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Abstract

This paper is concerned with classifying high dimensional data into one of two categories.

In various settings, such as when dealing with fMRI and microarray data, the number of vari-

ables is very large, which makes well-known classification techniques impractical. The num-

ber of variables might be reduced via principal component analysis or some robust analog, but

these methods are usually unsatisfactory for the purpose of classification because they are un-

supervised learning methods and not designed to minimize classification errors. In this paper,

we propose a classification guided dimensionality reduction approach incorporating a stochas-

tic search algorithm in order to look for a “good” subspace in the context of classification. Two

different versions of the simulated annealing algorithm are implemented to produce sparse and

dense models, respectively. Using data from both simulation and real world studies, situations

are found where the misclassification rate can be reduced by the proposed approach.
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1 Introduction

A classic problem in data analysis is classifying high dimensional data into multiple predefined

categories. In particular, two-group classification problem has received a great deal of attention.
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Many methods have been proposed. But in various situations, especially when analyzing data with

a small sample size relative to the number of predictors (e.g. medical image, genetic microarray,

chemometrics and text classification), many classification techniques become impractical. For ex-

ample, Fisher’s discriminant analysis is not applicable if the number of input variables is greater

than the number of observations. Other methods, even some sophisticated methods, such as neural

networks (NN) and support vector machines (SVM), do not explicitly require the data dimension

smaller than the sample size, but give poor classification accuracy in practice when the data dimen-

sion is ultra high, as in fMRI and microarray data. Moreover, for the sake of model simplicity, a

concise relationship between input variables and the response is required to achieve a better model

interpretation.

A natural way to deal with high dimensional classification problems is to first reduce the data to

a lower dimensional subspace and then apply some standard classification strategy, such as linear

discriminant analysis or logistic regression (LR), to the reduced data. Data reduction as the first

step is usually done by applying principal component analysis (PCA) (Hotelling, 1933; Pearson,

1901) or perhaps some robust analog. Given an input data matrix X∈Rn×d , classical PCA (CPCA)

finds a small number p of linear combinations of the d input variables that capture most variability

in the data. In other words, CPCA looks for a p-dimensional linear subspace that minimizes the

sum of squared errors measured by the squared distances from the data points to the subspace.

As is known, CPCA is very sensitive to outlying points, because it computes eigenvalues and

eigenvectors based on the conventional covariance matrix. Consequently, there might be situations

when the components explain a structure created by a relatively small number of outliers.

In recent years, several robust versions of PCA have been developed, such as the minimum vol-

ume ellipsoid (MVE) (Rousseeuw, 1985), the minimum-covariance determinant (MCD) estimator
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(Rousseeuw, 1984) and the ROBPCA method (Hubert et al., 2005).

However, PCAs can perform poorly on the reduced data, even if a robust version is applied,

because any unsupervised data reduction procedure can result in the loss of classification informa-

tion. This is because unsupervised learning methods such as PCAs do not make use of the response

variable, and hence may exclude components with little variance but a great deal of group infor-

mation. A good data reduction method for classification would look for the optimal subspace that

contains the most group information in the setting of supervised learning.

In this paper, we propose a classification guided dimensionality reduction approach that seeks

a lower dimensional subspace that minimizes the misclassification error. By employing stochastic

search algorithms, this approach uses the misclassification error to adjust the choice of the reduced

subspace. Two stochastic search algorithms using simulated annealing are proposed to search for a

good projection that projects the original high-dimensional data onto a lower dimensional subspace

in the context of classification.

For difficult optimization problems, such as looking for the optimal subspace for classifica-

tion, stochastic search are a natural approach. In order to reduce the data space in the setting

of supervised learning, stochastic search algorithms have been previously implemented to perform

variable subset selection in linear regression (George and McCulloch, 1995; Ntzoufras et al., 1997;

Yi et al., 2003). One difficulty with these approaches is the prior specification which requires con-

textual interpretations of a large number of parameters. Another problem is that for variable subset

selection methods in general, they only obtain relevant variables from a set of more complex vari-

ables, so they usually have difficulties in assessing the joint effect of multiple variables and can

exclude potentially valuable variables which are not predictive individually but may provide sig-

nificant values in conjunction with others. Instead of selecting a subset of input variables, we look
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for lower-dimensional directions that make the projected data optimally classified using simulated

annealing algorithms.

