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AbstractThe topic of this thesis is a special family of classi�ers known as Majority Vote Classi�ers.These work by producing a large number of classi�cations (often using a standard methodsuch as a tree classi�er) and classifying to the class receiving the largest number of votes orpredictions. Some recent examples include Boosting (Freund and Schapire, 1996), Bagging(Breiman, 1996a) and Error Correcting Output Coding (ECOC) (Dietterich and Bakiri,1995) . These classi�ers have shown a great deal of promise but it is not fully understoodhow or why they work.The thesis is split into two parts. In the �rst part we examine in detail the ECOC clas-si�er. We show that it is in fact producing approximately unbiased probability estimatesfor each class and classifying to the maximum. It is therefore a method to approximatethe Bayes Classi�er. We also develop three extensions of ECOC and examine these newclassi�ers. Finally a detailed empirical study is made of nine di�erent classi�ers, includingthe ones mentioned above.In the second part we examine in more generality why majority vote classi�ers seemto work so well. Many theories have been suggested for the success of these classi�ers butnone provide a complete explanation. The theories tend to fall into one of two categorieswhich we label classical and modern. The classical theories rely on generalizations of biasand variance ideas from regression theory. This is a very appealing concept. However, whilethis area still needs to be further explored, it is clear that the nice decompositions that arisefrom squared error loss do not hold for the 0-1 loss functions that are used for classi�cationproblems. As a result bias and variance ideas do not seem to be very useful.
iv



vThe modern theories develop explanations that are more speci�c to classi�ers. Theywork by de�ning a new quantity, call it M . An attempt is then made to relate a classi�er'serror rate to M . For example, a higher value of M might mean a lower error rate. Inthis case one would attempt to prove that certain classi�ers work to increase M and hencereduce the error rate. The modern theories are still at an early stage and, as yet, have notbeen validated by any empirical results but seem to hold the potential to unlock some ofthe mystery surrounding these classi�ers.



AcknowledgmentsWhere to start!I am deeply grateful to my advisor Trevor Hastie. He provided the topic for this thesisas well as plenty of encouragement, many helpful suggestions and some dynamic debates!Trevor respected me enough to tell me when my ideas were bad as well as good. For that Iwould like to thank him.Jerry Friedman and Art Owen deserve special mention for acting as members of myreading committee as well as providing useful suggestions throughout my time at Stanford.I would like to thank Richard Olshen for pointing out errors in my reasoning while stillmanaging to imply I knew what I was talking about and no less importantly for helping me�nd a job.I have many many reasons to thank my parents, Alison and Michael. Without themnone of this would be possible. While we are on the subject I would like to thank the \de-partment mother", Judi Davis. Judi was always happy to provide a topic of conversationthat didn't involve statistics!I have made several life long friends here. I know I echo the sentiments of many beforeme when I say how much I have enjoyed my time at Stanford. I am amazed that studentsever choose to leave.Catherine thank you for seeing me through the bad times as well as the good. This isnot the end or even the beginning of the end but it is perhaps the end of the beginning.vi



Contents
1 Introduction 11.1 Regression vs Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 The Regression Problem . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 The Classi�cation Problem . . . . . . . . . . . . . . . . . . . . . . . 21.2 The Bayes Classi�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Some Standard Classi�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3.1 Tree Classi�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3.2 LDA and QDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.3.3 K Nearest Neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4 Majority Vote Classi�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.5 Plug in Classi�cation Techniques . . . . . . . . . . . . . . . . . . . . . . . . 81.6 Summary of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Plug in Classi�cation Techniques (PICTs) 102.1 The Error Correcting Output Coding Classi�er (ECOC) . . . . . . . . . . . 102.1.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.1.2 Original (Heuristic) Motivation . . . . . . . . . . . . . . . . . . . . . 132.1.3 The One vs Rest PICT . . . . . . . . . . . . . . . . . . . . . . . . . 132.1.4 An Alternative Way of Viewing the ECOC PICT . . . . . . . . . . . 142.1.5 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2 Understanding the ECOC PICT . . . . . . . . . . . . . . . . . . . . . . . . 152.2.1 A Deterministic Coding Matrix . . . . . . . . . . . . . . . . . . . . . 172.2.2 A Random Coding Matrix . . . . . . . . . . . . . . . . . . . . . . . . 202.2.3 Training the Coding Matrix . . . . . . . . . . . . . . . . . . . . . . . 28vii



CONTENTS viii2.3 The Regression and Centroid PICTs . . . . . . . . . . . . . . . . . . . . . . 292.3.1 The Regression PICT . . . . . . . . . . . . . . . . . . . . . . . . . . 292.3.2 The Centroid PICT . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.4 The Substitution PICT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.4.1 The Substitution PICT Algorithm . . . . . . . . . . . . . . . . . . . 352.4.2 Asymptotic Equivalence of ECOC and Substitution PICTs . . . . . 372.4.3 The Substitution PICT for Low Values of B . . . . . . . . . . . . . . 382.5 The Bagging and Boosting PICTs . . . . . . . . . . . . . . . . . . . . . . . 392.5.1 The Bagging PICT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402.5.2 The Boosting PICT . . . . . . . . . . . . . . . . . . . . . . . . . . . 402.6 Experimental Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 422.6.1 Random vs Deterministic Weightings . . . . . . . . . . . . . . . . . . 442.6.2 Letter Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472.6.3 Vowel Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 Classical Theories 593.1 Extending Regression Theory to Classi�cation Problems . . . . . . . . . . . 593.2 A Generalization of the Bias-Variance Decomposition . . . . . . . . . . . . . 613.2.1 Bias and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613.2.2 Standard Prediction Error Decomposition . . . . . . . . . . . . . . . 623.2.3 Generalizing the De�nitions . . . . . . . . . . . . . . . . . . . . . . . 633.2.4 Bias and Variance E�ect . . . . . . . . . . . . . . . . . . . . . . . . . 653.3 Applications of the Generalizations of Bias and Variance . . . . . . . . . . . 673.3.1 0-1 Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673.3.2 Absolute Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693.4 Case Study : The Substitution PICT . . . . . . . . . . . . . . . . . . . . . . 713.5 Discussion of Recent Literature . . . . . . . . . . . . . . . . . . . . . . . . . 743.6 Experimental Comparison of Di�erent De�nitions . . . . . . . . . . . . . . . 773.7 The Fundamental Problem with Classical Theories . . . . . . . . . . . . . . 813.7.1 Inconsistent De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . 813.7.2 Lower Variance DOES NOT Imply Lower Error Rate . . . . . . . . 82



CONTENTS ix4 Modern Theories 834.1 Margins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834.1.1 The Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844.1.2 A Bound on the Expected Test Error Rate . . . . . . . . . . . . . . 854.1.3 A Bound on the Training Margin . . . . . . . . . . . . . . . . . . . . 854.1.4 Some Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864.2 How Well Does the Margin Bound Work? . . . . . . . . . . . . . . . . . . . 874.2.1 The Schapire Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 874.2.2 The Training Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 874.2.3 An Experimental Comparison . . . . . . . . . . . . . . . . . . . . . . 884.3 The Normal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894.3.1 Developing the Normal Model . . . . . . . . . . . . . . . . . . . . . . 904.3.2 Relating the Training and Test Margins . . . . . . . . . . . . . . . . 934.3.3 Implications of the Normal Model . . . . . . . . . . . . . . . . . . . 954.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954.4.1 The Schapire Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 954.4.2 The Normal Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 964.4.3 Other Modern Theories . . . . . . . . . . . . . . . . . . . . . . . . . 964.5 Thesis Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 97A Theorems and Proofs 98



List of Tables2.1 A possible coding matrix for a 10 class problem . . . . . . . . . . . . . . . . 122.2 Theoretical bounds on the error rate convergence . . . . . . . . . . . . . . . 252.3 Test error rates for hard 2 class problem. 2 Terminal Nodes . . . . . . . . . 442.4 Test error rates for hard 2 class problem. 5 Terminal Nodes . . . . . . . . . 452.5 Test error rates for hard 2 class problem. Default tree settings . . . . . . . 452.6 Test error rates for easier 2 class problem. 2 Terminal Nodes . . . . . . . . 452.7 Test error rates for easier 2 class problem. 5 Terminal Nodes . . . . . . . . 462.8 Test error rates for easier 2 class problem. 10 Terminal Nodes . . . . . . . . 462.9 Test error rates for easier 2 class problem. 20 Terminal Nodes . . . . . . . . 462.10 Test error rates for the easier Letter problem. Default tree settings . . . . . 482.11 Test error rates relative to 1NN. Default tree settings . . . . . . . . . . . . . 482.12 Test error rates for the easier Letter problem. Deep trees . . . . . . . . . . 492.13 Test error rates relative to 1NN. Deep trees . . . . . . . . . . . . . . . . . . 492.14 Test error rates for the harder Letter problem. Default tree settings . . . . 502.15 Test error rates relative to 1NN. Default tree settings . . . . . . . . . . . . . 502.16 Test error rates for the easier Vowel problem . . . . . . . . . . . . . . . . . 552.17 Test error rates relative to 1NN (easier problem) . . . . . . . . . . . . . . . 552.18 Test error rates for the harder Vowel problem . . . . . . . . . . . . . . . . . 562.19 Test error rates relative to 1NN (harder problem) . . . . . . . . . . . . . . . 563.1 Bias and variance for various de�nitions (26 class data set) . . . . . . . . . 803.2 Bias and variance for various de�nitions (10 class problem) . . . . . . . . . 81
x



List of Figures1.1 A plot of images from the US Postal Service Zip Code Data Set . . . . . . . 22.1 An alternative way of viewing the ECOC PICT . . . . . . . . . . . . . . . . 152.2 An example of the reductions in error rate using ECOC . . . . . . . . . . . 162.3 An illustration of the error rate converging . . . . . . . . . . . . . . . . . . 262.4 A second illustration of the error rate converging . . . . . . . . . . . . . . . 272.5 An illustration of a possible problem with the ECOC PICT . . . . . . . . . 342.6 Probability estimates from both the ECOC and Substitution PICTs . . . . 382.7 A single realization from the simulated distribution used in Section 2.6.1 . . 432.8 A plot of the results from Table 2.10 . . . . . . . . . . . . . . . . . . . . . . 512.9 A plot of the results from Table 2.12 . . . . . . . . . . . . . . . . . . . . . . 522.10 A plot of the results from Table 2.14 . . . . . . . . . . . . . . . . . . . . . . 532.11 A plot of the results from Table 2.16 . . . . . . . . . . . . . . . . . . . . . . 572.12 A plot of the results from Table 2.18 . . . . . . . . . . . . . . . . . . . . . . 583.1 Error rates on ECOC, Substitution and tree classi�ers . . . . . . . . . . . . 754.1 Test error and smoothed error on Letter data set . . . . . . . . . . . . . . . 894.2 Predicted errors using the Training Model . . . . . . . . . . . . . . . . . . . 904.3 Predicted errors using the Schapire Model . . . . . . . . . . . . . . . . . . . 914.4 Predicted errors using the Normal Model . . . . . . . . . . . . . . . . . . . 94
xi



Chapter 1IntroductionConsider the digits in Figure 1.1 (Reprinted from Hastie and Tibshirani, 1994). These arescanned in images of hand written zip codes from the US Postal Service Zip Code Data Set.The US postal service wishes to design a system to read hand written zip codes on mail. Inparticular they want to :1. scan in an image of a particular hand written digit,2. convert the image into a pixel mapping (e.g. 16 by 16),3. and use the pixel mapping to output a digit prediction between 0 and 9.Of the above three steps, the third presents the most di�culty and is the general areathat this thesis concerns.1.1 Regression vs Classi�cation1.1.1 The Regression ProblemSuppose we observe pairs of observations (xi; yi) i = 1; : : : ; n where x 2 X � Rp andy 2 Y � R. X is known as the predictor (or input) space and Y is the response (or output)space. The aim is to use these observations to estimate the relationship between X and Yand hence predict Y given X. Usually the relationship is denoted as followsY = f(X) + �1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: A plot of images from the US Postal Service Zip Code Data Setwhere � is a random variable with mean 0. So the problem of prediction reduces to oneof estimating f based only on observing X and Y . This setting is known as a regressionproblem and is one of the most common and useful applications of statistics. There is a vaststatistical literature in this area and for many situations the problem is essentially solved.1.1.2 The Classi�cation ProblemNow suppose we have an almost identical setup to that in Section 1.1.1. We again observepairs of observations (xi; yi) i = 1; : : : ; n and wish to use these observations to form aprediction rule for Y given X. However, instead of Y � R or even assuming Y is ordinalwe now assume that Y is a categorical random variable i.e. Y has no ordering but simplydenotes a class that the observation falls into. Examples include gender (male or female),region (North, South, East or West) or the letters of an alphabet (A,B, : : : , Z). In statisticsthis situation is known as a Classi�cation Problem, however, it is also known as PatternRecognition in other �elds.Classi�cation problems have an equally wide area of application to that of regressionproblems yet, in statistics, they have received much less attention and are far less well un-derstood. Indeed it would be fair to say that statisticians play a fairly small role in the



CHAPTER 1. INTRODUCTION 3work in this area. This is hard to understand because statistics has a lot to contribute tothese problems.Now let us brie
y return to the zip code recognition example mentioned earlier. At�rst glance it is not obvious where statistics comes into this problem. However, each ofthe pixels (256 in the case of our 16 by 16 example) are coded as a number (usually rang-ing between 0 and 1) and can be treated as a predictor variable. We then have a 256dimensional predictor space, X � R256 and a response space containing 10 possible out-comes, Y = f0; 1; : : : ; 9g. Our aim, then, is to use a set of training data (pairs of X andY ) to form a rule to predict Y (the digit) given X (the pixels). Such a prediction rule isknown, in statistics, as a classi�er. When the example is formulated in this manner it isclear that this is a classi�cation problem to which we can apply all our statistical techniques.In the next few sections we introduce some of the ideas and notation which are importantin this area of statistics.1.2 The Bayes Classi�erSuppose that Y takes on k di�erent outcomes or classes. The task of predicting Y given Xis known as a k class classi�cation problem. We denote the conditional distribution of Ygiven X by qXi i.e. qXi = Pr(Y = ijX)Note, that qX = (qX1 ; qX2 ; : : : ; qXk ) is a function of X but the superscript X notation isdropped where there is likely to be no confusion.Suppose that an oracle has given us q for every point X in the predictor space. What isthe best possible classi�er? The answer to this question depends on what we mean by best.A common de�nition of best is lowest error rate where the error rate is simply the percentageof misclassi�cations i.e. the fraction of the time that the classi�cation is di�erent from Y .This corresponds to a loss function which is 1 for a misclassi�cation and 0 otherwise. Underthis loss function the answer is to use the classi�er, C(X), which minimizes the expected



CHAPTER 1. INTRODUCTION 4error rate. EXP (C(X) 6= Y jX) = 1�EXP (C(X) = Y jX)= 1�Xi EX [P (C(X) = i)qXi ]It is clear that C(X) = argmaxi qXiwill minimize this quantity with the expected error rate equal to EXP (C(X) 6= Y jX) =1�EX maxi qXi .This classi�er is known as the Bayes Classi�er and the error rate it achieves is the BayesError Rate. Notice that the Bayes Error Rate is only 0 if maxi qXi = 1 for all X. So if thereis any randomness in Y given X the minimal achievable error rate will be greater than 0.This is equivalent to a regression problem where the minimum mean squared error betweenthe prediction (Ŷ ) and Y is equal to V ar(�) which is greater than 0 unless � is identicallyequal to zero.1.3 Some Standard Classi�ersWe have shown that the Bayes Classi�er is optimal in terms of achieving the minimum pos-sible misclassi�cation error. Unfortunately in practice we do not know q so can not producethis classi�er. However the Bayes Classi�er is still useful because it gives us a gold standardto aim for. Many classi�ers attempt to approximate the Bayes Classi�er by estimating qand then classifying to the maximum estimated probability. Notice that obtaining a goodestimate of q is su�cient but not necessary to produce a good classi�er.Below we list a few examples of commonly used classi�ers.1.3.1 Tree Classi�ersSuppose all the variables in our predictor space are continuous. Then the �rst step for atree classi�er is to split the training data into two parts by choosing a single variable, say



CHAPTER 1. INTRODUCTION 5xi, and partitioning the data into parts where xi � t and xi > t. The rule to determineboth xi and t is known as the splitting or partitioning rule. Next we examine these twosets of data and again split one of them into two parts. This partitioning continues until astopping criterion is reached.The procedure described above will result in a partitioning of the predictor space intohyper rectangles. These rectangles are often known as leaves or terminal nodes. We willrefer to them as regions. We then examine the training data that falls in the same region asthe test data point. A classi�cation is made to the class with the largest number of trainingdata points in this region. It is also possible to produce probability estimates by examiningthe proportion of training points from each class in the region.There are several possible criterion to use for the splitting rule. One option is to choosethe split that gives the largest reduction in deviance. The deviance of a tree is de�ned asD =Xi Di; Di = �2Xk nik log pikwhere nik are the number of observations from Class k in the ith terminal node and pik isthe probability of an observation in the ith terminal node being from Class k. The parti-tioning ends when the reduction in error rate or deviance is below a threshold value.It is also possible to construct regression trees when the response is continuous. Thereare various procedures for pruning the tree to reduce the number of terminal nodes. Thistends to have the e�ect of reducing the variability at the expense of increased bias. A moredetailed discussion of trees is given in Breiman et al., 1984.1.3.2 LDA and QDALet �Y denote the prior probabilities of the classes, and p(XjY ) the densities of distributionsof the observations for each class. Then the posterior distribution of the classes afterobserving X is : p(Y jX) = �Y p(XjY )p(X) / �Y p(XjY )



CHAPTER 1. INTRODUCTION 6We know from Section 1.2 that the best classi�cation is to the class with maximal p(Y jX)or equivalently to the class with maximal p(XjY )�Y .Now suppose the distribution for class Y is multivariate normal with mean �Y andcovariance �Y . By taking suitable transformations we see that the Bayes classi�cation isto the class with minimumQY = �2 log[p(XjY )�Y ]= �2 log p(XjY )� 2 log �Y= (X � �Y )��1Y (X � �Y )T + log j�Y j � 2 log �YIf we use the sample mean for each class to estimate �Y and the sample covariance matrixwithin each class to estimate �Y then we can produce an estimate for QY and classify tothe class with lowest estimated QY . The di�erence between the QY for two classes is aquadratic function of X, so this method of classi�cation is known as Quadratic Discrimi-nate Analysis (QDA).Further suppose that the classes have a common covariance matrix �. Di�erences inthe QY are then linear functions of X and we can maximize �QY =2 orLY = X��1�TY � �Y ��1�TY =2 + log �YThis procedure is known as Linear Discriminate Analysis (LDA). For further details seeChapter 12 of Venables and Ripley, 1994.1.3.3 K Nearest NeighboursK Nearest Neighbours is an extremely simple classi�er. To classify a new test point onesimply �nds the k closest training data points in the predictor space. One then classi�esto the class which corresponds to the largest number of these training points. For examplewith 10 nearest neighbours one would �nd the 10 closest training points to each test point.If 5 of these points were from Class 2, 3 from Class 1 and 2 from Class 3 you would classifyto Class 2.



