method using a Bernoulli response. L2 square denotes the squared L2

distance between the estimated coefficients and the truth, averaged over the 200 simulated data sets.
For each simulation scenario we placed in bold the best L2 square value together with the L2

square value for any other method that was not statistically worse at the 5% level of significance

Simulation Statistic FLASHB GRelaxo GLasso GForward GLM

n = 400, p = 100 False-Pos 4.38 4.47 16.61 1.18 90
S = 10, ρ = 0 False-Neg 0.34 0.45 0.06 0.55 0
β = ±0.5 L2-sq 0.461 0.488 0.71 0.454 6.065

n = 400, p = 100 False-Pos 9.1 10.11 15.57 1.54 90
S = 10, ρ = 0.5 False-Neg 1.69 1.82 0.92 3.51 0
β = ±0.5 L2-sq 1.081 1.147 1.107 1.415 10.559

n = 400, p = 100 False-Pos 2.94 3.22 17.88 0.6 90
S = 10, ρ = 0 False-Neg 2.94 3.07 1.8 3.24 0
β = N(0,1) L2-sq 0.72 0.779 1.954 0.668 99.794

n = 400, p = 100 False-Pos 5.37 7.63 17.41 0.74 90
S = 10, ρ = 0.5 False-Neg 3.21 3.21 2.17 4.08 0
β = N(0,1) L2-sq 1.168 1.392 1.967 1.289 58.08

n = 400, p = 100 False-Pos 4.42 5.8 15.55 0.7 85
S = 15, ρ = 0.5 False-Neg 5.57 5.38 3.66 6.81 0
β = N(0,1) L2-sq 2.302 2.692 4.211 2.487 11903.88

We tested three competitors to FLASH, namely, Lasso, Forward Selection and
the Relaxed Lasso. For each of the four methods ten-fold cross-validation was
used to compute the root mean squared error (RMSE) in prediction accuracy at
various points of the coefficient path. The final results are illustrated in Figure 5(a).
The open circles represent the Lasso RMSE’s evaluated at the break points of the
LARS algorithm. Alternatively, the solid circles show the errors corresponding
to the least squares fits for the models selected by the Lasso. The dashed line
that connects the open and the solid circles illustrates the Relaxed Lasso fit as the
coefficient shrinkage is reduced from the Lasso estimate (maximum shrinkage)
to the least squares fit (no shrinkage). The dotted line corresponds to Forward
Selection. Finally, the black solid line represents the global FLASH fit with δ =
0.25. We have fixed the value of the δ parameter to ensure fair comparison with
other methods on the basis of the cross-validated RMSE. In our simulations we
used a five point grid, where the end points corresponded to the Relaxed Lasso and
Forward Selection, respectively. Among the remaining three values, we decided
to pick δ = 0.25, as it is closer to the Relaxed Lasso, which is in general a more
reliable method then Forward Selection.

From step 15 onward, Forward Selection begins to significantly deteriorate,
while FLASH continues to improve and eventually achieves the lowest error rate
of all four methods at approximately step 20. Figure 5(b) plots the cross-validated
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(a) (b)

FIG. 5. (a) The cross-validated root mean squared error plotted versus the number of steps in the
corresponding algorithm for four different methods in the example of predicting baseball players’
salary. The methods displayed are Forward Selection (dotted line), Lasso (open circles), OLS fits
corresponding to the Lasso models (solid circles), Relaxed Lasso (dashed line, connecting the open
and the solid circles) and FLASH with δ = 0.25 (solid black line). (b) Same as (a) with more steps.

error paths out to 80 steps. The Relaxed Lasso achieves its optimal results at ap-
proximately step 50, which corresponds to a 34 variable model. Not only is the
optimal error rate worse than that for FLASH, but the corresponding model con-
tains twice as many variables as the model selected by FLASH, which only had 17
variables. Our simulation results pointed to a similar phenomenon, and we have
noticed in other real data sets that FLASH tends to select sparser models, suggest-
ing FLASH may have an advantage in terms of inference in addition to prediction
accuracy.