Unlike PCAs, the proposed method takes into account the response variable, and hence result

in less loss of information than PCAs. We introduce two different simulated annealing algorithms,

representing dense and sparse models, respectively. Both versions search for the optimal subspace

of the data space with different levels of sparsity restrictions. Similarly to PCAs, the dense version

may perform well on multicollinearities which commonly occur in high dimensional data, while

the sparse version is more akin to variable selection and may deal well with informative variables

and provide better interpretation. Furthermore, the proposed method makes fewer assumptions

about distributions of the input data and the response. The proposed method can be used in con-

junction with virtually any classification procedure. In this paper we mainly focus on examining

the relative performance of the proposed method incorporated with LR, SVM and k-nearest neigh-

bors (kNN).

The rest of the paper is organized as follows. In Section 2, we illustrate the idea of the

simulated annealing based projection method, which attempts to project the data onto a lower-

dimensional subspace with the goal of minimizing classification errors. We propose two different

simulated annealing (SA) algorithms. In Section 3, we examine the performance of the proposed

method in classification tasks on two simulation studies and two real-world studies. A further

comparison of the simulated annealing based projection method with some modern classifica-

tion techniques, such as margin trees (MT) (Tibshirani and Hastie, 2007), SVM (Vapnik, 1998),

k-nearest neighbors (kNN) (Fix and Hodges, 1951), neural networks (NN), partial least squares re-

gression (PLSR) (Wold, 1966) and boosting (Freund, 2001), will also be provided. In Section 4 we

investigate the empirical convergence rate and the solution similarity for the proposed method. A
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discussion of the significance and limitations of the proposed method will be presented in Section

5.

2 Methodology

Let Xn,d be a d-dimensional data set, where n is the sample size and d is the number of variables.

Write X = [x1,x2, . . . ,xd], where x j, j = 1, . . . ,d, is the jth component of X. Since all vectors

are assumed to be column vectors, we write Xi = [xi,1, . . . ,xi,d]
T . Hence, the ith row of X is XT

i .

Given p < d, the goal is to find a p-dimensional subspace of the original data that minimizes the

classification error. In this paper, we use a 0-1 loss function indicating the misclassification rate

(MCR), denoted by ê. Note that other options to evaluate the classification error, such as Gini

index and entropy, can also be used. Let A be a d× p transformation matrix. The p-dimensional

subspace can be obtained by the following transformation:

Zn,p = Xn,dAd,p. (1)

Equation (1) means that each of the p columns of A linearly transforms X into a single dimensional

space. Hence A transforms X into a p < d-dimensional subspace, Z. Ideally, A should be chosen

to minimize MCR. Note that for different classification methods, there might be different ideal

A’s. However, finding the best subspace for a specific classification model is difficult to achieve in

practice because A represents a very high dimensional parameter space (d-by-p dimensional). In

this paper, we introduce simulated annealing algorithms for seeking a good A that discriminates

between two classes given a pre-selected classification method.
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2.1 Simulated Annealing

Simulated annealing (SA) is a generic stochastic search algorithm for global optimization prob-

lems derived by Kirkpatrick et al. (1983). As its name suggests, SA is inspired by annealing in

metallurgy. At the beginning of the annealing process, a metal is heated to enable the diffusion

of atoms to break bonds. As the temperature cools down slowly, the metal progresses towards its

equilibrium state and thus achieves better physical properties. By mimicking this physical process,

SA inherits the “temperature” concept. In each step of SA, it replaces the current solution with

a random neighborhood solution with a probability that depends on the difference between the

current solution and the new solution, and the temperature parameter T . The T should be large at

the beginning and gradually decreased during the process. By doing this, the current solution can

be randomly replaced at the beginning. This helps the algorithm escape from local optima. As T

decreases, the algorithm is more likely to accept “good” solutions and discard “bad” ones. The SA

algorithm has been theoretically proven to reach global optima with probability one (Geman and

Geman, 1984).

2.2 Simulated Annealing Algorithm

As a heuristic algorithm, simulated annealing has been employed to solve global optimization

problems. Xie et al. (1993) experimented with SA techniques for finding the optimal directions

of projection pursuit based PCA. In our setting, we use SA to guide the search of A towards the

directions that minimize MCR. The algorithm starts with an initial transformation matrix A(0).

According to Bohachevsky et al. (1986), the final results from SA are not significantly affected by

the choice of the starting point. In our exploratory experiments, we tried two initial transformation

matrices. One is a randomly generated matrix, and the other is the first p columns of the loading
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matrix from PCA. We found the results are very similar. We will illustrate this point in Section 4.

Hence, in our studies, all initial matrices are used as the first p columns of the loading matrix from

PCA. Write the initial projection as A(0) = [a(0)1 ,a(0)2 , . . . ,a(0)p ] and the resulting lower-dimensional

space as Z(0). One would then apply a preselected classification method and compute MCR, ê(0),

based on Z(0). There are many classification techniques can be applied, such as LR, SVM and

kNN. The main goal for this paper is to investigate the effectiveness of the proposed algorithm

given a classification method is chosen. That is, the proposed method can find a proper reduced

subspace based on the chosen classification method.