CHAPTER 1. INTRODUCTION 7In the event of a tie either a class can be chosen at random or no classi�cation returned.It is common to use Euclidean distance to determine the closest training points though itis advisable to scale variables so that one direction does not dominate the classi�cation.As k increases, the variability of the classi�cation will tend to decrease at the expense ofincreased bias.Although this is a very simple classi�er, in practice it tends to work well on a largenumber of problems. We will use 1 nearest neighbour as a base line classi�er to comparewith the other methods suggested in this thesis.1.4 Majority Vote Classi�ersSuppose for a certain classi�cation problem we are given three di�erent classi�cation rules,h1(X), h2(X) and h3(X). Can we combine these three rules in such a way as to producea classi�er that is superior to any of the individual rules? The answer is yes under certaincircumstances. A common way to combine these rules is to letC(X) = modefh1(X); h2(X); h3(X)g (1.1)In other words, at each value of X classify to the class that receives the largest numberof classi�cations (or votes). This family of classi�ers are known as Majority Vote Classi�ersor Majority Vote Learners (MaVLs pronounced Marvels).As a simple example of the improvement that can be achieved using this method considerthe following situation. In this example the predictor space, X , is divided into three regions.In the �rst region h1 and h2 classify correctly but h3 is incorrect, in the second h1 and h3 arecorrect but h2 incorrect and in the last region h2 and h3 are correct but h1 is incorrect. If atest point is equally likely to be in any of the three regions, each of the individual classi�erswill be incorrect one third of the time. However, the combined classi�er will always givethe correct classi�cation. Of course there is no guarantee that this will happen and it ispossible (though uncommon) for the combined classi�er to produce an inferior performance.This procedure can be extended to any number of classi�ers. It is also possible to put



CHAPTER 1. INTRODUCTION 8more weight on certain classi�ers. In general we de�ne a majority vote classi�er consistingof votes from rules h1; h2; : : : ; hB as followsC(X) = argmaxi BXj=1wjI(hj(X) = i) (1.2)where w1; : : : ; wB are weights that sum to 1 and I(�) is an indicator function. If the weightsare set to 1=B this will give us the mode of h1; h2; : : : ; hB as in (1.1). A slightly di�erentversion can be obtained if the individual classi�ers produce probability estimates,C(X) = argmaxi BXj=1wj p̂ij (1.3)where p̂ij is the probability estimate from the jth classi�cation rule for the ith class. Wewill refer to (1.2) as a Majority Vote Learner (MaVL) and (1.3) as a Semi Majority VoteLearner (Semi MaVL). Notice that MaVLs can be thought of as a special case of SemiMaVLs where all the probability estimates are either zero or one.Majority Vote Classi�ers are the central focus of this thesis. Over the last couple ofyears several classi�ers falling into this family have demonstrated an ability to producevery accurate classi�cation rules. As a result a lot of e�ort has been expended in tryingto explain their success. In this thesis we survey some of the more successful MaVLs thathave been developed as well as introducing a few new ones. We also discuss the theoriesthat have been proposed and give some new insights of our own.1.5 Plug in Classi�cation TechniquesPlug in Classi�cation Techniques (or PICTs) are algorithms that take a standard classi�er,for example a tree classi�er or LDA, and transforms it in some way to, hopefully, improveits accuracy. MaVLs which were introduced in the previous section are examples of PICTs.However, there are many PICTs which are not MaVLs. For example the Pairwise Couplingprocedure, �rst suggested by Friedman (Friedman, 1996a) and later extended by Hastieand Tibshirani (Hastie and Tibshirani, 1996), is not a MaVL but is a PICT. Most of theclassi�ers introduced in Chapter 2 are examples of PICTs.



CHAPTER 1. INTRODUCTION 91.6 Summary of ChaptersIn Chapter 2 we study a recently proposed classi�er that is motivated by Error CorrectingOutput Coding ideas. While it is a PICT it does not quite fall into the family of MaVLs orSemi MaVLs. However, we demonstrate that it is an approximation to a classi�er which wecall the Substitution PICT and that this classi�er is a Semi MaVL. As well as the Substitu-tion PICT we also introduce two new classi�ers, the Regression and Centroid PICTs, as wellas two previously suggested MaVLs, Bagging and Boosting. At the end of the chapter weprovide an experimental comparison between these alternative methods on several di�erentdata sets.In Chapter 3 we explore theoretical explanations of MaVLs that rely on generalizationsof the concepts of bias and variance from regression theory. We call this group of ideasClassical. It turns out that the best way to generalize these concepts is not obvious andas a consequence many alternative de�nitions have been proposed. We provide our ownde�nitions as well as surveying the alternative suggestions. We give a case study where weimplement some of the classical ideas on the Substitution PICT. All the de�nitions for biasand variance provide slightly di�erent decompositions of the prediction error on any givendata set so we provide an experimental comparison on several sets of data.It turns out that there are some severe problems with attempting to generalize bias andvariance to a 0-1 loss function. As a result Chapter 4 surveys a new class of theories whichwe callModern. These modern ideas are more speci�cally tailored to classi�cation problemsand 0-1 loss functions. They involve producing bounds on the test error rate in terms of aquantity called the Margin. Unfortunately these bounds tend not to be tight so in practicethey often work poorly. We suggest an alternative use of the margin called the NormalModel. This seems to produce superior performance on real data. The chapter concludeswith a summary of the thesis.In the appendix we give proofs for all the theorems contained in the thesis.



Chapter 2Plug in Classi�cation Techniques(PICTs)In this chapter we will introduce some standard Majority Vote Classi�ers, Bagging, Boostingand ECOC, as well as some new, Substitution, Regression and Centroid classi�ers. Thenew classi�ers are all adaptions of ECOC. A large proportion of the chapter is devoted tostudying the ECOC PICT and its spin o�s. However, Section 2.5 discusses the Baggingand Boosting algorithms and Section 2.6 provides experimental comparisons between thevarious classi�ers.2.1 The Error Correcting Output Coding Classi�er (ECOC)2.1.1 The AlgorithmDietterich and Bakiri, 1995 suggested an algorithm, motivated by Error Correcting OutputCoding Theory, for solving a k class classi�cation problem using binary classi�ers. We willrefer to this classi�er as the ECOC PICT.
10



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 11
ECOC Algorithm� Produce a k by B (B large) binary coding matrix, i.e. a matrix of zerosand ones. We will denote this matrix by Z, its i; jth component by Zij,its ith row by Zi and its jth column by Zj. Table 2.1 provides an exampleof a possible coding matrix for a 10 class problem.� Use the �rst column of the coding matrix (Z1) to create two super groupsby assigning all classes with a one in the corresponding element of Z1 tosuper group one and all other classes to super group zero. So for example,when using the coding matrix on page 12, one would assign classes 0, 2, 4,6 and 8 to super group one and the others to super group zero.� Train a Base Classi�er on the new two class problem.� Repeat the process for each of the B columns (Z1;Z2; : : : ;ZB) to produceB trained classi�ers.� To a new test point apply each of the B classi�ers. Each classi�er willproduce p̂j which is the estimated probability the test point comes from thejth super group one. This will produce a vector of probability estimates,p̂ = (p̂1; p̂2; : : : ; p̂B)T .� To classify the point calculate Li =PBj=1 jp̂j�Zijj for each of the k classes(i.e. for i from 1 to k). This is the L1 distance between p̂ and Zi (theith row of Z). Classify to the class with lowest L1 distance or equivalentlyargmini LiThis algorithm does not specify either how to create the coding matrix or what BaseClassi�er to use. These are obviously important components to the algorithm. The choiceof coding matrix is discussed in detail in Section 2.2. Dietterich found that the best resultswere obtained by using a tree as the Base Classi�er but in principle any binary classi�er willdo. All the experiments in this thesis use a standard tree classi�er as the Base Classi�er.



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 12Class Z1 Z2 Z3 Z4 Z5 Z6 � � � Z150 1 1 0 0 0 0 � � � 11 0 0 1 1 1 1 � � � 02 1 0 0 1 0 0 � � � 13 0 0 1 1 0 1 � � � 14 1 1 1 0 1 0 � � � 05 0 1 0 0 1 1 � � � 06 1 0 1 1 1 0 � � � 17 0 0 0 1 1 1 � � � 08 1 1 0 1 0 1 � � � 19 0 1 1 1 0 0 � � � 0Table 2.1: A possible coding matrix for a 10 class problemNote however that, unless otherwise stated, the theorems are general to any Base Classi�er.An Example of the ECOC Classi�cation StepAs an example of how the �nal classi�cation step works consider the following simpli�edscenario. Here we have only 4 classes and 5 columns in the coding matrix.
Z = Class Z1 Z2 Z3 Z4 Z51 1 1 0 0 02 0 0 1 1 03 1 0 0 1 14 1 1 1 1 0We have trained the Base Classi�er on the various super groupings and for a given testpoint of interest it has produced the following probability estimates.p̂ = (0:3; 0:2; 0:8; 0:9; 0:1)One then calculates the L1 distance between each row and p̂. For example the L1 distancefor the �rst row is j0:3 � 1j+ j0:2� 1j+ j0:8 � 0j+ j0:9 � 0j+ j0:1� 0j = 3:3.



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 13If one continues this process for each class the following table is obtained.Class 1 2 3 4L1 Distance 3:3 0:9 2:7 1:9The algorithm would then classify to Class 2 because it has the lowest L1 distance.Notice that p̂ looks far more similar to the second row than any of the others.2.1.2 Original (Heuristic) MotivationDietterich's original motivation was roughly the following. Each row in the coding matrixcorresponds to a unique (non-minimal) coding for the appropriate class. Now we wouldexpect that if the correct class was in super group one then p̂j would be close to 1 and ifthe correct class was in super group zero then p̂j would be close to 0. Therefore we canthink of p̂ as an approximation to the coding for the true class. So that we want to classifyto the row or class that is closest to p̂ in some sense. Dietterich used the L1 metric as thedistance measure.Another way to think about this is that one would expect jp̂j �Zijj to be low if i is thecorrect class. So that Li =PBj=1 jp̂j �Zij j should be low if i is the correct class. Hence weclassify to argmini Li.It is possible to produce a unique coding for each class provided B � log2 k. However ifB is low, so there is no redundancy in the code, a misclassi�cation by any single classi�er(i.e. jp̂j � Zijj close to 1 rather than 0) could cause the �nal classi�cation to be incorrect.On the other hand if there is a redundancy built into the coding then it is possible to correcta certain number of mistakes and still classify to the correct class. It was Dietterich's beliefthat by using a matrix with a large degree of redundancy it would be possible to produce aclassi�er that made very few overall classi�cation errors even if some of the individual BaseClassi�ers were incorrect.2.1.3 The One vs Rest PICTA simple but commonly used method (see for example Dietterich and Bakiri, 1995 or Nilsson,1965) for handling a multi-class problem, when one has only a binary classi�er, is to do thefollowing.
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One vs Rest Algorithm� Compare Class 1 to the super group made up of all the other classes andproduce a probability estimate that the test point comes from Class 1.� Repeat this process for each of the k di�erent classes.� Classify to the class with the largest probability estimate.We will call this the One vs Rest PICT. Notice that, if one uses the identity codingmatrix for the ECOC PICT, the ECOC and One vs Rest PICTs are identical. So the Onevs Rest PICT is a special case of the ECOC PICT. In Section 2.2.1 we will use this fact toexamine the performance of the One vs Rest PICT by considering properties of the identitycoding matrix.2.1.4 An Alternative Way of Viewing the ECOC PICTIt is possible to view the ECOC PICT as performing a change of variables. For any pointin the predictor space the ECOC algorithm will produce a B dimensional vector, p̂. Thisvector will be contained in a B dimensional unit cube. Each row of the coding matrix,corresponding to a vertex of the cube, will be a target point. For any given test point wewould end up with a new point in the unit cube and classify to the closest target vertex, inL1 distance.Figure 2.1 provides an illustration. Here we have a 3 dimensional cube. The solid circlesrepresent target vertices and the open circles are training data. The \x" in the bottom lefthand corner represents a test data point. Clearly this point is closest to the Class 1 vertexso the ECOC PICT would classify to that class. This alternative, geometric, way of viewingthe procedure turns out to be useful. In particular, in Section 2.3.2, we will see that it leadsto alternative classi�cation procedures.
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Figure 2.1: A multidimensional cube. The open circles are training points. The solid circlesrepresent classes. A new point will be classi�ed to the class corresponding to the closestvertex of the cube in L1 distance.2.1.5 An ExampleFigure 2.2 provides an illustration of the improvements in error rate that are possible byusing ECOC. The plot shows test error rates on the Letter data set (see Sections 2.2.2 and2.6 for descriptions of the data set) vs B, the number of columns in the coding matrix. Threeclassi�ers are compared : the ECOC PICT, a Tree Classi�er and 1 Nearest Neighbour. TheECOC classi�er used a tree classi�er as the Base Classi�er to maintain comparability. Itis clear from the plot that, provided B is large enough, the ECOC PICT produces largeimprovements over the tree classi�er. It also produces a signi�cant reduction over 1 nearestneighbour which is often a di�cult classi�er to beat. The full data from this experiment aregiven in Table 2.12 in Section 2.6.2.2.2 Understanding the ECOC PICTIt is clear from Section 2.1.5 that the ECOC PICT can produce large reductions in theerror rate. Section 2.6 as well as Dietterich and Bakiri, 1995 provide further evidence forthe success of this procedure. However little is understood, beyond the vague motivationgiven in Section 2.1.2, about how the classi�er works.
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Figure 2.2: Test Error Rates on the Letter Data Set using ECOC, a Tree classi�er and 1nearest neighbour.A key component in the performance of the ECOC PICT is the choice of the codingmatrix. The coding matrix determines the arrangement of classes into super groups. Onemight imagine that certain arrangements are better than others so that one matrix mayproduce superior classi�ers to another. In Section 2.1.1 a method for choosing the codingmatrix was not provided. In fact there are at least three possible ways to produce such amatrix.� Deterministic. This is the approach that has typically been used in the past. As aresult of the original motivation for the ECOC PICT , a great deal of e�ort has beendevoted to choosing an optimal coding matrix. In other words for any given valuesof k and B it was believed that there was one optimal matrix which could be chosenindependently from the underlying data set. We call this the deterministic approach



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 17because the matrix is �xed. Under this approach an attempt is made to produce amatrix with maximal Hamming distance between pairs of rows and pairs of columns.The Hamming distance between two binary vectors is the number of elements wherethe two vectors di�er. The separation between rows is to allow as many errors, inindividual classi�ers, to be corrected as possible. The column separation is to produceas many di�erent groupings as possible.� Random. With this approach each element of the coding matrix is chosen to be zeroor one with equal probability independently of any other element. In Section 2.2.2we examine properties of the ECOC PICT with a random matrix in some detail. Wepresent results which indicate that this approach will produce error rates that areclose to those of the best deterministic matrix.� Trained. It seems reasonable to suppose that certain groupings of classes make moresense than others and that it may be possible to learn this from the training data.In this last approach an attempt is made to use the training data to determine goodgroupings and hence a good coding matrix to use.In the following three sections we examine the various approaches.2.2.1 A Deterministic Coding MatrixA simple example illustrates a disturbing 
aw, with the ECOC PICT, when we use a de-terministic coding matrix. In this example we have a 4 class problem (k = 4) and we use 3columns in the coding matrix (B = 3).
Z = Class Z1 Z2 Z31 0 1 12 0 0 03 1 1 04 1 0 0There is a redundancy in the coding because we only require 2 bits to uniquely identify4 di�erent classes. Now suppose at a given point in our predictor space the true distributionof posterior probabilities is as follows:



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 18Class 1 2 3 4qi 0:4 0:1 0:3 0:2It is clear that Class 1 is the Bayes Class, in as much as it has the largest posteriorprobability, so that the best possible classi�cation is to this class. Indeed this is what theBayes Classi�er would give us. Now suppose our Base Classi�er is estimating these prob-abilities perfectly. We would hope that, in this extremely favourable situation, the ECOCPICT would also classify to Class 1. In fact this is not the case.If we combine this perfect classi�er with the coding matrix it will produce the followingvector of probabilities for super group one.p̂ = (0:5; 0:7; 0:4)For example p̂1 = q3 + q4 = 0:3 + 0:2 = 0:5 because Classes 3 and 4 form super groupone for the �rst column. Now if we calculate the L1 distance between p̂ and each row of Zwe get the following: Class 1 2 3 4Li 1:4 1:6 1:2 1:7This means that the ECOC PICT would choose Class 3!It turns out that the problem is not peculiar to this particular matrix . Theorem 1 givesvery general conditions on the coding matrix under which it will always be possible to causethe ECOC PICT to produce an incorrect classi�cation, even when the correct super groupprobabilities are used.Bayes ConsistencyIntuitively one would hope that any time you used a PICT classi�er, such as ECOC, youcould guarantee a good classi�cation provided the Base Classi�er was good enough. Inother words one would like the PICT to produce the Bayes Classi�cation whenever theBayes Classi�er is used as the Base Classi�er. A PICT with this property is said to beBayes Consistent.



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 19De�nition 1 A PICT is said to be Bayes Consistent if, for any test set, it always classi�esto the Bayes Class when the Base Classi�er is the Bayes Classi�er.Bayes Consistency implies a type of consistency in the PICT. Under continuity assump-tions, it implies that, if the Base Classi�er converges to the Bayes Classi�cation rule, as forexample, the training sample size increases, then so will the PICT.Is the ECOC PICT, with a Deterministic Coding Matrix, Bayes Consistent?The ECOC PICT will be Bayes Consistent i�argmaxi qi| {z }Bayes Classi�er = argmini Li| {z }ECOC Classi�er (2.1)However Lemma 1 shows that each Li can be written as a function of q, the posteriorprobabilities, and Zij , the individual elements of the coding matrix.Lemma 1 If one uses a deterministic coding matrix and the Bayes Classi�er as the BaseClassi�er then Li =Xl 6=i ql BXj=1(Zlj � Zij)2 i = 1; : : : ; kIt is not clear from this expression why there should be any guarantee that (2.1) willhold. In fact Theorem 1 shows that only in very restricted circumstances will the ECOCPICT be Bayes Consistent.Theorem 1 The ECOC PICT is Bayes Consistent i� the Hamming distance between everypair of rows of the coding matrix is equal.For general B and k there is no known way to generate such a matrix. There are acouple of special cases that do ful�ll this property. One is a matrix with all 2k possiblecolumns, for example.Z = Class Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z81 0 0 0 0 1 1 1 12 0 0 1 1 0 0 1 13 0 1 0 1 0 1 0 1



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 20This matrix may work well but, if k is anything other than very small, computing 2kpossible classi�ers will not be computationally feasible. For example one of the data setsused in Section 2.6 has 26 classes which would mean over 67 million possible columns!Another matrix that ful�lls this property is the identity matrix, for example.
Z = Class Z1 Z2 Z3 Z41 1 0 0 02 0 1 0 03 0 0 1 04 0 0 0 1In Section 2.1.3 we saw that the ECOC PICT with an identity coding matrix is equiva-lent to the One vs Rest PICT. Therefore Theorem 1 implies that the the One vs Rest PICTis Bayes Consistent, indicating that it is a reasonable procedure to use if the Base Classi�eris producing good probability estimates. However in practice the One vs Rest PICT tendsto perform poorly because the coding matrix has too few columns, an uneven spread ofclasses and a low level of redundancy (the Hamming distance between pairs of rows is only2). It is likely that the low number of columns is the largest problem with this matrix. InSection 2.6 it is clear that the ECOC PICT performs poorly unless B >> k.Therefore we see that for any computationally feasible and practically useful determin-istic matrix the ECOC PICT will not be Bayes Consistent.2.2.2 A Random Coding MatrixWe have seen in the previous section that there are potential problems with using a deter-ministic matrix. Indeed it is not at all clear why a coding that is chosen independently fromthe underlying data should be optimal for every data distribution. Intuitively it seems thatif we are going to choose the matrix independently from the training data then a randomcoding may work just as well as a designed coding. By random we mean choosing eachelement of the matrix as a zero or one with equal probability.In fact, when we randomly generate the coding matrix, the ECOC PICT possesses anumber of desirable properties. In Section 1.3 it was noted that a number of classi�ers work



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 21by estimating the posterior probabilities and then classifying to the maximum. It turns outthat, provided a random coding matrix is used, the ECOC PICT is producing unbiasedprobability estimates and then classifying to the maximum of these.Unbiased Probability EstimatesIt is not obvious why this is the case. Certainly the L1 distances themselves are not unbiasedprobability estimates. In general they will increase with B. Besides the ECOC PICT isclassifying to the minimum rather than maximum of these quantities. However, considerthe following transformation of Li.�Di = 1� 2LiB = 1B BXj=1(1� 2jp̂j � Zij j) for i = 1; : : : ; k (2.2)Notice that �Di is simply a monotone decreasing transformation of Li. As a resultargmini Li = argmaxi �Diso classifying to the largest value of �Di produces identical classi�cations to the ECOC PICTe.g. consider the example in Section 2.1.1.Class 1 2 3 4Li 3:3 0:9 2:7 1:9�Di �0:32 0:64 �0:08 0:24Notice that not only does Class 2 have the lowest value of Li but it also has the largestvalue of �Di so under either approach a classi�cation is made to that class.Theorem 2 shows that �Di is in fact an unbiased estimate for qi and therefore the ECOCPICT with a random coding matrix is performing an approximation to the Bayes Classi�er.Theorem 2 Suppose thatET [p̂j j Z;X] = kXi=1 Zijqi = ZjTq j = 1; : : : ; B (2.3)