The second data set we examined was the Boston Housing data, commonly
used to compare different regression methods. After including interaction terms
this data contained 90 predictors of the average house value in 506 locations. To
test the p ≈ n scenario, 90 observations were randomly sampled for the training
data, 45 observations for a validation data set, and the remainder for the testing
data. We implemented the block FLASH approach and compared it to the Lasso,
Relaxo and Forward Selection. Least squares fits were used for the final coeffi-
cient estimates on all methods except the Lasso. Hence, for example, the Relaxed
Lasso solutions simplify to the OLS solutions computed for the sequence of mod-
els specified by the Lasso. Each approach was fitted using the training data, with
the tuning parameters chosen using the validation data, and then the mean squared
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TABLE 3
Mean squared errors, averaged over 100 test data sets, and average

number of variables selected, for the Boston Housing data

FLASH Relaxo Lasso Forward

MSE 27.01 28.30 29.56 33.03
Number of coefficients 18.93 17.13 26.99 16.8

error was computed on the test data. This procedure was repeated using 100 dif-
ferent random samplings of the data, to average out any effect from the choice of
test sets. Table 3 shows, for each method, the average mean squared error as well
as the average number of coefficients chosen in the final model. Block FLASH
achieves the lowest mean squared error. In addition, FLASH, Relaxo and Forward
Selection all choose significantly smaller models than the Lasso, making their re-
sults more interpretable. On average, block FLASH selected 8.67 variables before
implementing the Forward step. FLASH resulted in lower MSE than Relaxo in
62 random splits of the data, the two methods had the same MSE in 3 splits, and
FLASH had a higher MSE in 35 of the splits. The corresponding numbers com-
paring FLASH to the Lasso and FLASH to Forward Selection were 63/0/37 and
81/0/19.

The final data set that we examined was the internet advertising data available at
the UC-Irvine machine learning repository. The response was categorical, indicat-
ing whether or not each image was an advertisement. The predictors recorded the
geometry of the image as well as whether certain phrases occurred in and around
the image URL’s. After preprocessing, the data set contained n = 2359 observa-
tions and p = 1430 variables. The large value of p presented significant statistical
and computational difficulties for standard approaches, with the glm(·) function
in R taking almost fifteen minutes to run and producing NA estimates for most
coefficients. However, we were able to implement GLM block FLASH, randomly
assigning two-thirds of the observations to the training data set and the remainder
to the validation data set. FLASH selected a twenty-seven variable model, with the
five most important variables, in terms of the order that they entered the model, be-
ing the width of the image, whether the image’s anchor URL contained the phrase
“com,” whether the URL contained the phrase “ads,” and whether the anchor URL

contained the phrases “click” and “adclick.” We also fixed the tuning parameters at
the selected values and used a bootstrap analysis to produce pointwise confidence
intervals on the coefficients. GLM block FLASH ran very efficiently, taking ap-
proximately twenty seconds to produce the corresponding estimator on each boot-
strapped data set. The misclassification error on the validation set was 2.9% for
FLASH, while it was 3.2%, 4.0% and 5.0%, for GRelaxo, GLasso and GForward,
respectively. The sizes of the models selected by the last three methods were 38,
77 and 16, respectively.
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6. Discussion. The main difference between Forward Selection and the Lasso
is in the amount of shrinkage used to iteratively estimate the regression coeffi-
cients. For any given data set there is no particular reason that either the zero
shrinkage of Forward Selection or the extreme shrinkage of the Lasso must pro-
duce the best solution. FLASH allows the data to dictate the optimal level of
shrinkage at the model selection stage. This is quite different from approaches
such as Relaxo that adjust the level of shrinkage after the model has been selected
but not while choosing the sequence of models to consider. As a result, FLASH
often produces sparser models with superior predictive accuracy.

Computational efficiency is always important for high-dimensional problems.
The standard FLASH algorithm is very similar to LARS and hence involves a rel-
atively small computational expense. In addition, the block FLASH approach can
easily be formulated as a penalized regression problem with the usual L1 penalty
before the Forward step and zero penalty on certain variables after this step. Hence,
even more efficient methods, such as the recent work on pathwise coordinate de-
scent algorithms [Friedman et al. (2007)], can be used to compute the path, not
only for regression problems, but also for our extension to GLM data. Indeed, the
glmnet(·) function that we used to fit GLM block FLASH utilizes a coordinate
descent algorithm.