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 22Then under this assumption for a randomly generated coding matrixET ;Z �Di = qi i = 1; : : : ; kT is the training set so ET denotes expectation over all possible training sets of a �xedsize and ET ;Z denotes expectation over training sets and random matrices. Assumption 2.3is an unbiasedness assumption. It states that on average the Base Classi�er will estimatethe probability of being in super group one correctly. In the experience of the author, theassumption seems to generally be good for non-parametric classi�ers such as CART or othertree based procedures but less realistic for highly parametric methods such as LDA.Theorem 2 provides the �rst theoretical evidence for the success of the ECOC PICT.It basicly tells us that, provided the Base Classi�er is producing approximately unbiasedprobability estimates and the coding matrix is random, the ECOC PICT is classifying tothe maximum among approximately unbiased probability estimates.Limiting Properties of the ECOC PICTOf course it is still possible for unbiased probability estimates to produce a bad classi�cationrule. Therefore it is of interest to study the distribution of �Di. While it is not easy toexamine this directly, it is possible to characterize the limiting distribution. Let�i = EZ( �Di j T ) = EZ(1� 2jp̂1 � Zi1j j T ) (2.4)Note that �i is the conditional expectation of �Di. Then, conditional on T , as B approachesin�nity, pB( �Di��i) will converge to a normal random variable and �Di will converge to �ialmost surely. This also implies that the ECOC PICT will converge to a limiting classi�erconsisting of classifying to argmaxi �i. Theorem 3 provides a summary of these results.Theorem 3 Suppose that argmaxi �i is unique i.e. there are no ties in the �s. Then for arandom coding matrix, conditional on T , the following results hold for any Base Classi�er.1. pB( �Di � �i)) N(0; �2i ) i = 1; : : : ; k



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 232. �Di ! �i a.s. i = 1; : : : ; k3. limB!1 argmaxi �Di = argmaxi �i a.s.Notice that Theorem 2 along with (2.4) implies thatET ;Z �Di = ET �i = qi i = 1; : : : ; k (2.5)(2.5), along with the �nal result of Theorem 3, mean that not only is the ECOC PICTclassifying based on unbiased probability estimates but so is its limiting classi�er.These asymptotic results hold for any Base Classi�er. It is interesting to note the e�ectif the Bayes Classi�er is used as the Base Classi�er.Theorem 4 When the Bayes Classi�er is used as the Base Classi�er�i = qi (2.6)By combining Theorems 3 and 4 we get Corollary 1.Corollary 1 For a random coding matrix the following results hold if the Bayes Classi�eris used as the Base Classi�er.1. pB( �Di � qi)) N(0; �2i ) i = 1; : : : ;K2. �Di ! qi a.s.3. limB!1 argmaxi �Di = argmaxi qi a.s.The �nal result of Corollary 1 implies that asymptotically, as B approachesin�nity, the ECOC PICT will become Bayes Consistent, provided a random



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 24coding matrix is used. This provides further motivation for using a random rather thandeterministic matrix.Rates of ConvergenceThe results from the previous section provide strong motivation, in the limit, for the ECOCPICT. We know that it is converging to a Bayes Consistent classi�er and that the probabilityestimates are unbiased and converging to unbiased estimates (�i) of the posterior probabil-ities. These results guarantee good theoretical properties, provided B is large enough.What we mean by large is highly dependent on the rate of convergence. Theorem 3shows that pB( �Di � �i) is converging to a normal random variable. This implies that �Diis converging to its mean at a rate of only 1=pB. This is a fairly slow rate of convergence.However, we are not interested in the deviation of �Di from its mean. We are interested in thedeviation of the error rate of ECOC, argmaxi �Di, from the error rate of its limit, argmaxi �i.Theorem 5 shows that the deviation between error rates approaches zero exponentially fast.Theorem 5 If the coding matrix is randomly chosen then, conditional on T , for any �xedX jECOC error rate� Limiting error ratej � PrZ(argmaxi �Di 6= argmaxi �ijT )� (k � 1)e�mBwhere m = (�(k) � �(k�1))=8 and �(i) is the ith order statistic.Note that Theorem 5 does not depend on Assumption 2.3. This tells us that the errorrate for the ECOC PICT is equal to the error rate using argmaxi �i plus a term whichdecreases exponentially in the limit. The result can be proved using Hoe�ding's inequality(Hoe�ding, 1963).As a simple corollary of Theorem 5 it is possible to show that, when the Bayes Clas-si�er is used as the Base Classi�er, the ECOC error rate approaches the Bayes error rateexponentially fast.



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 25B10 50 100 200 10000:2 1 1 1 1 0:061�(k) � �(k�1) 0:5 1 1 0:395 0:017 00:9 1 0:032 0 0 0Table 2.2: Upper Bounds on the di�erence between ECOC and limiting classi�er error ratesfor various combinations of B and �(k) � �(k�1) on a 10 class problem (k = 10). Note thesmallest of the 0's is actually 10�48.Corollary 2 When the Bayes Classi�er is the Base Classi�er the following inequality holdsjECOC error rate� Bayes error ratej � (k � 1)e�mBwhere m = (q(k) � q(k�1))=8.Corollary 2 shows that, while for any �nite B the ECOC PICT will not beBayes Consistent, its error rate will be exponentially close to that of a BayesConsistent classi�er.Notice that the convergence will be fast if �(k) >> �(k�1) but will be much slower if�(k) � �(k�1). Table 2.2 gives the upper bounds on the di�erence in error rate for variousvalues of �(k) � �(k�1).Of course Theorem 5 and Corollary 2 only give upper bounds on the error rate and donot necessarily indicate the behaviour for smaller values of B. If �(k)� �(k�1) is very smallit is possible that B would need to be large before the exponential convergence kicks in.Under certain conditions a Taylor expansion indicates that to �rst orderPr(argmaxi �Di 6= argmaxi �i) � 0:5�mpBfor small values of mpB. So one might expect that for smaller values of B the error ratedecreases as some power of B but that as B increases the change looks more and moreexponential. If m is not too small the movement through the powers should be fast but if
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Figure 2.3: Best �t curves for rates 1=pB and 1=Bm is small this transformation may require a large value of B.Simulation StudyTo evaluate how this theory works in practice a simulation study was performed on theLetter data set (available from the Irvine Repository of machine learning). This data setconsists of 16 predictor variables and a 26 class response variable. The response variableconsists of the letters of the English alphabet from A to Z. The predictor variables consist ofvarious summary statistics. For example average height, average width, variance of heightetc. For this study random matrices with di�ering row lengths were generated. The rowlengths were 15; 26; 40; 70; 100; 200. For each row length �ve matrices were created for atotal of 30 matrices. 20 training sets were generated from the data by random samplingwithout replacement. Then for each of the 30 matrices the average error rate was calculated(on a separate test set of data) over the 20 training sets when the ECOC PICT was appliedto that matrix. A tree classi�er produced by Splus was used as the Base Classi�er.
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•••Figure 2.4: An alternative representation of Figure 2.3Figure 2.3 illustrates the results. Each point is the averaged test error rate for one ofthe 30 random matrices. Here we have two curves. The lower curve is the best �t of 1=pBto the �rst four groups (B = 15; 26; 40; 70). It �ts those groups well but under-predictserrors for the last two groups. The upper curve is the best �t of 1=B to the last four groups(B = 40; 70; 100; 200). It �ts those groups well but over-predicts errors for the �rst twogroups. This supports our hypothesis that the error rate is moving through the powers ofB towards an exponential �t. We can see from the �gure that even for relatively low valuesof B such as 100 the reduction in error rate has slowed substantially.Figure 2.4 provides an alternative way of viewing these results. The �rst column showsplots of test error vs 1=pB. The �rst plot illustrates that there is a strong linear relationship



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 28for the �rst four groups. However, the second plot, for the last four groups, does not exhibitnearly such a linear relationship. The second column shows plots of test error rate vs 1=B.Here the relationship is reversed. It is clear that for smaller values of B the error rate isdeclining at a rate of 1=pB but as B increases this has slowed to 1=B and we are rapidlyreaching an exponential rate of convergence.Random vs Deterministic MatricesThe coding matrix can be viewed as a method for sampling from a �nite population (1 �2jp̂j � Zij j). Theorem 2 tells us that the mean of this population�i = EZ(1� 2jp̂1 � Zi1j j T )is an unbiased estimate for qi. This implies we wish to choose a coding matrix which willproduce the best possible estimate of �i. Theorem 5 as well as the simulation results fromSection 2.2.2 show that the di�erence between the error rate from a random matrix andthat of a perfect estimate will be exponentially small. No results have been given to indi-cate that a designed matrix will perform better than a random one and Theorem 5 showsthat at best a designed matrix can only produce a very slight improvement. On the otherhand, unless we are very careful, a designed sampling provides no guarantee of producinga reasonable estimate of �i or qi. Therefore there seem to be clear potential problems withusing such a matrix and little possible bene�t over using a random coding.Of course it may be possible to improve on a random sampling by using the trainingdata to produce the coding matrix. This would allow the training data to in
uence thesampling procedure and hence estimate a di�erent quantity.2.2.3 Training the Coding MatrixThis is an area that has not been fully explored. Several researchers have attempted togain reductions in the error rate by adaptively choosing the coding matrix according togroupings that the training data suggest are appropriate. To date these methods have metwith limited success.One of the possible reasons for this lack of success is that there is extra variability



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 29introduced by using the training data to choose the coding matrix. It is possible that thisextra variability could outweigh any gains from adaptively training the coding matrix.2.3 The Regression and Centroid PICTsUsing L1 distance between p̂ and Zi is one possible way to transform p̂ into a k classclassi�cation rule. However it is certainly not the only way. In this section we present twoalternative classi�ers, the Regression and Centroid PICTs. They both generate the vectorp̂ in exactly the same manner as ECOC but use alternative methods to then produce theoverall classi�cation.2.3.1 The Regression PICTThe best way to motivate this procedure is by using an example. Suppose that we have thefollowing coding matrix Z = Class Z1 Z2 Z3 Z4 Z51 0 1 1 0 02 0 0 0 1 13 1 1 0 0 14 1 0 0 0 0and we assume that at a �xed point in the predictor space the distribution of classes is asfollows : Class 1 2 3 4qi 0:4 0:1 0:3 0:2Now suppose we have a classi�er, such as the Bayes Classi�er, that can produce perfectprobability estimates for super group one for each of the columns. Then we will get thefollowing probability estimates.Column 1 2 3 4 5Super Group One Probability 0:5 0:7 0:4 0:1 0:4Now the question becomes : Can we use these super group probabilities to reproduce theindividual class probabilities and hence derive the k class Bayes Classi�er? The answer to



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 30this question is yes, provided we have at least k linearly independent columns in the codingmatrix. This is because each column forms an equation with k unknowns, q1; : : : qk i.e.p̂j = kXi=1 Zijqi j = 1; : : : ; B (2.7)so, provided we have at least k independent equations, we can solve for the unknownvariables. In this example we have the following simultaneous system of equations.q3 + q4 = 0:5q1 + q3 = 0:7q1 = 0:4q2 = 0:1q2 + q3 = 0:4By solving these equations it is possible to re derive the original k class probabilities.Least SquaresNow of course in general the Base Classi�er will not produce exactly correct probabilityestimates. The most that one can hope for is a classi�er that produces unbiased probabilityestimates. In other words, a classi�er such thatp̂j = kXi=1 Zijqi + �j j = 1; : : : ; B (2.8)where ET �j = 0. Notice that Model 2.8 is linear in the unknown parameters qi so a naturalapproach to estimating the probabilities would be to use least squares just as one would ina linear regression setting. Therefore one would choose qi to minimizeR = BXj=1(p̂j � kXi=1 Zijqi)2 = BXj=1 �2j (2.9)or in matrix terms one would like to minimizeR = (p̂� ZTq)T (p̂� ZTq)= p̂T p̂� 2p̂TZTq+ qTZZTq



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 31To do this one would di�erentiate R with respect to q and set the derivative equal to zeroto produce the least squares estimates.@R@q = �2Zp̂+ 2ZZT q̂ = 0) ZZT q̂ = Zp̂) q̂ = (ZZT )�1Zp̂ provided ZZT is invertibleTherefore the Regression PICT consists of the following algorithm :Regression Algorithm1. Produce a vector of super group probability estimates, p̂, as with theECOC PICT.2. Compute q̂ = (ZZT )�1Zp̂3. Classify to argmaxi q̂iNotice that the estimate, q̂ = (ZZT )�1Zp̂is simply the standard least squares solution except that the transpose of the coding matrix,ZT , takes the place of the design matrix, X. Section 2.6 details results when this classi�eris compared to ECOC as well as standard classi�ers.TheoryThe Regression PICT seems to use a more justi�able procedure for combining the two classprobabilities to produce a k class classi�cation rule. Theorem 6 shows that it possesses alarge theoretical advantage over the ECOC PICT.Theorem 6 The Regression PICT is Bayes Consistent for any coding matrix, providedZZT is invertible. In other words if the Base Classi�er is producing perfect two class



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 32probability estimates the Regression PICT will produce perfect k class probability estimates.In contrast Theorem 1 tells us that the ECOC PICT will only be Bayes Consistent fora limited number of matrices.RidgingThere is a serious practical limitation with the Regression PICT. The probability estimatescan be highly variable when there are a small number of columns, B, relative to the numberof classes, k. In fact if B < k then it is not possible to produce a unique estimate forqi. This is analogous to the situation in least squares regression where the number of datapoints is small compared to the number of predictor variables.A common solution to this problem in regression is to use ridged least squares. Thisinvolves using an extra term which penalizes large parameter estimates. It works by �ndingestimates for � which minimize :R = nXi=1(Yi �Xj Xij�j)2 + �Xj �2jIn the classi�cation setting this is equivalent to minimizingR = (p̂� ZTq)T (p̂� ZTq) + �qTq= p̂T p̂� 2p̂TZTq+ qT (�I + ZZT )qBy di�erentiating with respect to q, as in the ordinary least squares case, one gets thepenalized least squares solution q̂ = (�I + ZZT )�1Zp̂ (2.10)This reduces variance in the probability estimates at the expense of introducing bias.Of course in the classi�cation setting ones only concern is the argument of the maximumprobability estimate so bias is far less of a concern. A systematic bias in all the estimateswill not change the argument of the maximum! Therefore ridging the Regression PICTcould produce signi�cant improvements.



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 33The Ridged Regression algorithm can be expressed as follows :Ridged Regression Algorithm1. Produce a vector of super group probability estimates, p̂, as with theECOC PICT.2. Compute q̂ = (�I + ZZT )�1Zp̂3. Classify to argmaxi q̂iTo date preliminary results have been extremely promising with some large reductionsin error rate achieved. However, further study is required. For example a procedure forchoosing � needs to be devised.2.3.2 The Centroid PICTIn Section 2.1.4 we saw that it is possible to view the ECOC PICT as a procedure forprojecting points into a B dimensional hypercube and then classifying to the class corre-sponding to the nearest target vertex.Figure 2.5 illustrates a potential problem with the ECOC PICT that becomes apparentwhen this geometric view is used. Here we have the same situation as with Figure 2.1 ex-cept that now the training points associated with Class 3 have been systematically shiftedtowards those of Class 2. This may seem strange but in fact there is no guarantee that thetransformed variables for a class need to be close to the vertex for that class. For exampleone of the Base Classi�ers could be giving biased probability estimates. Never the less thereis a clear separation between clusters of points so it should still be possible to form a goodclassi�cation rule.Unfortunately the ECOC PICT will not exploit this separation and will classify most
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Figure 2.5: A multidimensional cube. The open circles are training points. The solid circlesrepresent class centroids. A new point will be classi�ed to the class corresponding to theclosest vertex of the cube in L1 distance.points from Class 3 to Class 2. This is because it will classify to the closest target vertexso the decision boundary will cut through the middle of the cube as indicated in the �gure.Since most points in Class 3 seem to fall to the left of this boundary they will be classi�edas 2's.It seems that a better target to aim for may be the center of the training data ratherthan an arbitrary point such as a vertex. This is the motivation behind the Centroid PICT.It performs a change of variables just as with the ECOC PICT but classi�es to the closesttraining data centroid, in L2 distance. In other words it allows the data to determine therepresentation coding for each class. In Figure 2.5 the solid circles represent the trainingdata centroids. The Centroid PICT will classify to the closest of these points. In thisexample there is a large change in the boundary between Classes 2 and 3 and the Class 3points are now correctly classi�ed.
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Centroid Algorithm1. For each training data point, produce a vector of super group probabilityestimates, p̂, as with the ECOC PICT.2. For each class calculate the class centroid by taking the mean or medianfor all training data from that class. Call these centroids :c1; c2 : : : ; ck3. Classify to argmini jjp̂� cijjSection 2.6 details results when this classi�er is compared to ECOC as well as standardclassi�ers.2.4 The Substitution PICTWhile the ECOC classi�er has a similar feel to a Majority Vote Classi�er, it is not possibleto formulate it as speci�ed in either (1.2) or (1.3). However, in this section we introduce aSemi MaVL which we call the Substitution PICT. It is possible to show that, under certainconditions, the ECOC and Substitution PICTs are asymptotically (in B) identical and thatin this sense the ECOC classi�er is asymptotically a MaVL.2.4.1 The Substitution PICT AlgorithmThe Substitution PICT algorithm is as follows :
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Substitution Algorithm� Produce a random binary coding matrix as with the ECOC PICT.� Use the �rst column of the coding matrix (Z1) to create two super groupsby assigning all classes with a one in the corresponding element of Z1 tosuper group one and all other classes to super group zero.� Train a tree classi�er on the new two class problem and repeat the pro-cess for each of the B columns. Each tree will form a partitioning of thepredictor space.� Now retain the partitioning of the predictor space that each tree has pro-duced. Feed back into the trees the original k class training data. Use thetraining data to form probability estimates, just as one would do for anytree classi�er. The only di�erence here is the rule that has been used tocreate the partitioning.� To a new test point apply each of the B classi�ers. The jth classi�erwill produce a k class probability estimate, pij , which is the estimatedprobability the test point comes from the ith class.� To classify the point calculatepSi = 1B BXj=1 pij (2.11)and classify to argmaxi pSiIn summary, the Substitution PICT uses the coding matrix to form many di�erent par-titionings of the predictor space. Then, for each partitioning, it forms k class probabilityestimates by examining the proportions of each class, among the training data, that fall inthe same region as the test point. The probability estimates are then combined by averag-ing over all the trees for each class. The �nal classi�cation is to the maximum probabilityestimate.
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2.4.2 Asymptotic Equivalence of ECOC and Substitution PICTsTheorem 7 shows that under certain conditions the ECOC PICT can be thought of as anapproximation to the Substitution PICT.Theorem 7 Suppose that pij is independent from Zj (the jth column of Z), for all i andj. In other words the distribution of pij conditional on Zj is identical to the unconditionaldistribution. Then EZ [pSi j T ] = EZ [ �Di j T ] = �iTherefore as B approaches in�nity the ECOC PICT and Substitution PICT will convergefor any given training set; i.e. they will give identical classi�cation rules.The theorem basicly states that under suitable conditions both pSi and �Di are unbiasedestimates of �i and both will converge to �i almost surely.It is unlikely the assumption of independence is realistic. However, empirically it is wellknown that trees are unstable and a small change in the training data can cause a largechange in the structure of the tree so it may be reasonable to suppose that the correlationbetween pij and Zj is low.To test this empirically we ran the ECOC and Substitution PICTs on a simulated dataset. The data set was composed of 26 classes. Each class was distributed as a bivariate nor-mal with identity covariance matrix and means uniformly distributed in the range [�5; 5]2.Each training data set consisted of 10 observations from each class. Figure 2.6 shows a plotof the estimated probabilities, for each method, for each of the 26 classes and 1040 test datapoints averaged over 10 training data sets. The probability estimates are calculated basedon a matrix with 100 columns (i.e. B = 100). Only points where the true posterior proba-bility is greater than 0:01 have been plotted since classes with insigni�cant probabilities areunlikely to a�ect the classi�cation. If the two methods were producing identical estimateswe would expect the data points to lie on the dotted 45 degree line. Clearly this is not thecase. The Substitution PICT is systematically shrinking the probability estimates. Howeverthere is a very clear linear relationship (R2 � 95%) and since we are only interested in the
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Figure 2.6: Probability estimates from both the ECOC and Substitution PICTsargmax for each test point we might expect similar classi�cations. This is indeed the case.Fewer than 4% of points are correctly classi�ed by one method but not the other.2.4.3 The Substitution PICT for Low Values of BThe previous section provides theoretical as well as empirical motivation for the approxi-mate equivalence of the ECOC and Substitution PICTs as B becomes large. Section 2.6provides further illustration of this phenomenon. However, it is also apparent from theresults in that section that the Substitution PICT provides vastly superior results for lowvalues of B. This is fairly easy to explain.



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 39Both pSi and �Di are averages over random variables. pSi is an average over pij and �Di isan average over Dij = 1� 2jp̂i � Zij j. Now under the assumptions in Theorem 7V arT ;Z(pSi ) = V arT EZ(pSi jT ) +ET V arZ(pSi jT )= V arT (�i) + 1BET V arZ(pi1jT )= V arT (�i) + 1B [V arT ;Z(pi1)� V arT (�i)]= (1� 1B )V arT (�i) + 1BV arT ;Z(pi1)and similarlyV arT ;Z( �Di) = V arT EZ( �DijT ) +ET V arZ( �DijT )= V arT (�i) + 1BET V arZ(Di1jT )= V arT (�i) + 1B [V arT ;Z(Di1)� V arT (�i)]= (1� 1B )V arT (�i) + 1BV arT ;Z(Di1)So we see that V arT ;Z( �Di) = V arT ;Z(pSi ) + �Bwhere � = V arT ;Z(Di1)� V arT ;Z(pi1).In general the variance of pij is lower than that of Dij so � will be positive and thevariance of �Di will be larger than that of pSi . As B becomes large the di�erence in variancewill become negligible but for smaller values one would expect the increased variance tocause a deterioration in the classi�cation.2.5 The Bagging and Boosting PICTsBagging and Boosting are two of the most well known and successful examples of MaVLs.They both work by iteratively resampling the training data, producing a new classi�er basedon each resampled data set and then combining all the classi�ers together using a majorityvote procedure.



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 402.5.1 The Bagging PICTBreiman, 1996a suggested the Bagging PICT (Bootstrap Aggregation). The algorithmconsists of the following parts. Bagging Algorithm1. Resample observations from your training data set, with replacement, toproduce a Bootstrapped data set.2. Train a Base Classi�er on this bootstrapped training data. Typically atree classi�er is used but in principle any classi�er will work.3. Repeat steps 1 and 2 B times where B is a pre chosen number. Typi-cally convergence is obtained very fast so fewer than 50 iterations may berequired.4. Combine all B classi�ers together into a single rule by taking a majorityvote.Breiman, 1996a provides motivation for the Bagging Algorithm. The Bagging Algorithmcan also be applied to regression as well as classi�cation problems.2.5.2 The Boosting PICTBoosting can be thought of as an extension of Bagging where the resampling weights donot remain constant but adapt to the data set. There are several di�erent algorithms toimplement the Boosting procedure. The most common one is known as AdaBoost (Freundand Schapire, 1996). It is possible to use AdaBoost in either a resampling or deterministicmode. We will describe here the resampling version.



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 41
AdaBoost AlgorithmStart with a set of n training observationsf(x1; y1); : : : ; (xn; yn)g1. Set w1(xi) = 1=n for i = 1; : : : ; n. Let w1 = (w1(x1); � � � ; w1(xn)).2. At the t th step resample observations from the training data set, withreplacement, according to the weighting induced by wt.3. Train a Base Classi�er on the resampled training data. Very simple clas-si�ers such as a stump (two terminal node tree) classi�er can be used atthis step. Call this classi�er Ct.4. Let �t = �wt(Ct)1� �wt(Ct)where �wt(Ct) =Pni=1 wt(xi)I(Ct(xi) 6= yi). In other words �wt(Ct) is theerror rate on the original training data, weighted by wt. Now letwt+1(xi) = 8<: 1Ztwt(xi) if Ct(xi) 6= yi1Zt�twt(xi) if Ct(xi) = yiwhere Zt is a normalizing constant.5. Return to Step 2 and repeat the process B times.6. Classify to argmaxiPBt=1 �tI(Ct(x) = i) where�t = log(1=�t)Ps log(1=�s)The di�erence between the resampling and deterministic algorithms is that instead ofresampling at Step 2 we simply train the Base Classi�er at Step 3 on a weighted version ofthe original training data.



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 422.6 Experimental ComparisonsTo provide a comparison of the di�erent classi�ers mentioned in this chapter we presentexperimental results on three di�erent data sets. The �rst data set is simulated. It consistsof two classes and the predictor space is in two dimensions. Figure 2.7 gives an illustrationof one realization from the distribution. We used this data set to provide a comparisonbetween random and deterministic weights in the AdaBoost classi�er (see Section 2.6.1).The second is the Letter data set from the Irvine Repository of Machine Learning, and thethird is the Vowel data set from the same location. The Letter data set is described inSection 2.2.2. For these experiments a test set of size 520 was used. The Vowel data setconsists of 990 observations in 10 di�erent dimensions. There are 11 di�erent classes. Theobservations are split into a training set (528) and a test set (462).On each of the last two data sets nine di�erent classi�ers were compared. They wereThe ECOC PICTThe Substitution PICTThe Regression PICTThe Centroid PICTBaggingBoosting (Standard)Boosting (Adapted)Tree Classi�er1 Nearest NeighbourThe Adapted Boosting classi�er works in the same way as standard boosting exceptthat instead of calculating the error rate using�wt(Ct) = nXi=1 wt(xi)I(Ct(xi) 6= yi)one uses �0wt(Ct) = Error rate on resampled training dataThe tree and 1 nearest neighbour classi�ers provide a base line comparison to the MaVLs.Each of the �rst 7 classi�ers uses a tree generated in Splus as the Base Classi�er. See Section



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 431.3.1 for a general description of tree based classi�ers. Splus uses deviance as its splittingcriterion. The split producing the maximum reduction in deviance is chosen at each stepin the tree growing process. The process terminates when either a pre speci�ed number ofterminal nodes are achieved or the number of cases in each leaf is small (by default ni < 5in Splus).As noted in Section 2.5.2 there are two di�erent ways to implement the Boosting algo-rithm, i.e. using random or deterministic weighting. Therefore, prior to a detailed com-parison of the data sets it was desirable to determine if there was any signi�cant di�erencebetween the two methods. Section 2.6.1 provides results from this comparison while Sec-tions 2.6.2 and 2.6.3 provide results from the experiments on the other two data sets.
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Figure 2.7: A single realization from the simulated distribution used in Section 2.6.1
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B 2 10 20 40 60 80 100 120Boosting (Det) 42:4 31:0 28:9 28:1 25:7 27:1 26:3 26:5Boosting (Rand) 42:4 32:6 29:5 28:7 26:8 26:1 25:6 25:7Tree 41:5 41:5 41:5 41:5 41:5 41:5 41:5 41:51NN 27:2 27:2 27:2 27:2 27:2 27:2 27:2 27:2Table 2.3: Concentric Two Class data set test error rates averaged over 10 training setseach of size 20 observations per class. 2 Terminal Nodes. Average standard error is 1:5%.2.6.1 Random vs Deterministic WeightingsTo perform a comparison between random and deterministic weightings we created a sim-ulated 2 class distribution. Figure 2.7 provides an illustration. The data consists of a classin the center with a second class around the outside. We will call this the Concentric TwoClass data set. Experiments were conducted with di�ering tree depths, i.e. controlling thecomplexity of the Base Classi�er, and di�erent training sample sizes.Tables 2.3, 2.4 and 2.5 provide results for training sample sizes of 20 observations perclass, with increasing degrees of tree complexity. While Tables 2.6, 2.7, 2.8 and 2.9 provideresults for training sample sizes of 100 observations per class. Each table gives error ratesfor boosting with random and deterministic weighting along with a simple tree classi�erand 1 nearest neighbour.For the smaller training sample size it appears that a random weighting provides uni-formly better error rates than the deterministic scheme. It seems that the di�erence in-creases with the tree complexity. For very simple trees (stumps) with only 2 terminal nodesthere is very little di�erence but with more complex trees the di�erence is much larger. Forthe larger training sample size there is no clear trend with all four methods getting verysimilar error rates. Since a deterministic weighting scheme seemed never to outperform arandom weighting, the experiments in the following sections use random weightings.



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 45
B 2 10 20 40 60 80 100 120Boosting (Det) 32:4 30:1 31:7 31:8 31:7 31:8 31:8 32:1Boosting (Rand) 35:0 27:9 26:9 27:2 26:8 26:9 26:7 26:9Tree 34:1 34:1 34:1 34:1 34:1 34:1 34:1 34:11NN 25:1 25:1 25:1 25:1 25:1 25:1 25:1 25:1Table 2.4: Concentric Two Class data set test error rates averaged over 10 training setseach of size 20 observations per class. 5 Terminal Nodes. Average standard error is 1:2%.B 2 10 20 40 60 80 100 120Boosting (Det) 41:6 37:5 36:3 37:3 37:6 37:7 37:7 37:7Boosting (Rand) 37:7 35:3 34:2 32:2 32:7 31:8 31:8 31:1Tree 37:3 37:3 37:3 37:3 37:3 37:3 37:3 37:31NN 28:4 28:4 28:4 28:4 28:4 28:4 28:4 28:4Table 2.5: Concentric Two Class data set test error rates averaged over 5 trainingsets each of size 20 observations per class. Default tree settings (approximately 7 terminalnodes). Average standard error is 1:7%.B 2 10 20 40 60 80 100 120Boosting (Det) 41:4 28:7 22:9 20:6 19:9 20:0 20:0 20:2Boosting (Rand) 41:6 29:1 24:9 21:6 20:7 19:2 19:5 20:2Tree 41:2 41:2 41:2 41:2 41:2 41:2 41:2 41:21NN 21:4 21:4 21:4 21:4 21:4 21:4 21:4 21:4Table 2.6: Concentric Two Class data set test error rates averaged over 10 trainingsets each of size 100 observations per class. 2 Terminal Nodes. Average standard error is0:96%.
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B 2 10 20 40 60 80 100 120Boosting (Det) 22:3 20:2 21:7 22:3 22:4 22:3 22:4 22:4Boosting (Rand) 26:7 20:1 19:5 20:0 20:4 20:6 21:3 21:5Tree 22:4 22:4 22:4 22:4 22:4 22:4 22:4 22:41NN 21:9 21:9 21:9 21:9 21:9 21:9 21:9 21:9Table 2.7: Concentric Two Class data set test error rates averaged over 5 training setseach of size 100 observations per class. 5 Terminal Nodes. Average standard error is 1:2%.B 2 10 20 40 60 80 100 120Boosting (Det) 20:8 21:3 21:0 21:9 22:1 22:3 22:1 22:1Boosting (Rand) 23:9 20:2 20:8 21:3 21:6 21:6 21:8 21:6Tree 20:8 20:8 20:8 20:8 20:8 20:8 20:8 20:81NN 22:4 22:4 22:4 22:4 22:4 22:4 22:4 22:4Table 2.8: Concentric Two Class data set test error rates for 2 class data averagedover 5 training sets each of size 100 observations per class. 10 Terminal Nodes. Averagestandard error is 0:69%.B 2 10 20 40 60 80 100 120Boosting (Det) 23:1 22:3 21:8 22:2 22:1 22:3 22:5 22:3Boosting (Rand) 25:6 22:6 22:8 22:1 22:5 22:8 22:4 22:3Tree 23:0 23:0 23:0 23:0 23:0 23:0 23:0 23:01NN 22:4 22:4 22:4 22:4 22:4 22:4 22:4 22:4Table 2.9: Concentric Two Class data set test error rates averaged over 5 trainingsets each of size 100 observations per class. 20 Terminal Nodes. Average standard error is0:91%.



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 472.6.2 Letter Data SetExperiments were carried out on this data set using two di�erent training sample sizes, 10observations per class and 50 observations per class. This was an attempt to examine thevarious classi�ers under hard (10 per class) and easier (50 per class) training situations. Wealso examined the e�ect of di�erent depths in the base tree classi�er that was used for eachPICT. Increasing the tree depth has the e�ect of producing a more highly trained classi�er.Tables 2.10, 2.12, and 2.14 summarize the results for the various combinations of trainingsample size and tree depth. Tables 2.11, 2.13, and 2.15 provide the same information butall relative to 1 nearest neighbour. So for example 1 would mean it performed as well asnearest neighbours and 0:5 would mean it had half the error rate. Figures 2.8, 2.9 and 2.10provide graphical representations of the error rates in Tables 2.10, 2.12, and 2.14The ECOC, Regression, Centroid and (to a lesser extent) the Substitution PICTs pro-duced encouraging results for all combinations of sample size and tree depth. They allproduced signi�cantly superior results to both standard tree and nearest neighbour classi-�ers. There was some improvement when the base tree classi�er was forced to grow deepertrees (it seems that the default settings are under-training on the data) but it was notdramatic. They seemed to be relatively insensitive to the complexity of the Base Classi�er.On the other hand the Boosting PICTs seemed to be far more dependent on the com-plexity of the Base Classi�er. With more training data and shallower base trees the BoostingPICTs did not perform very well. The adjusted method gave comparable error rates to thatof nearest neighbours but the standard method was far worse. However, when the base treeclassi�er was forced to grow deeper trees they both improved dramatically (especially thestandard method) and gave results that were as good as any of the other classi�ers. For theharder problem, where the sample size was small, the adjusted method gave good resultsbut the standard method performed poorly.Bagging performed poorly on this data set relative to the other PICTs. It was alsovery dependent on the Base Classi�er. It performed very poorly on the problem with largesample size and shallow trees. As with the Boosting it improved dramatically with deepertrees and performed satisfactorily on the harder problem with a smaller sample size.
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B 2 5 10 20 40 60 80 100 120 160 200ECOC 89:3 64:3 41:4 29:6 23:4 20:8 19:5 19:0 18:6 17:9 17:6Regression 100:0 100:0 100:0 100:0 28:5 22:2 20:3 19:0 18:4 18:0 17:5Centroid 86:7 60:1 39:6 28:5 22:5 20:7 19:5 19:2 18:9 18:3 18:1Substitution 48:4 34:0 27:0 23:5 21:2 20:6 20:3 20:1 20:1 19:8 19:5Bagging 41:9 36:5 34:3 33:1 32:1 31:8 31:7 31:7 31:4 31:2 31:4Boosting (St) 48:6 41:3 37:9 37:2 37:3 36:8 37:8 37:4 37:2 36:7 37:1Boosting (Ad) 47:9 36:5 30:8 26:6 23:5 22:0 21:2 20:8 20:6 20:2 20:11NN 19:9 19:9 19:9 19:9 19:9 19:9 19:9 19:9 19:9 19:9 19:9Tree 44:8 44:8 44:8 44:8 44:8 44:8 44:8 44:8 44:8 44:8 44:8Table 2.10: Letter data set test error rates averaged over 20 training sets each of size 50observations per class. Default tree settings (approximately 60 terminal nodes). Averagestandard error is 0:43%.B 2 5 10 20 40 60 80 100 120 160 200ECOC 4:49 3:23 2:08 1:49 1:18 1:04 0:98 0:96 0:93 0:90 0:89Regression 5:03 5:03 5:03 5:03 1:43 1:12 1:02 0:96 0:93 0:90 0:88Centroid 4:36 3:02 1:99 1:44 1:13 1:04 0:98 0:97 0:95 0:92 0:91Substitution 2:43 1:71 1:36 1:18 1:07 1:04 1:02 1:01 1:01 0:99 0:98Bagging 2:10 1:84 1:72 1:66 1:61 1:60 1:60 1:59 1:58 1:57 1:58Boosting (St) 2:44 2:08 1:90 1:87 1:87 1:85 1:90 1:88 1:87 1:84 1:87Boosting (Ad) 2:41 1:83 1:55 1:34 1:18 1:11 1:06 1:04 1:03 1:02 1:01Tree 2:25 2:25 2:25 2:25 2:25 2:25 2:25 2:25 2:25 2:25 2:25Table 2.11: Letter data set test error rates relative to 1NN averaged over 20 trainingsets each of size 50 observations per class. Default tree settings (approximately 60 terminalnodes). Average standard error is 0:022.
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B 2 5 10 20 40 60 80 100 120 160 200ECOC 89:7 65:2 41:8 29:2 22:9 20:2 19:6 18:5 18:1 17:4 17:2Regression 100:0 100:0 100:0 100:0 27:5 22:0 19:5 19:0 18:0 17:2 17:1Centroid 87:0 61:2 40:4 28:5 22:6 20:2 19:5 18:9 18:3 17:6 17:3Substitution 48:9 33:3 26:1 22:8 21:0 20:4 19:8 19:6 19:4 19:2 19:2Bagging 36:9 30:6 27:4 26:0 24:8 24:1 24:0 24:0 24:0 23:8 23:9Boosting (St) 42:6 29:8 25:0 21:6 19:3 18:9 18:3 18:1 18:3 17:9 17:9Boosting (Ad) 43:4 32:2 25:7 21:7 19:6 18:4 18:7 18:2 17:9 17:5 17:61NN 21:1 21:1 21:1 21:1 21:1 21:1 21:1 21:1 21:1 21:1 21:1Tree 38:7 38:7 38:7 38:7 38:7 38:7 38:7 38:7 38:7 38:7 38:7Table 2.12: Letter data set test error rates averaged over 10 training sets each of size 50observations per class. The Base Classi�er has been forced to grow deeper trees (approxi-mately 160 terminal nodes). Average standard error is 0:60%.B 2 5 10 20 40 60 80 100 120 160 200ECOC 4:25 3:09 1:98 1:38 1:09 0:96 0:93 0:88 0:86 0:82 0:82Regression 4:73 4:73 4:73 4:73 1:30 1:04 0:92 0:90 0:85 0:81 0:81Centroid 4:12 2:90 1:91 1:35 1:07 0:95 0:92 0:90 0:87 0:83 0:82Substitution 2:32 1:58 1:24 1:08 0:99 0:97 0:94 0:93 0:92 0:91 0:91Bagging 1:75 1:45 1:30 1:23 1:17 1:14 1:14 1:14 1:13 1:13 1:13Boosting (St) 2:02 1:41 1:18 1:02 0:91 0:89 0:87 0:85 0:86 0:85 0:85Boosting (Ad) 2:06 1:52 1:22 1:03 0:93 0:87 0:88 0:86 0:85 0:83 0:83Tree 1:83 1:83 1:83 1:83 1:83 1:83 1:83 1:83 1:83 1:83 1:83Table 2.13: Letter data set test error rates relative to 1NN averaged over 10 training setseach of size 50 observations per class. The Base Classi�er has been forced to grow deepertrees (approximately 160 terminal nodes). Average standard error is 0:028.
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B 2 5 10 20 40 60 80 100 120 160 200ECOC 91:7 78:5 64:0 51:7 42:5 39:3 38:1 36:8 36:2 34:9 34:3Regression 87:3 74:0 60:9 49:0 40:7 38:8 37:5 36:1 35:7 34:7 34:0Centroid 100:0 100:0 100:0 100:0 50:0 41:5 38:6 36:9 35:8 34:9 34:3Substitution 66:5 53:7 46:3 41:9 38:1 37:3 37:0 36:9 37:0 36:9 36:8Bagging 58:6 50:4 45:5 42:7 41:0 40:7 40:1 40:1 39:9 40:0 39:9Boosting (St) 63:5 60:7 56:4 55:2 54:3 53:5 52:9 53:5 52:8 50:8 50:4Boosting (Ad) 66:4 54:0 46:3 41:8 38:2 37:1 36:9 36:3 36:2 36:3 36:0Tree 58:0 58:0 58:0 58:0 58:0 58:0 58:0 58:0 58:0 58:0 58:01NN 43:6 43:6 43:6 43:6 43:6 43:6 43:6 43:6 43:6 43:6 43:6Table 2.14: Letter data set test error rates averaged over 20 training sets each of size 10observations per class. Default tree settings (approximately 35 terminal nodes). Averagestandard error is 0:60%.B 2 5 10 20 40 60 80 100 120 160 200ECOC 2:10 1:80 1:47 1:19 0:98 0:90 0:87 0:84 0:83 0:80 0:79Regression 2:29 2:29 2:29 2:29 1:15 0:95 0:88 0:85 0:82 0:80 0:79Centroid 2:00 1:70 1:40 1:12 0:93 0:89 0:86 0:83 0:82 0:80 0:78Substitution 1:52 1:23 1:06 0:96 0:87 0:86 0:85 0:85 0:85 0:85 0:84Bagging 1:34 1:16 1:04 0:98 0:94 0:93 0:92 0:92 0:92 0:92 0:91Boosting (St) 1:46 1:39 1:29 1:27 1:25 1:23 1:21 1:23 1:21 1:16 1:15Boosting (Ad) 1:52 1:24 1:06 0:96 0:88 0:85 0:85 0:83 0:83 0:83 0:83Tree 1:33 1:33 1:33 1:33 1:33 1:33 1:33 1:33 1:33 1:33 1:33Table 2.15: Letter data set test error rates relative to 1NN averaged over 20 trainingsets each of size 10 observations per class. Default tree settings (approximately 35 terminalnodes). Average standard error is 0:014.
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Figure 2.8: A plot of the results from Table 2.10 (Letter data set with 50 observations perclass).
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Figure 2.9: A plot of the results from Table 2.12 (Letter data set with 50 observations perclass and deep trees).
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Figure 2.10: A plot of the results from Table 2.14 (Letter data set with 10 observations perclass).