APPENDIX A: STEP 3 OF THE FLASH ALGORITHM

Let ci∗ be one of the active correlations with the maximum absolute value. Then,
as with LARS, the first time a nonactive absolute correlation reaches the “active”
maximum corresponds to the step size of

γL = +
min
j∈Ac

{
ci∗ − cj

(Xi∗ − Xj )T Xh
,

ci∗ + cj

(Xi∗ + Xj )T Xh

}
,

where the minimum is taken over the positive components.
Along the direction h, all active correlations reach zero at the same time. Hence,

the Forward Selection step size is given by

γF = ci∗
XT

i∗Xh
= ci∗

XT
i∗XA(XT

AXA)−1cA
= 1.

APPENDIX B: ZERO CROSSING MODIFICATION

The basic FLASH algorithm described in Section 2.2 shares the following prop-
erty with the basic LARS algorithm: once a variable enters the model, it does not
leave. Recall that the Lasso solution path can be obtained from the modified LARS
algorithm, where if a coefficient hits zero, the corresponding variable is removed
from the active set, and hence the model as well. When a variable is removed,
the corresponding absolute correlation goes below the value it would be at if it
remained active. The variable rejoins the model if its absolute correlation reaches
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the value it would be at, had the variable stayed in the model. We provide a similar
modification to the FLASH algorithm.

DEFINITION 1 (Zero crossing modification). When a coefficient hits zero, the
corresponding variable is removed from the active set. The variable is added back
to the active set once the corresponding absolute correlation reaches the value it
would currently be at had it remained active. Also, while the variable is out of the
active set, it is ignored in the calculation of the maximum absolute correlation in
step 2 of the FLASH algorithm.

In LARS it is easy to keep track of what the absolute correlation value would
be if the removed variable remained active: it is just the value of the maximum
absolute correlation. In FLASH this value is also easy to keep track of, because
all pairwise ratios among the active absolute correlations stay fixed throughout the
algorithm.

APPENDIX C: PATH ALGORITHM FOR THE GLM FLASH

By analogy with LARS and GLasso, the GLM FLASH algorithm progresses
in piecewise linear steps. Our algorithm is a modification of the one in Park and
Hastie (2007). Throughout the algorithm we write λ for the vector of absolute
correlations between the predictors and the current residuals, |XT (Y − μ̂l)|. We
start with β̂ = 0, μ̂ = Ȳ1, and the active set, A, consisting of j∗ = arg maxλj . We
decrease the value of ‖λA‖∞ from |XT

j∗(Y − Ȳ1)| to zero along a data dependent
grid. At each grid point we take the following four steps. The details of steps 1 and
2 are discussed in Park and Hastie (2007):

1. Predictor. Linearly approximate the solution to (6); call it β̃ .
2. Corrector. Use β̃ as the warm start to produce β̂ , the exact solution to

min
β:(βAc )=0

(
−l(β) + ∑

j∈A
λj |βj |

)
.(6)

3. If ‖λAc‖∞ ≥ ‖λA‖∞ or minA |β̂j | = 0, set λA ← (1 − δ)λA and repeat steps
1–2.

4. Let Az contain the indices of the zero coefficients in A. If ‖λAc‖∞ ≥ ‖λA‖∞,
augment A with j∗ = arg maxAc λj . Set A ← A \ Az.

5. Set λA ← (1 − ε)λA for some small ε.

Note that setting δ = 0 recovers the GLasso algorithm in Park and Hastie, while
setting δ = 1 results in the path for GForward.

Acknowledgments. We would like to thank the Editor, Associate Editor and
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SUPPLEMENTARY MATERIAL

Forward-LASSO with adaptive shrinkage (DOI: 10.1214/10-AOAS375SUPP;
.pdf). This material contains the proofs of Claim 1 and Theorem 1.
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