CHAPTER 2. PLUG IN CLASSIFICATION TECHNIQUES (PICTS) 542.6.3 Vowel Data SetThis is a much more di�cult data set and the various classi�ers had a correspondinglymore di�cult time. The results are presented in Tables 2.16 through 2.19 and Figures 2.11and 2.12. It is clear that nearest neighbours is a very e�ective classi�er with this data.Of all the classi�ers tested, the Substitution PICT was the only one that matched (andin one case exceeded) the performance of 1 nearest neighbour. With the easier problem,with 40 observations per class, nearest neighbours and the Substitution PICT were almostidentical but with the more di�cult problem where there were only 20 observations perclass the Substitution PICT was noticeably better. None of the other classi�ers couldmatch the performance of nearest neighbours. However, it should be noted that they allgave signi�cant improvements over using a tree classi�er by itself.2.6.4 SummaryThe ECOC, Substitution, Centroid, Regression, Bagging, Boosting (St) and Boosting (Ad)PICTs all transformed a base tree classi�er in some way. For all the data sets consideredthe PICTs gave large reductions in the error rate over using the tree classi�er by itself.However, no one classi�er was consistently better than any other for all data sets.For the Vowel data set the Substitution PICT was signi�cantly better than any of theother PICTs and marginally superior to 1 nearest neighbour. However, for the Letter dataset it was slightly worse than the Centroid and ECOC PICTs. For the Letter data setthe ECOC, Centroid and Regression PICTs performed best. This is consistent with resultsfrom other data sets we have considered, where no one classi�er uniformly dominated.The Boosting PICTs seemed to be much more sensitive to the degree of training ofthe tree classi�er. The error rates for these two classi�ers improved dramatically on theLetter data set when the trees were forced to include more terminal nodes. This suggeststhat Boosting may be better suited to less automated procedures where more e�ort canbe devoted to �ne tuning the parameters. The Adapted Boosting procedure appeared toprovide a more robust classi�er. This adaption to standard Boosting deserves further study.While the Bagging PICT gave consistent improvements over the tree classi�er, in generalit did not perform nearly as well as the other PICTs.
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B 2 5 10 20 40 60 80 100 120 160 200ECOC 80:1 69:1 59:0 52:8 48:3 47:6 48:0 47:6 46:9 46:1 46:1Regression 100:0 100:0 100:0 55:1 48:6 47:4 47:5 47:5 46:7 45:9 45:9Centroid 78:4 68:1 57:6 52:5 48:9 47:8 48:2 47:6 47:0 46:5 46:1Substitution 61:7 53:2 48:6 45:5 43:0 43:3 43:7 43:5 43:0 43:1 43:1Bagging 57:9 55:8 52:7 52:4 53:1 52:7 52:4 51:9 52:3 52:6 52:5Boosting (Ad) 65:3 55:5 54:5 51:9 50:9 50:0 49:8 50:0 49:4 49:5 49:11NN 43:3 43:3 43:3 43:3 43:3 43:3 43:3 43:3 43:3 43:3 43:3Tree 61:5 61:5 61:5 61:5 61:5 61:5 61:5 61:5 61:5 61:5 61:5Table 2.16: Vowel data set test error rates averaged over 10 training sets each of size 40observations per class. Default tree settings (approximately 32 terminal nodes). Averagestandard error is 0:97%.
B 2 5 10 20 40 60 80 100 120 160 200ECOC 1:85 1:60 1:36 1:22 1:12 1:10 1:11 1:10 1:08 1:07 1:07Regression 2:31 2:31 2:31 1:27 1:12 1:10 1:10 1:10 1:08 1:06 1:06Centroid 1:81 1:57 1:33 1:21 1:13 1:10 1:11 1:10 1:09 1:07 1:07Substitution 1:43 1:23 1:12 1:05 0:99 1:00 1:01 1:00 0:99 1:00 1:00Bagging 1:34 1:29 1:22 1:21 1:23 1:22 1:21 1:20 1:21 1:22 1:21Boosting (Ad) 1:51 1:28 1:26 1:20 1:18 1:16 1:15 1:16 1:14 1:14 1:14Tree 1:42 1:42 1:42 1:42 1:42 1:42 1:42 1:42 1:42 1:42 1:42Table 2.17: Vowel data set test error rates relative to 1NN averaged over 10 trainingsets each of size 40 observations per class. Default tree settings (approximately 32 terminalnodes). Average standard error is 0:022.
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B 2 5 10 20 40 60 80 100 120 160 200ECOC 85:0 75:9 69:7 58:5 55:1 53:0 52:8 51:0 50:5 50:6 51:0Regression 100:0 100:0 100:0 58:4 55:5 53:0 52:5 52:1 51:5 50:5 50:0Centroid 80:9 75:5 66:8 56:3 54:5 52:6 53:0 52:5 50:5 51:9 51:7Substitution 68:5 57:4 52:7 47:6 44:9 45:4 46:6 45:7 45:1 45:0 45:4Bagging 59:4 57:6 55:6 55:0 55:7 56:6 56:5 56:5 55:6 56:3 55:5Boosting (Ad) 67:0 58:9 57:6 56:2 54:0 54:2 53:8 55:5 55:1 55:5 55:3Boosting (St) 63:2 56:6 55:5 55:2 56:0 55:4 55:0 54:6 54:5 54:5 54:1Tree 61:2 61:2 61:2 61:2 61:2 61:2 61:2 61:2 61:2 61:2 61:21NN 47:5 47:5 47:5 47:5 47:5 47:5 47:5 47:5 47:5 47:5 47:5Table 2.18: Vowel data set test error rates averaged over 5 training sets each of size 20observations per class. Default tree settings (approximately 25 terminal nodes). Averagestandard error is 1:4%.B 2 5 10 20 40 60 80 100 120 160 200ECOC 1:79 1:60 1:47 1:23 1:16 1:12 1:11 1:07 1:07 1:07 1:07Regression 2:11 2:11 2:11 1:23 1:17 1:12 1:11 1:10 1:08 1:07 1:05Centroid 1:70 1:59 1:41 1:19 1:15 1:11 1:12 1:11 1:07 1:09 1:09Substitution 1:44 1:21 1:11 1:00 0:95 0:96 0:98 0:96 0:95 0:95 0:96Bagging 1:25 1:21 1:17 1:16 1:17 1:19 1:19 1:19 1:17 1:19 1:17Boosting (Ad) 1:41 1:24 1:21 1:18 1:14 1:14 1:13 1:17 1:16 1:17 1:16Boosting (St) 1:33 1:19 1:17 1:16 1:18 1:17 1:16 1:15 1:15 1:15 1:14Tree 1:29 1:29 1:29 1:29 1:29 1:29 1:29 1:29 1:29 1:29 1:29Table 2.19: Vowel data set test error rates relative to 1NN averaged over 5 training setseach of size 20 observations per class. Default tree settings (approximately 25 terminalnodes). Average standard error is 0:030.
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Figure 2.11: A plot of the results from Table 2.16 (Vowel data set with 40 observations perclass).
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Figure 2.12: A plot of the results from Table 2.18 (Vowel data set with 20 observations perclass).



Chapter 3Classical TheoriesIn the previous chapter various examples of MaVLs were introduced. It is clear from Sec-tion 2.6 that members of this family of classi�ers can give large improvements over using asingle classi�er. However, no clear theory was presented to explain why this might be thecase. In the next two chapters we develop theoretical results which provide some insightinto the success of this family. These theories generally fall into one of two categories whichwe call Classical and Modern. The Classical Theories will be discussed in this chapter andthe Modern Theories in the next.In Section 3.1 we present the basic motivation behind the classical theories. Section3.2 develops generalizations of the concepts of bias and variance to general loss functionsand general types of random variables i.e. continuous, ordinal or categorical. Section 3.3shows how these generalizations can be used in speci�c situations such as classi�cationproblems. Section 3.4 provides a case study illustrating how classical ideas can be appliedto the Substitution PICT. Section 3.5 gives a discussion of de�nitions that have recentlybeen suggested in the literature for bias and variance and Section 3.6 provides experimentalresults comparing the various de�nitions on simulated data. The �nal section discussessome fundamental problems with the classical theories.3.1 Extending Regression Theory to Classi�cation ProblemsThe classical theories rely on a simple and appealing observation. Perhaps the fact thatMajority Vote Classi�ers are combining a large number of classi�ers together is somehow59



CHAPTER 3. CLASSICAL THEORIES 60causing an averaging out of variance and this results in a reduction of the error rate, justas in a regression setting.Recall that in a regression setting it is possible to decompose the prediction error, fromusing Ŷ to estimate Y , in the following way :E(Ŷ � Y )2 = E(Y �EY )2| {z }V arY + (EY �EŶ )2| {z }bias(Ŷ )2 +E(Ŷ �EŶ )2| {z }V arŶ (3.1)(3.1) is an extremely useful decomposition. It can be used to prove many importantresults about prediction error. For example ifX1;X2; : : : ;Xnare iid then it is easy to show that V ar �Xn must decrease as n increases and as a consequenceof (3.1) the prediction error of �Xn must also decrease. If EX = EY then one can also showthat the prediction error will approach V arY as n grows large. These results are so wellknown and relatively simply proved that it is easy to forget how powerful they are. Forexample they guarantee that averaging random variables is always a good thing to do.Unfortunately, this decomposition relies on the random variable of interest being realvalued. It also makes an explicit assumption that the loss function is squared error. If oneor both of these conditions fails to hold then the decomposition is no longer valid. In a clas-si�cation problem the loss function is 0-1 and the random variable of interest is categoricalso (3.1) will not hold. In fact, since the random variable is categorical, it is not even clearhow to de�ne variance, bias or expectation in this setting.Therefore all classical theories have two general objectives :1. develop de�nitions of bias and variance for a classi�cation problem and2. produce a decomposition of the error rate into bias and variance components.The term Classical comes from the fact that the theories are attempting to providegeneralizations of the classical regression ideas.



CHAPTER 3. CLASSICAL THEORIES 61Section 3.2 introduces general de�nitions for any loss function and type of random vari-able and Section 3.3 shows how these de�nitions can be applied to a classi�cation problem.3.2 A Generalization of the Bias-Variance DecompositionIn this section we explore the concepts of variance and bias and develop a decompositionof the prediction error into functions of the systematic and variable parts of our predictor.In attempting this task two questions arise. Namely� what do these quantities measure?� and why are they useful?3.2.1 Bias and VarianceIn the regression setting the variance of an estimator Ŷ is de�ned as E(Ŷ � EŶ )2. Anequivalent de�nition is V ar(Ŷ ) = mina E(Ŷ � a)2where a is non random. If we de�neSŶ = argmina E(Ŷ � a)2then V ar(Ŷ ) is a measure of the expected distance, in terms of squared error loss, of therandom quantity (Ŷ ) from its nearest non random number (SŶ ). We call SŶ the system-atic part of Ŷ and use the notation SŶ to emphasize that S is an operator acting on thedistribution of Ŷ . In this case SŶ will be equal to EŶ .If we use Ŷ to estimate a parameter � then the bias of Ŷ is de�ned as SŶ � �. The biaswhen using Ŷ to predict Y , where Ŷ and Y are independent random variables, is less wellde�ned. However from the decomposition,E(Y � Ŷ )2 = E(Y � SY )2 +E(Ŷ � SY )2PE(Y; Ŷ ) = V ar(Y ) +MSE(Ŷ ; SY )where SY = argminaE(Y � a)2, we can see that the problem of predicting Y is equivalent



CHAPTER 3. CLASSICAL THEORIES 62to one of estimating SY . This is because V ar(Y ) is independent of Ŷ so the mean squarederror between Ŷ and SY is the only quantity that we have control over. This motivatesa de�nition of (SŶ � SY )2 as the squared bias and means that we can think of bias as ameasure of the distance between the systematic parts of Ŷ and Y (SŶ and SY ).By writing Ŷ = SŶ + � we see that it is possible to decompose our random variable intosystematic (SŶ ) and random (�) parts. Both parts contribute to any error we may makein estimation but their causes and cures can di�er markedly.3.2.2 Standard Prediction Error DecompositionIt is well known that we can decompose the expected squared error of Ŷ from Y as followsE(Ŷ � Y )2 = V ar(Y )| {z }irreducible error+ bias2(Ŷ ; SY ) + V ar(Ŷ )| {z }reducible error (3.2)so the expected loss of using Ŷ is the sum of the variance of Ŷ and Y plus the squareddistance between their systematic components. The variance of Y is beyond our controland is thus known as the irreducible error. However the bias and variance of Ŷ are functionsof our estimator and can therefore potentially be reduced.This shows us that V ar(Ŷ ) serves two purposes1. it provides a measure of the variability of Ŷ about SŶ2. and it indicates the e�ect of this variance on the prediction error.Similarly bias(Ŷ ; SY ) serves two purposes1. it provides a measure of the distance between the systematic components of Y and Ŷ2. and by squaring it we see the e�ect of this bias on the prediction error.This double role of both bias and variance is so automatic that we oftenfail to consider it. However when we extend these de�nitions to arbitrary lossfunctions it will not, in general, be possible to de�ne one statistic to serve bothpurposes.



CHAPTER 3. CLASSICAL THEORIES 633.2.3 Generalizing the De�nitionsOften squared error is a very convenient loss function to use. It possesses well knownmathematical properties such as the bias/variance decomposition (3.2) that make it veryattractive to use. However there are situations where squared error is clearly not the mostappropriate loss function. This is especially true in classi�cation problems where a lossfunction like 0-1 loss seems much more realistic.Requirements for a Reasonable GeneralizationSo how might we extend these concepts of variance and bias to general loss functions? Thereis one obvious requirement that it seems natural for any generalization to ful�ll.
➊ When using squared error loss our general de�nitions must reduce to the standardones.Unfortunately ➊ is not a strong enough requirement to ensure a unique generalization.This is a result of the large number of de�nitions for variance and bias that are equivalentfor squared error but not for other loss functions.For example the following de�nitions are all equivalent for squared error.
➤ V ar(Ŷ ) = minaE(Ŷ � a)2 = E(Ŷ � SŶ )2
➤ V ar(Ŷ ) =MSE(Ŷ ; SY )� bias2(Ŷ ; SY ) = E(Ŷ � SY )2 � (SŶ � SY )2
➤ V ar(Ŷ ) = PE(Y; Ŷ )�E(Y � SŶ )2 = E(Y � Ŷ )2 �E(Y � SŶ )2These lead naturally to three possible generalized de�nitions.I. V ar(Ŷ ) = minaEL(Ŷ ; a) = EL(Ŷ ; SŶ )II. V ar(Ŷ ) = EL(Ŷ ; SY )� L(SŶ ; SY )III. V ar(Ŷ ) = EL(Y; Ŷ )�EL(Y; SŶ )where L is a general loss function, SŶ = argmina L(Ŷ ; a) and SY = argmina L(Y; a)For general loss functions these last three de�nitions certainly need not be consistent.This inconsistency accounts for some of the di�erences in the de�nitions that have been



CHAPTER 3. CLASSICAL THEORIES 64proposed. For example Tibshirani, 1996 bases his de�nition of variance on I while Diet-terich and Kong, 1995 base theirs more closely on III. We will see later that both I and IIIare useful for measuring di�erent quantities.What other requirements should a de�nition of variance ful�ll? We can think of Ŷ �g(FTr) where g is a function that depends on the method used to obtain Ŷ from theobservations and FTr is the distribution of the observations or training data (Tr). WhileY � FTe where FTe is the distribution of the test data. Often FTr and FTe are assumed thesame but in general they need not be. So we see that variance is a function of g and FTrbut is not a function of FTe. This is desirable because it allows us to compare estimatorsacross di�erent test sets (a low variance estimator for one test set will also be low variancefor a second test set). So another natural requirement is
➋ The variance must not be a function of the distribution of the test data, FTe.This requirement rules out II and III given above which in general will be a function of FTe.There is a similar requirement on the bias. Since bias is a measure of the distancebetween the systematic components of Ŷ and Y we require that
➌ The bias must be a function of Ŷ and Y through SŶ and SY only (i.e. bias must bea function of SŶ and SY ).General De�nitions of Bias and VarianceWith ➊,➋ and ➌ in mind the most natural de�nitions of bias and variance are :Loss FunctionSquared Error GeneralVariance E(Ŷ � SŶ )2 EL(Ŷ ; SŶ )SŶ = argminaE(Ŷ � a)2 SŶ = argminaEL(Ŷ ; a)Bias2 (SY � SŶ )2 L(SY; SŶ )This de�nition of variance is identical to that given in Tibshirani, 1996 but my de�nitionof bias di�ers from his. My de�nition of bias is equivalent to that of bias2 for squared error.It should be noted that, even with the restrictions we have listed, these de�nitions by no



CHAPTER 3. CLASSICAL THEORIES 65means represent a unique generalization of the concepts of bias and variance. However, aswe will see in the next section, these statistics may not be our primary concern.3.2.4 Bias and Variance E�ectWhile these de�nitions ful�ll the stated conditions they have one major drawback. Namelyin general there is no way to decompose the error into any function of bias and variance,as is the case for squared error loss (3.2). In fact it is possible to construct examples (seeSection 3.3.2) where the variance and bias are constant but the reducible prediction errorchanges as we alter the test distribution.Often we will be interested in the e�ect of bias and variance. For example it is possibleto have an estimator with high variance but for this variance to have little impact on theerror rate. It is even possible for increased variance to cause a lower error rate (see Section3.3.1). We call the change in error caused by variance the Variance E�ect (VE) and thechange in error caused by bias the Systematic E�ect (SE). For squared error the variancee�ect is just the variance and the systematic e�ect is the bias squared. However in generalthis will not be the case.Recall in the standard situation we can decompose the expected squared error as follows,E(Y � Ŷ )2 = V ar(Y )| {z }irreducible error+ bias2(Ŷ ; SY ) + V ar(Ŷ )| {z }reducible errorbut note V ar(Y ) = E(Y � SY )2bias2(Ŷ ; SY ) = (SY � SŶ )2= E[(Y � SŶ )2 � (Y � SY )2]V ar(Ŷ ) = E(Ŷ � SŶ )2= E[(Y � Ŷ )2 � (Y � SŶ )2]



CHAPTER 3. CLASSICAL THEORIES 66Remember for squared error SY = EY and SŶ = EŶ . This gives the following decom-positionELS(Y; Ŷ )| {z }PE = ELS(Y; SY )| {z }V ar(Y ) +E[LS(Y; SŶ )� LS(Y; SY )]| {z }bias2(Ŷ ;SY ) +E[LS(Y; Ŷ )� LS(Y; SŶ )]| {z }V ar(Ŷ )where LS is squared error loss. Note that everything is de�ned in terms of prediction errorof Y with respect to LS .Notice that, in this formulation, bias2 is simply the change in prediction error whenusing SŶ , instead of SY , to predict Y ; in other words it is the change in prediction errorcaused by bias. This is exactly what we have de�ned as the systematic e�ect. SimilarlyV ar(Ŷ ) is the change in prediction error when using Ŷ , instead of SŶ , to predict Y ; inother words the change in prediction error caused by variance. This is what we have de�nedas the variance e�ect.This decomposition will hold for any loss function so in general we de�neSE(Ŷ ; Y ) = E[L(Y; SŶ )� L(Y; SY )]and V E(Ŷ ; Y ) = E[L(Y; Ŷ )� L(Y; SŶ )]Notice that the de�nition of VE corresponds to III in Section 3.2.3. We now have adecomposition of prediction error into errors caused by variability in Y (V ar(Y )), biasbetween Y and Ŷ (SE(Ŷ ; Y )) and variability in Ŷ (V E(Ŷ ; Y )).EL(Y; Ŷ ) = EL(Y; SY )| {z }V ar(Y ) +E[L(Y; SŶ )� L(Y; SY )]| {z }SE(Ŷ ;Y ) +E[L(Y; Ŷ )� L(Y; SŶ )]| {z }V E(Ŷ ;Y )= V ar(Y ) + SE(Ŷ ; Y ) + V E(Ŷ ; Y ) (3.3)Now in general there is no reason for V ar(Ŷ ) to equal V E(Ŷ ; Y ) or for bias(Ŷ ; SY ) toequal SE(Ŷ ; Y ). Often it will be the variance and bias e�ects that we are more interestedin rather than the variance and bias itself. One of the nice properties of squared error loss



CHAPTER 3. CLASSICAL THEORIES 67is that V E = V ar so the variance e�ect, like the variance, is constant over test sets. Ingeneral this will not be the case.Note that due to the fact L is a loss function, V ar(Y ) � 0, and by the de�nition of SY ,SE(Ŷ ; Y ) � 0. However the only restriction on V E(Ŷ ; Y ) is, V E(Ŷ ; Y ) � �SE(Ŷ ; Y ).Indeed we will see examples where the variance e�ect is negative.3.3 Applications of the Generalizations of Bias and VarianceAll calculations in the following two examples are performed at a �xed input X. We havenot included X in the notation to avoid confusion.3.3.1 0-1 LossSuppose our loss function is L(a; b) = I(a 6= b). We will now use the notation C and SCinstead of Ŷ and SŶ to emphasize the fact that this loss function is normally used in clas-si�cation problems so our predictor typically takes on categorical values: C 2 f1; 2; : : : ; kgfor a k class problem.Further de�ne P Yi = Pr(Y = i)and PCi = Pr(C = i)where i runs from 1 to k. Recall that C � g(FTr), and hence PCi are based on averagesover training sets. With this loss function we seeSY = argmini E(I(Y 6= i))= argmini Xj 6=i P Yj= argmaxi P Yi i.e. the bayes classi�erand SC = argmaxi PCi i.e. the mode of C



CHAPTER 3. CLASSICAL THEORIES 68We now get V E(C; Y ) = E(I(Y 6= C)� I(Y 6= SC))= P (Y 6= C)� P (Y 6= SC)= Xi P Yi (1� PCi )� (1� P YSC)V ar(C) = mina EI(C 6= a)= P (C 6= SC)= 1�maxi PCi= 1� PCSCSE(C; Y ) = E(I(Y 6= SC)� I(Y 6= SY ))= P (Y 6= SC)� P (Y 6= SY )= P YSY � P YSC= maxi P Yi � P YSCbias(C;SY ) = I(SC 6= SY )V ar(Y ) = EI(Y 6= SY )= P (Y 6= SY )= 1�maxi P Yi= 1� P YSCA simple example will provide some illumination. Suppose Y has the following distri-bution. y 0 1 2Pr(Y = y) 0:5 0:4 0:1Now we compare two classi�er random variables (at a �xed predictor X) with thefollowing distributions : c 0 1 2Pr(C1 = c) 0:4 0:5 0:1Pr(C2 = c) 0:1 0:5 0:4



CHAPTER 3. CLASSICAL THEORIES 69SY = 0, SC1 = SC2 = 1 and SE(C; Y ) equals 0:1 for both classi�ers. These twoclassi�ers have identical distributions except for a permutation of the class labels. Sincethe labels have no ordering we would hope that both classi�ers have the same variance. Infact V ar(C1) = V ar(C2) = 1 � 0:5 = 0:5. However the e�ect of this variance is certainlynot the same for each classi�er.V E(C1; Y ) = P (Y 6= C1)� P (Y 6= SC1) = 0:59 � 0:6 = �0:01V E(C2; Y ) = P (Y 6= C2)� P (Y 6= SC2) = 0:71 � 0:6 = 0:11The variance of C1 has actually caused the error rate to decrease while the variance of C2 hascaused it to increase! This is because the variance in C1 is a result of more classi�cationsbeing made to 0 which is the bayes class while the variance in C2 is a result of moreclassi�cations being made to 2 which is a very unlikely class to occur. Therefore, we seethat it does not necessarily follow that increasing the variance of C1 would cause a furtherreduction in V E(C1; Y ) or that decreasing the variance of C2 would cause a reduction inV E(C2; Y ). Friedman, 1996b noted, that for 0-1 loss functions, increasing the variance canactually cause a reduction in the error rate as we have seen with this example.3.3.2 Absolute LossAlthough the 0-1 loss function is of primary concern in this setting, it should be noted thatthese de�nitions can be applied to any loss function. To illustrate this we will consider thesituation where the loss function is L(a; b) = ja� bj. What decomposition does this give?EL(Ŷ ; Y ) = V ar(Y ) + SE(Ŷ ; Y ) + V E(Ŷ ; Y )= EL(Y; SY ) +E[L(Y; SŶ )� L(Y; SY )]+ E[L(Y; Ŷ )� L(Y; SŶ )]) EjY � Ŷ j = EjY � SY j+E(jY � SŶ j � jY � SY j)+ E(jY � Ŷ j � jY � SŶ j)= EjY �med(Y )j+E(jY �med(Ŷ )j � jY �med(Y )j)+ E(jY � Ŷ j � jY �med(Ŷ )j)



CHAPTER 3. CLASSICAL THEORIES 70where med(Y ) is the median of Y .This gives V E(Ŷ ; Y ) = E(jY � Ŷ j � jY �med(Ŷ )j)V ar(Ŷ ) = EL(Ŷ ; SŶ ) = EjŶ �med(Ŷ )jSE(Ŷ ; Y ) = E(jY �med(Ŷ )j � jY �med(Y )j)bias(Ŷ ; SY ) = L(SY; SŶ ) = jmed(Y )�med(Ŷ )jV ar(Y ) = irreducible error = EjY �med(Y )jA simple example illustrates the concepts involved. Suppose Y is a random variablewith the following distribution : y 0 1 2Pr(Y = y) a=4 1=2 (2� a)=4We will start with a = 1. Suppose our estimator is simply the constant Ŷ = 2. Thenclearly med(Y ) = 1 and med(Ŷ ) = 2 so bias(Ŷ ; SY ) = 1. Note that both V ar(Ŷ ) andV E(Ŷ ; Y ) are zero so the systematic e�ect is the only relevant quantity in this case.SE(Ŷ ; Y ) = E(jY �med(Ŷ )j � jY �med(Y )j)= E(jY � 2j � jY � 1j)= 1� 1=2 = 1=2So the SE is not equal to the bias. We can show that SE is not a function of the biasby altering a. Notice that for 0 < a < 2 the median of Y remains unchanged at 1. So thebias is also constant. However,SE(Ŷ ; Y ) = E(jY �med(Ŷ )j � jY �med(Y )j)= E(jY � 2j � jY � 1j)= 2 � a4 + 1 � 12 + 0 � 2� a4 � (1 � a4 + 0 � 12 + 1 � 2� a4 )= a=2So as a approaches 0 so does the SE! In other words it is possible to have an estimator



CHAPTER 3. CLASSICAL THEORIES 71that is systematically wrong but with an arbitrarily low reducible loss associated with it.3.4 Case Study : The Substitution PICTIn this section we show how Classical Ideas can be used to provide insight into the successof the Substitution PICT and hence the ECOC PICT. The Substitution PICT is describedin Section 2.4.Recall that the probability estimates, pSi , in the Substitution PICT are formed by aver-aging over B di�erent trees. pSi = 1B BXj=1 pijThe fact that pSi is an average of probability estimates suggests that a reduction invariability, without a complementary increase in bias, may be an explanation for the successof the Substitution PICT. This observation alone can not provide the answer, however,because it has been clearly demonstrated (see for example Friedman, 1996b) that a reductionin variance of the probability estimates does not necessarily correspond to a reduction inthe error rate. The quantity that we are interested in is not the individual probabilities butargmaxj pj. Now i = argmaxj pj i� pi � pj > 0 8j 6= iSo what we are really interested in are the random variables pi � pj. However, even thevariances of these variables are not enough because variance is not independent of scale.For example by dividing all the probabilities by 2 we could reduce the variance by a factorof 4 but the probability that pi � pj > 0 would remain unchanged. A better quantity toconsider is the coe�cient of variation,CV (pi � pj) =s V ar(pi � pj)(E(pi � pj))2If the probability estimates are normally distributed there is a direct correspondence be-tween CV (pi � pj) and the probability that pi � pj > 0 i.e.Pr(pi � pj > 0) = ��E(pi � pj)=qV ar(pi � pj)� = �(1=CV (pi � pj))



CHAPTER 3. CLASSICAL THEORIES 72Notice that for a two class problem (k = 2) this implies a lower CV will give a lower errorrate. An assumption of normality may not be too bad, but in any case we would expecta similar relationship for any reasonable distribution. For example, if pTi is the probabilityestimate for the ith class from an ordinary k class tree classi�er, we might suppose that theSubstitution PICT will have a superior performance providedCV (pSi � pSj ) < CV (pTi � pTj ) (3.4)To examine when (3.4) might hold we use the following semi-parametric model for theprobability estimates, pSi = �Sf(qi) + �S�Si E�Si = 0pTi = �T f(qi) + �T �Ti E�Ti = 0where f is an arbitrary increasing function, �S and �T are positive constants and �S =(�S1 ; : : : ; �Sk ) and �T = (�T1 ; : : : ; �Tk ) have arbitrary but identical distributions. Recall thatqi = P (G = i j X). This model makes few assumptions about the speci�c form of theprobability estimates but does assume that the ratio EpSi =EpTi is constant and that theerror terms (�S and �T ) have the same distribution.Under this modeling assumption it can be shown that (3.4) holds i��S�S < �T�T (3.5)(3.5) states that the standardized variance of the Substitution PICT is less than thatfor the tree classi�er. Note that (3.5) is also equivalent to the signal to noise ratio of the kclass tree classi�er being less than that of the Substitution PICT.The question remains, under what conditions will (3.5) hold? The probability estimatesfrom the Substitution PICT are formed from an average of B correlated random variables(pij) so we know that �S (which depends on B) will decrease to a positive limit as Bincreases. Intuitively this suggests that (3.5) will hold providedI. B is large enough (so we are close to the limit),



CHAPTER 3. CLASSICAL THEORIES 73II. 
 = V ar(pTi =�T )V ar(pi1=�S)is large enough (so the standardized variance of pij is not too large relative to that ofpTi ),III. and � = Corr(pi1; pi2) is low enough (so that a large enough reduction can be achievedby averaging).Note that 
 is the ratio of the noise to signal ratio (NSR) of the k class tree classi�er tothat of a single tree from the Substitution PICT. We assume 
 is constant for all i. In factwe can formalize this intuition in the following theorem.Theorem 8 Under the previously stated semi-parametric model assumptions (3.4) and(3.5) will hold i� � < 
 (� is small relative to 
) (3.6)and B � 1� �
 � � (B is large enough) (3.7)Further more if k = 2 (there are only two classes) then (3.6) and (3.7) are su�cient toguarantee a reduction in the error rate.Even in a situation where there are more than two classes it will often be the case thatat any point in the predictor space there are e�ectively only two possible classes to choosebetween. Therefore, in practice (3.6) and (3.7) will often be su�cient to guarantee a lowererror rate.Now there is reason to believe that in general � will be small. This is a result of theempirical variability of tree classi�ers. A small change in the training set can cause a largechange in the structure of the tree and also the �nal probability estimates. So by changingthe super group coding we might expect a probability estimate that is fairly unrelated toprevious estimates and hence a low correlation.



CHAPTER 3. CLASSICAL THEORIES 74To test the accuracy of this theory we examined the results from the simulation per-formed in Section 2.4. We wished to estimate 
 and �. For this data it was clear thatf could be well approximated by a linear function so our estimates for �S and �T wereobtained using least squares. The following table summarizes our estimates for the varianceand standardizing (�) terms from the simulated data set.Classi�er V ar(pi) � V ar(pi=�)Substitution PICT 0:0515 0:3558 0:4068Tree Method 0:0626 0:8225 0:0925The table indicates that, when we account for the shrinkage in the Substitution PICTprobability estimates (�S = 0:3558 vs �T = 0:8225), the NSR for a single tree from theSubstitution PICT is over 4 times that of an ordinary k class tree (0:4068 vs 0:0925). Inother words the estimate for 
 is 
̂ = 0:227 so the signal to noise ratio of a single tree in theSubstitution PICT is only about a quarter of that from an ordinary tree classi�er. However,the estimate for � was very low at only �̂ = 0:125.It is clear that � is less than 
 so provided B is large enough we expect to see animprovement by using the Substitution PICT. From Theorem 8 we can estimate the requiredsize of B as B � 1� �̂
̂ � �̂ � 9We see from Figure 3.1 that the Substitution error rate drops below that of the tree clas-si�er at almost exactly this point, providing some validation for the theory. Together withTheorem 7 this result also provides further motivation for the success of the ECOC PICT.3.5 Discussion of Recent LiteratureDietterich and Kong, 1995, Kohavi and Wolpert, 1996, Breiman, 1996b, Tibshirani, 1996,and Friedman, 1996b have all recently written papers on the topic of bias and variance forclassi�cation rules.Kohavi and WolpertKohavi and Wolpert, 1996 de�ne bias and variance of a classi�er in terms of the squarederror when comparing PCi to P Yi . For a two class problem they de�ne the squared bias as
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Figure 3.1: Error rates on the simulated data set for the tree method, Substitution PICTand ECOC PICT plotted against B (on log scale)(P Y1 � PC1 )2 and the variance as PC1 (1 � PC1 ) which are as one would expect for squarederror. As a result the Bayes Classi�er will have a positive squared bias unless P Y1 2 f0; 1g.Dietterich and KongThe de�nitions of Dietterich and Kong, 1995, Breiman, 1996b, and Tibshirani, 1996 aremore similar in spirit to those in this chapter. Dietterich and Kong, 1995 de�ne bias =I(Pr(C 6= Y ) � 1=2) and var = Pr(C 6= Y )� bias. This gives the decompositionPr(C 6= Y ) = var + biasFrom these de�nitions we can note the following� although not immediately apparent, this de�nition of bias coincides with ours (I(SY =SŶ )) for the 2 class situation,� for k > 2 the two de�nitions are not consistent which can be seen from the fact thatfor our de�nition of bias the Bayes Classi�er will have zero bias while for Dietterich



CHAPTER 3. CLASSICAL THEORIES 76and Kong's it is possible for the Bayes Classi�er to have positive bias� and the variance term will be negative whenever the bias is non zero.BreimanBreiman's de�nitions (Breiman, 1996b) are in terms of an \aggregated" classi�er whichis the equivalent of SC for a 0-1 loss function. He de�nes a classi�er as unbiased at Xif SY = SC and lets U be the set of all X at which C is unbiased. He also de�nes thecomplement of U as the bias set and denotes it by B. He then de�nes the bias and varianceover the entire test set asbias(C) = PX(C 6= Y;X 2 B)� PX(SY 6= Y;X 2 B)var(C) = PX(C 6= Y;X 2 U)� PX(SY 6= Y;X 2 U)This is equivalent to de�ning bias and variance at a �xed X asbias = 8<:P (C 6= Y )� P (SY 6= Y ) SY 6= SC0 SY = SCvar = 8<:P (C 6= Y )� P (SY 6= Y ) SY = SC0 SY 6= SCThis de�nition has the following appealing properties :� Bias and variance are always non-negative.� If C is deterministic then its variance is zero (hence SC has zero variance).� The bias and variance of SY is zero.However we note that at any �xed X the entire reducible error (total error rate minusbayes error rate) is either assigned to variance (if C is unbiased at X) or to bias (if C isbiased at X). Certainly it seems reasonable to assign all the reducible error to variance if Cis unbiased (if C were unbiased and did not vary it would be equal to the bayes classi�er).However when C is biased it does not seem reasonable to assign all reducible errors tobias. Even when C is biased, variability can cause the error rate to increase or decrease (asillustrated in Section 3.3.1) and this is not re
ected in the de�nition.



CHAPTER 3. CLASSICAL THEORIES 77TibshiraniTibshirani, 1996 de�nes variance, bias and a prediction error decomposition for classi�cationrules (categorical data). Within this class of problems his de�nition of variance is identicalto that given in this paper. He de�nes a quantity AE (Aggregation E�ect), which is equalto the variance e�ect we have de�ned, and for most common loss functions his de�nition ofbias will be equivalent to our systematic e�ect. This gives a decomposition ofPr(C 6= Y ) = Pr(Y 6= SY ) +Bias(C) +AE(C)which is identical to ours. However, it should be noted that although these de�nitions aregeneralizable to any loss function they do not easily extend beyond the class of \classi�ca-tion rules" to general random variables (e.g. real valued). It is comforting that when werestrict ourselves to this smaller class the two sets of de�nitions are almost identical.Friedman, 1996b provides a good comparison of the di�erent de�nitions.3.6 Experimental Comparison of Di�erent De�nitionsTo provide an experimental comparison of some of the de�nitions for variance and bias thathave been suggested, we performed simulations using two arti�cial data sets.First Data SetThe �rst data set consisted of 26 classes with the distribution of each class being a standardbivariate normal with identity covariance matrix. Many independent training sets with 10observations per class were chosen. On each of these training sets 7 di�erent classi�ers weretrained and their classi�cations, on each of 1040 test points, were recorded. This allowedP (C = i) to be estimated for each test point. Since each class followed a normal distributionit was possible to calculate P (Y = i). This in turn allowed estimates for bias and variance(under the various de�nitions) to be calculated for each of the classi�ers. The 7 di�erentclassi�ers were LDA, ECOC, Bagging, a Tree, 1 Nearest Neighbour, 5 Nearest Neighbourand 11 Nearest Neighbour. On the �rst 4 classi�ers 100 training sets were used. However,it was discovered that the estimates of bias for Nearest Neighbours were inaccurate for this



CHAPTER 3. CLASSICAL THEORIES 78number so 1000 training sets were used for the last 3 classi�ers. Estimates for bias andvariance were made using Dietterich and Breiman's de�nitions as well as those given in thischapter. The results are shown in Table 3.1.The �rst thing we notice from these results is that LDA performs exceptionally well.This is not surprising because it can be shown that LDA is asymptotically optimal for mix-tures of normals as we have in this case. Both Breiman's bias estimate and the systematice�ect indicate no bias e�ect. This is comforting since we know that LDA has no bias onthis data set. The James estimate of bias is not zero (1:6%). This is due to the relativelylow number of training samples. It can be shown that this estimate will converge to zeroas the number of training sets increases. On the other hand Dietterich's bias estimate isextremely high which makes less sense.The next point to note is that Breiman's bias estimate is very similar to the systematice�ect and his variance estimate is similar to the variance e�ect. His estimate of the biascontribution seems to be consistently below or equal to that of the systematic e�ect. Thisslight di�erence between the two de�nitions is due to the fact that, at any given test point,all the reducible error is attributed to either bias or variance (see Section 3.5).On the other hand Dietterich's de�nitions produce quite di�erent estimates. They tendto attribute almost all the error rate to bias rather than variance. This is partly due tothe fact that no allowance is made for the positive Bayes Error (23:1%). However, evenwhen the Bayes Error is subtracted o� there are still some anomalies such as LDA havinga negative bias.If we examine the 3 Nearest Neighbour classi�ers we can get an idea of the e�ect onvariance and bias of increasing the number of neighbours. Notice that as the number ofneighbours increases the variance (and variance e�ect) decreases which is as we would ex-pect. However the bias estimate also decreases slightly which is not what we would expect.This happens with all the de�nitions. In fact the bias is not decreasing. There is a tendencyto overestimate bias if it is very low or zero. 11 Nearest Neighbours averages each of itsclassi�cations over 11 points for each training data set so is using 11; 000 data points. Thisproduces a good estimate for bias. However, 1 Nearest Neighbours is only using 1; 000 data



CHAPTER 3. CLASSICAL THEORIES 79points which gives a higher estimate for bias. It is likely in both cases that the true bias isalmost zero. This is evidenced by the fact that the systematic e�ect is zero.The ECOC and Bagging PICTs are both constructed by combining 100 of the tree clas-si�ers that are shown in column 4. Notice that both methods have reduced the variance(and variance e�ect) as the classical theories would predict. However, they have also re-duced the bias (and systematic e�ects) which could not happen in a regression setting!Lastly note that while in theory there need not be any relationship between bias andsystematic e�ect and between variance and variance e�ect, in practice there is a strongrelationship. So bias and variance are good predictors for the e�ects of these two quantities.Second Data SetThe second data set is similar to the �rst except that in this one there were only 10 classesand only 5 training data points per class were used. For this data set eight classi�ers wereused. They were LDA, ECOC, Bagging, a tree classi�er with 5 terminal nodes, a tree clas-si�er with 8 terminal nodes, a tree classi�er with 13 terminal nodes, 1 nearest neighbourand 11 nearest neighbour. The results are presented in Table 3.2.Many of the conclusions from the �rst data set hold for the second. LDA performs ex-tremely well again, with a very low bias. Also Breiman's de�nitions produce similar resultsto those of systematic and variance e�ect. Notice that Dietterich's de�nition can result ina negative variance. Also note that while in theory the variance e�ect can be negative it isnot for any of the examples we examine.As the number of terminal nodes in a tree increases we would expect the bias to decreaseand the variance to increase. In this example the bias (and systematic e�ect) do bothdecrease. However, the variance (and variance e�ect) also both decrease. This is possibleif, by increasing the number of terminal nodes, we average over lower variance data points.
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Classi�er LDA ECOC Bagging Tree 1NN 5NN 11NNBias (Dietterich) 21:5 27:4 27:7 32:2 27:7 25:3 24:1Bias less Bayes Error �1:6 4:3 4:6 9:1 4:6 2:2 1:0Variance (Dietterich) 3:3 1:9 2:0 1:3 3:3 2:3 2:4Bias (Breiman) 0:0 0:4 1:1 1:6 0:1 0:0 0:0Variance (Breiman) 1:7 5:9 5:5 8:8 7:8 4:5 3:4Bias 1:6 5:2 6:1 8:5 1:6 1:2 0:9Variance 10:5 20:6 19:3 25:1 24:8 18:8 16:3Systematic E�ect 0:0 0:5 1:5 2:2 0:0 0:0 0:0Variance E�ect 1:7 5:8 5:1 8:2 7:9 4:5 3:5Bayes Error 23:1 23:1 23:1 23:1 23:1 23:1 23:1Prediction Error 24:8 29:3 29:7 33:5 31:0 27:6 26:5Table 3.1: Bias and variance for various de�nitions calculated on a simulated data set with26 classes.ConclusionsDietterich's de�nitions seem to assign far too high a proportion of the prediction error tobias rather than variance. His de�nitions do not take into account the Bayes Error. As theBayes Error increases the bias will also tend to increase which does not seem sensible. Hisde�nition of bias may work better for a two class problem.Both Breiman's de�nitions and those presented in this chapter seem to produce reason-able estimates with Breiman's tending to put slightly more weight on variance. However,it is di�cult to get an accurate estimate of bias when the bias is low. There is a tendencyto overestimate so a large number of training samples are required.
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Classi�er LDA ECOC Bagging Tree5 Tree8 Tree13 1NN 11NNBias (Dietterich) 12:5 24:8 20:8 73:3 41:0 28:8 24:5 18:3Bias less Bayes Error �8:0 4:3 0:3 52:8 20:5 8:3 4:0 �2:2Variance (Dietterich) 11:4 5:2 7:4 �16:1 �2:8 11:7 6:1 15:3Bias (Breiman) 0:0 0:6 0:6 17:3 2:7 0:8 0:0 0:1Variance (Breiman) 3:3 8:8 7:2 19:3 13:9 11:7 10:1 12:9Bias 1:3 5:5 5:0 33:0 13:3 5:8 1:0 1:5Variance 12:0 21:4 19:3 43:8 30:1 26:0 23:7 25:4Systematic E�ect 0:0 0:8 0:9 17:5 3:3 1:0 0:0 0:1Variance E�ect 3:3 8:7 7:0 19:1 13:4 11:5 10:1 12:9Bayes Error 20:5 20:5 20:5 20:5 20:5 20:5 20:5 20:5Prediction Error 23:9 30:0 28:4 57:1 37:2 33:0 30:6 33:5Table 3.2: Bias and variance for various de�nitions calculated on a simulated data set with10 classes.3.7 The Fundamental Problem with Classical TheoriesDespite the appeal of generalizing regression ideas such as bias and variance to classi�cationproblems, there are some fundamental problems with this line of attack.3.7.1 Inconsistent De�nitionsThe �rst is an inconsistency in the various de�nitions for variance and bias. It is clear fromSection 3.5 that all of the various de�nitions that have been proposed in the literature areslightly di�erent. In Section 3.6 we saw that these di�erences could provide quite di�erentinterpretations on which e�ect was dominating for any particular data set.As was noted in Section 3.2.3 these di�erences arise from the fact that squared error lossallows many equivalent formulations which for general loss functions certainly will not beequivalent. In this chapter we have attempted to provide motivation for the de�nitions that



CHAPTER 3. CLASSICAL THEORIES 82have been proposed. However, it can be argued, that once squared error loss is removedfrom consideration, there is no unique de�nition that clearly makes more sense than others.3.7.2 Lower Variance DOES NOT Imply Lower Error RateIt is possible that the problem of inconsistent de�nitions could be remedied. However, thereis a second major problem that probably can not be overcome. In general there is no knownrelationship between the variance of a classi�er (under any reasonable de�nition) and thee�ect of that variance on the error rate. In Section 3.3.1 we saw that it is possible for twodi�erent classi�ers to have identical variances but for the e�ect of this variance to be quitedi�erent.Recall that the aim of Classical Theories is two fold. The �rst is to provide a decompo-sition of the error rate into a function of variance and bias (for some de�nition of those twoquantities). This decomposition would, for example, guarantee that a reduction in variancewill cause a reduction in the error rate. The second aim is to provide results which willguarantee that, for example, MaVLs reduce variance, by what ever de�nition we use, andhence will reduce the error rate. It seems that it is possible to achieve either one of theseaims but not both!In Section 3.2.3 we saw that it is possible to produce general de�nitions of bias andvariance. In Section 3.2.4 we saw that it is possible to provide a decomposition of the errorrate into systematic and variance e�ects. However, it is not possible to decompose the errorrate into a function of variance and bias since there is no provable relationship between thevariance and variance e�ect.The fact that it is possible to construct examples where variance and variance e�ect movein opposite directions led to the consideration of what we call Modern Theories, which weexamine in the next chapter.



Chapter 4Modern TheoriesIn the previous chapter we explored Classical theories where the concepts of Bias and Vari-ance are generalized to Classi�cation Problems. This approach has the advantage of beingrelatively intuitive and it has produced some interesting results. However, so far, it hasfailed to generate any concrete theories and Section 3.7 suggests that this may be a resultof fundamental problems with the method.In this chapter we explore a new set of ideas which we call Modern. These ideas arespeci�cally intended for classi�ers rather than just attempting to generalize regression the-ories. In Section 4.1 we detail the work of Schapire and others in de�ning a new quantitywhich they call the Margin. Based on this quantity they have proved bounds on the testerror rate which, they claim, provides an explanation for the success of Boosting. In Section4.2 we give an experimental study to evaluate the accuracy of the bound as an indicator ofthe test error rate. Section 4.3 details an alternative method of utilizing the margin whichwe call the Normal model. The �nal section provides a summary and conclusion.4.1 MarginsIn their paper Boosting the Margin : A new explanation for the e�ectiveness of votingmethods (Schapire et al., 1997), Schapire et al. introduce a quantity which they call theMargin. Based on this quantity they prove a bound on the expected test error rate andthen use this bound to develop a theory to explain the success of Boosting.83



CHAPTER 4. MODERN THEORIES 844.1.1 The MarginThe margin of a MaVL is de�ned, at a point x in the predictor space, asM(x) = Weighted proportion of classi�cations, at x, to the correct class� Maximum weighted proportion of classi�cations, at x, to any of the other classes.For example, suppose we have a 3 class problem and, at a point in the predictor space, Class1 is the correct class. If the MaVL takes an unweighted majority vote over 100 classi�ersand, 50 votes are to Class 1, 30 to Class 2 and 20 to Class 3, thenM(x) = 50100 �max( 30100 ; 20100) = 0:2On the other hand if Class 2 were correct the margin would be �0:2 and if Class 3 were thecorrect class it would be �0:3.Notice that the margin has two characteristics.I. It is always between �1 and 1 andII. a correct classi�cation, at x, will be made i�M(x) > 0:A large positive margin can be interpreted as a con�dent classi�cation.We refer to the margin from a randomly chosen training data point as the TrainingMargin and the margin from a randomly chosen test data point as the Test Margin. Thesymbol D is used to indicate that the distribution is taken over test points (new data) andS to indicate that the distribution is over a randomly chosen training data point. So forexample PS(M(X) � 0) = P (Training Margin � 0) = Training Error Rateand PD(M(X) � 0) = P (Test Margin � 0) = Expected Test Error Rate:



CHAPTER 4. MODERN THEORIES 854.1.2 A Bound on the Expected Test Error RateBased on these de�nitions it is possible to prove a bound on the expected test error rate interms of the training margin.Theorem 9 (Schapire et al., 1997) Let D be the test distribution of interest and let S bea sample of n elements drawn independently at random from D. Assume that the BaseClassi�er used in the MaVL is �nite i.e. it can only take on jHj < 1 di�erent possibleoutcomes, and let � > 0. Then with probability at least 1 � � over the random choice oftraining sets S the following bound exists for all � > 0 :PD(M(X) � 0)| {z }Expected test error rate � PS(M(X) � �) +O 1pn � log(nk) log jHj�2 + log(1=�)�1=2!See Schapire et al., 1997 for the proof.This theorem tells us that with high probability the test error rate will be low, providedthere is high certainty of the classi�cations on most of our training data (PS(M(X) � �)is low for moderate �) and the Base Classi�er is not too complex (log jHj is not too large).Notice that the bound is independent of B, the number of votes, and the particular formof the Base Classi�er. This bound is potentially useful for two reasons :I. It is much easier to prove results about the training margin than it is for the expectedtest error rate. In Section 4.1.3 it is shown that AdaBoost can drive PS(M(X) � �)to 0. Therefore if a strong relationship between the training margin and the expectedtest error rate can be established this would be a large step towards explaining thesuccess of Boosting and perhaps MaVLs in general. Theorem 9 provides a relationshipbetween these two quantities but we will see empirical results in Section 4.2.3 thatsuggest this relationship is not all that strong in practice.II. In general it will be possible to calculate the training margin but not the test error rate.If a relationship between the test error rate and training margin can be establishedthis would allow us to predict the test error rate.4.1.3 A Bound on the Training MarginSchapire et al. also prove a bound on the training margin, when using AdaBoost.



CHAPTER 4. MODERN THEORIES 86Theorem 10 (Schapire et al., 1997) Suppose the Base Classi�er, when called by AdaBoost,generates classi�ers with weighted training errors �1; : : : ; �B. Then for any �, we have thatPS(M(X) � �) � 2B BYi=1q�1��i (1� �i)1+�Further more, if, for all i, �i � 1=2 � 
, for some 0 < 
 � 1=2, then the bound simpli�esto : PS(M(X) � �) � �q(1� 2
)1��(1 + 2
)1+��BProvided � < 
 the expression inside the parentheses is less than 1 so that PS(M(X) � �)will decrease to zero exponentially fast in B.See Schapire et al., 1997 for the proof.Together Theorems 9 and 10 provide strong motivation for the success of AdaBoost.Theorem 9 suggests that as PS(M(X) � �) decreases so will the test error rate and Theorem10 shows that AdaBoost works to drive PS(M(X) � �) to 0.4.1.4 Some ProblemsThere are at least two potential problems with the theory as it stands.I. Theorem 9 only provides a bound on the expected test error rate in terms of thetraining margin. This means that there is no guarantee that reducing PS(M(X) � �)will cause a reduction in the test error rate.II. Theorem 10 relies on the weighted training errors , �i, being bounded away from 1=2.This may not be the case in practice because AdaBoost tends to concentrate on moredi�cult points so the error rate may correspondingly increase.Of these two problems the former is the potentially more serious one. In practice the errorterm in the bound can be very large, often greater than 1. This means that the bound isnot even tight so, in theory, it is perfectly possible for PS(M(X) � �) to decrease but forthe error rate to remain constant or even to increase!



CHAPTER 4. MODERN THEORIES 874.2 How Well Does the Margin Bound Work?We have seen in the previous section that the bound proved in Theorem 9 implies, butdoes not guarantee, a relationship between the test error rate and PS(M(X) � �). In thissection we present experimental results to evaluate this relationship on real data.4.2.1 The Schapire ModelRecall that the bound proved in Theorem 9 is of the formExpected text error rate � PS(M(X) � �) +O(�)We know that in practice the bound is not tight because O(�) is often large. However, theimplication drawn in Schapire's paper is that even though the bound is not tight it still\gives correct qualitative predictions for the behaviour of the test error rate". This suggeststhe following relationship between the expected test error rate and the training margin.E(Test ErrorjT ) = PS(M(X) � �) +C� (4.1)We call this the Shapire Model. The model has two unknown parameters i.e. � and C�. If themodel is correct, it states that although the bound is not tight there is a constant di�erencebetween the test error rate and PS(M(X) � �) so that as PS(M(X) � �) decreases the testerrors will decrease at the same rate. The model implies that the objective in producing aclassi�er is to minimize PS(M(X) � �) for some positive value of �.4.2.2 The Training ModelNotice that a special case of the Schapire Model is achieved by setting � = 0. SincePS(M(X) � 0) = Training error ratethe Schapire Model reduces to :E(Test ErrorjT ) = Training error rate + C0 (4.2)



CHAPTER 4. MODERN THEORIES 88We call (4.2) the Training Model. It is a one parameter model with C0 being the onlyparameter. This is probably the simplest model you can imagine. It states that to reducethe test error rate we want to produce a classi�er with low training error rate. We canthink of this as the Null model.If the bound in Theorem 9 does \give correct qualitative predictions for the behaviourof the test error rate" then we would expect the Schapire Model to produce signi�cantlybetter predictions for the test error rate than using the Training Model. If this is not thecase it would cast severe doubt on the practical usefulness of this bound.4.2.3 An Experimental ComparisonIn order to evaluate the accuracy of the two models introduced in Sections 4.2.1 and 4.2.2an experimental study was performed. For the experiment we used the AdaBoost classi�eron the Letter data set (see Section 2.2.2). From a randomly chosen training data set the testerror rate was calculated for B between 1 and 100. Likewise the margin for each trainingdata point was recorded for the same values of B. This allowed the training error rate tobe computed for each value of B as well as PS(M(X) � �) for all � and B. The aim wasto produce the best �t of each model by choosing the parameters to minimize the squareddi�erence between the test error rate and the model prediction over the 100 values of B.Figure 4.1 shows a plot of the test error rate on this data set vs B. The red line is asmoothed version of the test error to give a clearer picture of the underlying trend. Figure4.2 shows the best �t of the Training Model to the test data (also smoothed) i.e. choosingC0 to minimize the squared discrepancy. It is clear that there are some signi�cant depar-tures of this model from the truth. The model vastly over predicts the error rate for smallvalues of B. It then declines much faster than it should and levels out while the error rateis still declining. As one might expect, there is some relationship between training errorand test error but it is not very strong.Figure 4.3 is a plot of the best �t of the Shapire model to the test data (smoothed) i.e.choosing C� and � to minimize the squared discrepancy. Unfortunately this model seems topossess many of the same problems as the Training Model. It is still over predicting errorsfor low values of B, declining too fast and then leveling o� long before the test error rate
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Figure 4.1: The actual test error rate and smoothed test error rate on the Letter data set.does. Overall the �t looks a little better but it certainly doesn't seem to be a signi�cantimprovement over our null model of just using the training error.In practice it seems that not only is the bound on the test error rate not tight, but itdoes not re
ect the true behaviour of the test error!4.3 The Normal ModelWe have seen in Section 4.2.3 that in practice the test bound does not seem to match theactual behaviour of the test error rate which casts doubt on Schapire's hypothesis. However,the Schapire Model suggested by the bound in Theorem 9 is only one, fairly restrictive, use
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Figure 4.2: The test error rate and predictions from the Training Model, both smoothed.of the training margin in predicting the test error rate. If we were to believe the SchapireModel it would suggest that there was some critical value, �. If the margin of a trainingpoint is below that value it will increase the test error but if it is above � then it will not. Inreality this seems unlikely. It seems far more likely that there is some continuous mappingof the training margin distribution to the test error rate.4.3.1 Developing the Normal ModelLet us more carefully examine the relationship betwee the expected test error rate and themargin. In order to simplify the notation, suppose we have n �xed test points (x1; g1); : : : ;
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Figure 4.3: The test error rate and predictions from the Schapire Model, both smoothed.(xn; gn). Then the expected test error is :E(Test ErrorjT ) = 1n nXi=1 P (C(xi) 6= gijT )where the expectation and probability are over the randomness from the classi�er. Forexample Bagging is a random classi�er because it bootstraps the training data. Now letMB(xi) = margin at xi after B iterations:Then C(xi) 6= gi i� MB(xi) � 0



CHAPTER 4. MODERN THEORIES 92So E(Test ErrorjT ) = 1n nXi=1 P (MB(xi) � 0jT )If we knew the distribution of MB(xi) we could, in principle, calculate the test error rateexactly. Of course in general this is a di�cult problem but it is possible to rewrite themargin as an average of random variables.MB(xi) = 1B BXj=1 �j(xi)where�j(xi) = 8>>>><>>>>:1 if the jth classi�er classi�es to the correct class�1 if the jth classi�er classi�es to the most popular of the other classes0 otherwiseFor certain classi�ers these random variables will be iid, conditional on the training data.A couple of examples are the Bagging and Substitution PICTs. In this case an applicationof the Central Limit Theorem tells us thatpB(MB(xi)� �i)) N(0; �i) (4.3)where �i = E�1(xi) and �i = V ar[�1(xi)].Even when the iid assumption is not met it often seems to be the case that the marginconverges to a normal random variable. For example, experimental studies indicate thatthe margin from AdaBoost also converges to a normal distribution.When (4.3) holds we know that :E(Test ErrorjT )! 1n nXi=1 � ��ip�i=B!If one assumes that B is large enough, so that we are close to convergence, and �i isapproximately equal for all i, this leads to an alternative use of the margin to predict the



CHAPTER 4. MODERN THEORIES 93test error rate which we call the Normal Model.E(Test ErrorjT ) = 1n nXi=1 � ��ip�=B! (4.4)4.3.2 Relating the Training and Test MarginsOf course this model involves �i i = 1; : : : ; n which are the means of the margins at eachof the test points and in general these will be unknown. However, it is possible to use themargins at the training points to predict the means of the test margins.There are many ways of doing this. For example, one might imagine that the marginof the test point xi is related to the margin of the closest training point in the predictorspace. We will denote the closest training point to xi as yi and the distance between themas di = jjxi � yijj. If di is small we would expect the training and test margins to be verysimilar but if di is comparatively large we would expect the test margin to be lower becauseit has not been used to train our classi�er. So we could use the following model :�i = E[M(xi)] =M(yi) + �0 � �1diwhere �1 is positive. However this model does not take into account the fact that we wouldexpect a much larger decline in the test margin if M(yi) is close to 1 and a much smallerdecline if M(yi) is close to �1. So instead we use the following model :E�M(xi)�M(yi)M(yi) + 1 � = �0 � �1di (4.5)which gives the following estimate for the mean of the test margin�̂i =M(yi) + �̂0(1 +M(yi))� (�̂1 + �̂1M(yi))di (4.6)�0 and �1 are assumed constant for the entire test set and �̂0 and �̂1 are their least squaresestimates. Thus the �nal form of the Normal Model is :
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Figure 4.4: The test error rate and predictions from the Normal Model, both smoothed.
E(Test ErrorjT ) = 1n nXi=1 � ��̂ip�=B! (4.7)This model involves three unknown parameters, �, �0 and �1 as opposed to the SchapireModel which involved estimating two unknown parameters, � and C�. Just as with theSchapire Model it is possible to optimize over these parameters to produce the best �t, insquared error terms, to the true test data. Figure 4.4 illustrates the best �t (smoothed). Itis clear that this model is mapping the true test error with much more accuracy than eitherthe Training Model or the Schapire Model even though only one extra parameter has beenused.



CHAPTER 4. MODERN THEORIES 954.3.3 Implications of the Normal ModelIf we believe that the Normal Model is correct there are some immediate implications.Recall E(Test ErrorjT ) = 1n nXi=1 � �ip�=B!Now we can examine the e�ect on the expected test error rate as we change the margin atany particular test point by di�erentiating with respect to �i.@E(Test ErrorjT )@�i = �rB� 1n� �ip�=B!= �pBc1 exp(�Bc2�2i )where c1 and c2 are positive constants.This means that :I. The error rate will always decrease as we increase �i.II. Increasing �i will cause a much larger decrease in the error rate if �i is close to zerorather than close to 1 or �1.III. Increasing �is that are close to zero and decreasing �is that are close to 1 by the sameamount (so the average margin is unchanged) will still reduce the error rate.This last result is interesting because it has been demonstrated empirically that whileAdaBoost works well at increasing low margins it tends to compensate by decreasing marginsthat are close to one (see Schapire et al., 1997). These results would explain why that is agood trade o� to achieve in practice.4.4 Conclusion4.4.1 The Schapire TheoriesSchapire et al.'s results proving bounds on the test error rate and also the training margin arevery interesting. They have opened up a whole new approach in the search to understand thebehaviour of MaVLs. However, they also have limitations. The largest of these limitations is



CHAPTER 4. MODERN THEORIES 96the lack of a tight bound on the test error. This means that, in theory at least, the behaviourof the test error rate does not need to match that suggested by the bound. In Section 4.2.3we saw that in practice the test error rate does not seem to match the behaviour suggestedby the bound.4.4.2 The Normal TheoryIn Section 4.3 it became apparent that it is possible to use the training margin to modelthe test error rate by using the Normal Model. This model seems to possess the necessary
exibility to match the behaviour of the test error without involving too many parameters.In Section 4.3.3 it was shown that the model also provides some explanations for the successof AdaBoost. However, there are also problems with the Normal Model :I. While experimental observation seems to validate the model, there is a limited amountof theory to back it up. For many classi�ers the model (4.4) will be asymptoticallycorrect. However, the relationship between test margins and training margins givenin (4.5) has no strong theoretical justi�cation, even though empirically it seems towork well. It is an open problem as to whether a relationship similar to (4.5) can beproved. If so this would provide more theoretical motivation for the Normal Model.II. The model implies that a decrease inE "� ��ip�=B!# (4.8)will cause a decrease in the test error rate. However, there is no theory to guaranteethat a MaVL will cause (4.8) to decrease. The bound proved in Theorem 10 is notenough to guarantee that AdaBoost will reduce (4.8).Despite these problems it seems clear that the Normal Model has potential which deservesfurther exploration.4.4.3 Other Modern TheoriesThe Modern theories are still at an early stage. Breiman has written a couple of papers(Breiman, 1997 and Breiman, 1998) with a similar approach to that of Schapire's. He de-�nes a quantity which he calls the Edge. The edge is equivalent to the margin for a two



CHAPTER 4. MODERN THEORIES 97class case but is slightly di�erent for larger numbers of classes.Breiman, 1997 also produces empirical results which seem to cast doubt on the useful-ness, in practice, of Schapire's theories.4.5 Thesis Summary and ConclusionIn Chapter 2 we surveyed a number of MaVLs and PICTs. It was clear from Section 2.6that these classi�ers can often produce signi�cant reductions in error rates. We also pro-vided motivation for the ECOC PICT in terms of an approximation to the Bayes Classi�er.However, no explanation was given as to why this should be a good approximation or indeedwhy any of these classi�ers should work as well as they do. Chapters 3 and 4 are devotedto attempting to answer this question.In Chapter 3 an approach involving generalizations of bias and variance to classi�cationproblems is used. This method has a great deal of intuition to statisticians and potentiallyallows the use of the mountain of work that has been produced for regression problems.Unfortunately it seems that when an attempt is made to generalize bias and variance be-yond squared error loss most of the regression results fail to generalize. In particular thereis no clear decompostition of the prediction error into functions of bias and variance.In Chapter 4 an alternative approach is used. Here a quantity called the margin is de-�ned and bounds on the test error rates are proved in terms of the training margin. Basedon these bounds a theory is developed to explain why AdaBoost produces reductions in er-ror rates. Unfortunately the bounds are not tight and empirical results cast doubt on theirpractical usefulness. Another use of margins is also suggested which we call the NormalModel. This approach has the advantage that it appears to match the behaviour of the testerror rate with high accuracy. However, it has less theoretical motivation.Both the Classical and Modern theories produce useful insights into the success ofMaVLs. However, it is our belief that, no individual approach provides a comprehensiveexplanation. It is still an open question as to why these methods work so well.



Appendix ATheorems and ProofsLemma 1 If one uses a deterministic coding matrix and the Bayes Classi�er as the BaseClassi�er then Li =Xl 6=i ql BXj=1(Zlj � Zij)2 i = 1; : : : ; kProofFirst note that p̂j = KXl=1 qlZljwhen we use the the Bayes Classi�er as the Base Classi�er.Now Li = BXj=1 jp̂j � Zij j= BXj=1 (Zij(1� p̂j) + (1� Zij)p̂j)= BXj=1 Zij(1� KXl=1 qlZlj) + (1� Zij) KXl=1 qlZlj!= BXj=10@Zij(1� qi �Xl 6=i qlZlj) + (1� Zij)Xl 6=i qlZlj1A98
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= BXj=10@Zij(Xl 6=i ql �Xl 6=i qlZlj) + (1� Zij)Xl 6=i qlZlj1A= Xl 6=i ql BXj=1[Zij � 2ZijZlj + Zlj]= Xl 6=i ql BXj=1(Zlj � Zij)2 since Zij = Z2ij



APPENDIX A. THEOREMS AND PROOFS 100Theorem 1 The ECOC PaCT is Bayes Consistent i� the Hamming distance between everypair of rows of the coding matrix is equal.To prove this theorem we need to make use of the following Lemma.Lemma 2 Let d = Aq. Consider the following situationargmini di = argmaxi qi 8qi (A.1)(A.1) will hold i� A is of the formA = 2666664 a1 a2 + b � � � ak + ba1 + b a2 � � � ak + b... ... . . . ...a1 + b a2 + b � � � ak
3777775 = 1(a+ b)T � bIwhere b is a positive scalar and a = (a1; a2; : : : ; ak)T is a vector of the diagonal elements ofA.Proof of LemmaFirst note that we can assume without loss of generality that every diagonal element of Ais zero because subtracting ai from the ith column of A simply subtracts aiqi from everyelement of d and leaves (A.1) una�ected.()) d = Aq = 1(aTq+ bTq)| {z }scalar � bq) di = constant� bqiSo (A.1) holds.(() Now suppose (A.1) holdsConsider �rst the situation with k = 2



APPENDIX A. THEOREMS AND PROOFS 101So we get a12q2 = d1a21q1 = d2If a12 is negative then (A.1) does not hold (eg q1 = 0 and q2 = 1 will violate (A.1)). Likewiseif a21 is negative (A.1) will not hold. Also if a12 and a21 are both positive but a12 > a21then (A.1) does not hold (eg q1 = 1 and q2 = 1=2(1 + a21a12 )). And similarly for a12 < a21.Therefore (A.1) implies a12 = a21 > 0 so the lemma holds for k = 2Next consider the situation with k = 3We can reduce this back to the case k = 2 by setting one of the q's to zero e.g.2664 0 a12 a13a21 0 a23a31 a32 0 37752664q10q33775 = " 0 a13a31 0 #"q1q3#and we know for k = 2 the o� diagonals are equal and positive so A must be positive andsymmetric of the form 2664 0 a12 a13a12 0 a23a13 a23 0 3775However we also know that the row sums must be equal. To see this note that if not bysetting qi = 1 for all i we get di not all equal. By taking the maximum di and adding � toqi we �nd that qi is now the maximum but di is not the minimum! Therefore (A.1) impliesthe row sums must be equal.Hence a12 + a13 = a12 + a23 = a13 + a23 which means a12 = a13 = a23 > 0 so (A.1) holdsfor k = 3.We are now ready to consider the situation for general k



APPENDIX A. THEOREMS AND PROOFS 102First note that we can reduce any general k matrix to one with k = 3 by setting all but threeof the q's to zero. So for example we can reduce A to the upper 3 by 3 matrix by settingqi = 0 for i > 3. So from our previous work we know a12 = a13 = a21 = a23 = a31 = a32 > 0.Now we can repeat the same process by setting q1 = 0 and qi = 0 for i > 4 this gives us the3 by 3 matrix formed from the 2'nd, 3'rd and 4'th rows and columns. So again we knowa23 = a24 = a32 = a34 = a42 = a43 > 0. But a12 = a13 = a23 etc so we know that allthe elements in the �rst four rows and columns are equal and positive. By repeating thisprocess for all combinations of rows we can see that every element on the o� diagonal mustbe equal and positive.Thus we have proved the Lemma.Now we are ready to prove the theoremProof of TheoremFrom the Lemma 1 we know Li =Xl 6=i ql BXj=1(Zlj � Zij)2when we use the Bayes Classi�er as the Base Classi�er. SoL = 2666664 0 a12 � � � a1Ka21 0 � � � a2K... ... . . . ...aK1 aK2 � � � 0
37777752666664 q1q2...qK

3777775where ail is equal to PBj=1(Zlj � Zij)2Now from Lemma 2 we know that the ECOC PICT is Bayes Consistent i� ail are equaland positive for all i; l. But note that Pnj=1(Zlj � Zij)2 is equal to the Hamming distancebetween row i and l of the coding matrix so we are done.



APPENDIX A. THEOREMS AND PROOFS 103Theorem 2 Suppose thatET [p̂j j Z;X] = kXi=1 Zijqi = ZjTq j = 1; : : : ; B (A.2)Then under this assumption for a randomly generated coding matrixET ;Z �Di = qi i = 1; : : : ; kProofLet Dij = 1� 2jp̂j � Zijj then �Di = 1B BXj=1DijWe only need to prove ET ;ZDij = qi.ET ;ZDij = 1� 2ET ;Z j p̂j � Zij j= 1� 2EZl6=i [ET ;Zi(j p̂j � Zij j j Zlj : l 6= i)]but ET ;Zi(j p̂j � Zij j j Zlj : l 6= i)= 12ET (p̂j j Zij = 0; Zlj : l 6= i) + 12ET (1� p̂j j Zij = 1; Zlj : l 6= i) by iid= 12Xl 6=i Zljql + 12(1� qi �Xl 6=i Zljql) from (A:2)= 12(1� qi)So ET ;ZDij = 1� 2(12(1� qi)) = qi



APPENDIX A. THEOREMS AND PROOFS 104Theorem 3 Suppose that argmaxi �i is unique i.e. there are no ties in the �s. Then for arandom coding matrix, conditional on T , the following results hold for any Base Classi�er.I. pB( �Di � �i)) N(0; �2i ) i = 1; : : : ; kII. �Di ! �i a.s. i = 1; : : : ; kIII. limB!1 argmaxi �Di = argmaxi �i a.s.ProofI. Conditional on T , �Di is an average of iid random variables with mean �i and �nitevariance. Therefore the Central Limit Theorem gives us the result.II. Conditional on T , �Di is an average of iid random variables with mean �i and �nitevariance. Therefore the Strong Law of Large Numbers gives us the result.III. Let Ai be the set of ! such that �Di(!) ! �i. From the previous theoem we knowP (Ai) = 1. Let A = A1 \ � � � \ AK . Then P (A) = 1 by basic prob theory results.Assume WLOG that �1 is the unique maximum � and that �1 � �i > � for all i 6= 1.Then for any ! 2 A there exists B0 such that for all B > B0 j �Di(!) � �ij < �=2 forall i and hence argmaxi �Di(!) = argmaxi �i. Therefore since P (A) = 1 the result isproved.



APPENDIX A. THEOREMS AND PROOFS 105Theorem 4 When the Bayes Classi�er is used as the Base Classi�er�i = qi (A.3)ProofTo prove the above theorem we only need to proveEZ [Dij jT ] = qiwhen we use the Bayes Classi�er as the Base Classi�er. First note that when we use theBayes Classi�er p̂j = kXi=1 qiZij (A.4)Now EZ [Dij jT ] = 1� 2EZ j p̂j � Zij j= 1� 2EZl6=i [EZi(j p̂j � Zij j j Zlj : l 6= i)]but EZi(j p̂j � Zij j j Zlj : l 6= i)= 12EZi(p̂j j Zij = 0; Zlj : l 6= i) + 12EZi(1� p̂j j Zij = 1; Zlj : l 6= i) by iid= 12Xl 6=i Zljql + 12(1� qi �Xl 6=i Zljql) from (A.4)= 12(1� qi)So EZ [Dij jT ] = 1� 2(12(1� qi)) = qiCorollary 1 is a consequence of Theorems 3 and 4.



APPENDIX A. THEOREMS AND PROOFS 106Theorem 5 If the coding matrix is randomly chosen then, conditional on T , for any �xedX jECOC error rate� Limiting error ratej � PrZ(argmaxi �Di 6= argmaxi �ijT )� (k � 1)e�mBwhere m = (�(k) � �(k�1))=8 and �(i) is the ith order statistic.Proof jECOC error rate� Limiting error ratej= jEZ [Ifarg maxi �Di 6= Y gjT ]�EZ [Ifarg maxi �i 6= Y gjT ]j� EZ [Ifargmaxi �Di 6= argmaxi �igjT ]= PrZ(arg maxi �Di 6= argmaxi �ijT )Assume WLOG that argmaxi �i = 1. ThenPr(argmaxi �Di 6= argmaxi �i) = 1� Pr( �D1 > �D2; � � � ; �D1 > �DK)� kXi=2 Pr( �D1 < �Di)So we only need to show Pr( �D1 < �Di) � e�mB for i = 2; : : : ; k butPr( �D1 < �Di) = Pr( �Di � �D1 � (�i � �1) > (�1 � �i))= Pr( 1B BXj=1(Dij �D1j)� (�i � �1) > �1 � �i)� e�B(�1��i)=8 by Hoe�ding's inequality� e�mBwhere m = (�(k) � �(k�1))=8. The second to last line follows becuase �2 � Dij �D1j � 2.See Theorem 2, page 16 of Hoe�ding, 1963 for further details.Corollary 2 follows directly from Theorems 4 and 5.



APPENDIX A. THEOREMS AND PROOFS 107Theorem 6 The Regression PICT is Bayes Consistent for any coding matrix, providedZZT is invertible. In other words if the Base Classi�er is producing perfect two classprobability estimates the Regression PICT will produce perfect k class probability estimates.ProofFirst note that when we use the Bayes Classi�er as the Base Classi�erp̂ = ZTqThe Regression PICT classi�es to argmaxi q̂i whereq̂ = (ZZT )�1Zp̂So showing that q̂ = q is su�cient. Butq̂ = (ZZT )�1ZZTq = qso provided ZZT is invertible the Regression PICT is Bayes Consistent.



APPENDIX A. THEOREMS AND PROOFS 108Theorem 7 Suppose that pij is independent from Zj (the jth column of Z), for all i andj. In other words the distribution of pij conditional on Zj is identical to the unconditionaldistribution. Then EZ [pSi j T ] = EZ [ �Di j T ] = �iTherefore as B approaches in�nity the ECOC PICT and Substitution PICT will convergefor any given training set; i.e. they will give identical classi�cation rules.ProofSince �Di = 1B BXj=1Dij and pSi = 1B BXj=1 pijwe just need to show EZ [Dij jT ]�EZ [pijjT ] = 0EZ [Dij jT ]�EZ [pij jT ]= EZ [1� 2jp̂j � Zij j � pijjT ]= EZ [1� 2(1� proportion in same super group as i for column j)� pijjT ]= EZ [pij + 2 kXl 6=i Ifl in same super group as i for column jgplj � 1jT ]= EZ [pij jT ] + 2 kXl 6=i EZ [Ifl in same super group as i for column jgplj jT ]� 1= EZ [pij jT ] + 2 kXl 6=i EZ [Ifl in same super group as i for column jgjT ]E[plj jT ]� 1(by independence)= EZ [pij jT ] + 2 kXl 6=i 12EZ [plj jT ]� 1= EZ [pij jT ] + (1�EZ [pijjT ])� 1= 0



APPENDIX A. THEOREMS AND PROOFS 109Theorem 8 Under the previously stated semi-parametric model assumptions (3.4) and(3.5) will hold i� � < 
 (� is small relative to 
) (A.5)and B � 1� �
 � � (B is large enough) (A.6)Further more if k = 2 (there are only 2 classes) then (A.5) and (A.6) are su�cient toguarantee a reduction in the error rate.First we show that (A.5) and (A.6) hold i� (3.5) holds.V ar(pSi ) = V ar( 1B BXj=1 pij)= 1B2 [ BXj=1 V ar(pij) +XXj 6=lCov(pij ; pil)]= 1B [V ar(pi1) + (B � 1)Cov(pi1; pi2)]= 1BV ar(pi1)(1 + (B � 1)�)So �S�S � �T�T, V ar(pTi )�S2�T 2 � V ar(pSi ), V ar(pTi )�S2�T 2 � 1BV ar(p1i )(1 + (B � 1)�), 
 � 1B (1 + (B � 1)�), B � 1� �
 � �and � < 




APPENDIX A. THEOREMS AND PROOFS 110Next we show that (3.5) holds i� (3.4) holds.CV (pSi � pSj ) = vuut V ar(pSi � pSj )(E(pSi � pSj ))2= vuut V ar(�S [f(qi)� f(qj)] + �S[�Si � �Sj ])(E(�S [f(qi)� f(qj)] + �S[�Si � �Sj ]))2= �S�Ss V ar(�Si � �Sj )(E(f(qi)� f(qj)))2� �T�Ts V ar(�Ti � �Tj )(E(f(qi)� f(qj)))2 by (3.5) and equailty of error distributions.= CV (pTi � pTj ) (just work backwards)
Last we show that (3.5) implies a lower error rate for a two class problem. To do this we�rst show that (3.5) implies Pr(argmax pSi = argmax qi) � Pr(argmax pTi = argmax qi)and then note that for a two class problem this guarantees a lower error rate. It seemslikely that even if k > 2 this condition will also cause a lower error rate.Assume WLOG that argmax qi = 1Pr(argmax pSi = argmax qi)= Pr(pS1 > pS2 ; : : : ; pS1 > pSk )= Pr(pS1 � pS2 > 0; : : : ; pS1 � pSk > 0)= Pr(�S(f(q1)� f(q2)) + �S(�S1 � �S2 ) > 0; : : : ; �S(f(q1)� f(qk)) + �S(�S1 � �Sk ) > 0)= Pr(�S1 � �S2 > �(f(q1)� f(q2))�S�S ; : : : ; �S1 � �Sk > �(f(q1)� f(qk))�S�S )= Pr(�T1 � �T2 > �(f(q1)� f(q2))�S�S ; : : : ; �T1 � �Tk > �(f(q1)� f(qk))�S�S )(because �T and �S have identical distributions)� Pr(�T1 � �T2 > �(f(q1)� f(q2))�T�T ; : : : ; �T1 � �Tk > �(f(q1)� f(qk))�T�T )(provided (3.5) holds)= Pr(argmax pTi = argmax qi) (just work backwards)
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