Suppose that the projection matrix is A(l) = [a(l)1 , . . . ,a(l)p ] in the lth step of SA. We propose two

approaches to generate the new transformation matrix in step (l + 1). The first approach, which

we call SA-Dense, produces a relatively dense transformation matrix, A. By a dense matrix here

we refer to a matrix with few zero or close-to-zero elements. Let a scalar ∆r be the step size and

v = [v1, . . . ,vd]
T be a d-dimensional column vector representing a random direction. Each element

of v is given by

v j =
u j

||u||
, (2)

where u j ∼N (0,1), j = 1, . . . ,d, || · || is the L2-norm, and u = [u1, . . . ,ud]
T . Randomly select

column a(l)j of A(l), and compute a new column anew
j by

anew
j = a(l)j +∆rv. (3)

Use anew
j to substitute a(l)j , and then obtain a new matrix Anew = [a(l)1 , . . . ,anew

j , . . . ,a(l)p ].

The second approach, which we call SA-Sparse, results in a sparse transformation matrix with

most elements close to zero. These close-to-zero elements contribute little to projecting the data,

hence we can ignore these elements and consider the transformation matrix sparse. Instead of
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revising the whole random column of the current projection matrix, it revises elements of A(l)

independently each with a small probability, ρ . If the (i, j)th element of A(l), a(l)i, j , is replaced, it is

replaced by anew
i, j = a(l)i, j + v, where v∼N (0,σ2). We then rescale the new transformation matrix

Anew to make each column of length one. Here σ is a tuning parameter, which is similar to the

step size in the SA-Dense algorithm. When σ is small, after rescaling, the transformation matrix

changes slightly and it will still be a dense matrix. However, when σ is big, after rescaling, the

revised elements will dominate the whole column, so that A becomes relatively sparse. Hence, σ

is a tuning parameter which adjusts the sparseness of the transformation matrix. By adjusting σ ,

we can set the algorithm from highly dense to highly sparse. In this paper, we mainly examine

properties when A is sparse, i.e. σ is large, as oppose to the SA-Dense approach.

The acceptance for Anew is based on the cross-validation (CV) error on the data. We use a 10-

fold CV method in this paper. That is, for an Anew, the corresponding reduced subspace is divided

into 10 folds. For each of 10 experiments, use 9 folds for training and the remaining one fold for

testing. Then the CV error, ênew, is the average over all 10 errors on the test folds. Define the

perturbation of ê by ∆ê = ênew− êl . If ∆ê < 0, the projection matrix Anew is better than the current

one and is accepted. So let A(l+1) = Anew. If ∆ê≥ 0, then accept Anew with probability

ql = exp
(
−∆ê

Tl

)
, (4)

where Tl is a decreasing sequence (called temperature), so that the search space becomes smaller.

Let 0 < b < 1 be a constant associated with the lth iteration of the method representing the de-

creasing rate. After L steps (e.g., 20 or 30), the temperature decreases at a rate 1−b. Repeat this

process I times until it meets some termination criterion (e.g., a pre-defined number of steps).

Systematically, the SA algorithm can be described as follows:
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1. Given p, generate A(0) from CPCA, and compute ê0. Initialize T0, L, b, and ∆r (or ρ and

σ ).

2. Do until l = I.

(a) If l is a multiple of L, Tl+1← bTl; otherwise, Tl+1← Tl .

(b) Use either algorithm 1 or 2 to obtain a new projection matrix Anew.

(c) Compute ênew from Anew.

(d) If ∆ê < 0, A(l+1) = Anew and êl+1 = ê; otherwise, accept it with probability ql .

(e) Set l← l +1.

3. End do.

2.3 Tuning parameters

We have several tuning parameters in our algorithms. First and foremost, the choice of the number

of components p has a significant effect on the results. In general p can be set to be either greater

or smaller than the sample size, but in practice p should be selected to be cost-effective. Certainly,

a smaller p will have less computational expense, but if p is too small, there will be more chance of

excluding important information. As p increases, information loss will be reduced, but the chance

of including unnecessary variables and components will increase. The inclusion of unnecessary

variables will complicate or mask the group structure and hence destroy the classification accuracy

(Tadesse et al., 2005). In addition, the computational cost will increase too. Therefore, p should be

selected as a good balance between computational time and classification accuracy. In this paper,

we mainly explore when p is given, the merits of the proposed method relative to other unsu-

pervised data reduction methods such as CPCA. In our simulation studies we examine the model
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performance by selecting different values of p. In real world studies, some empirical knowledge

about p may be applied. For example, in fMRI studies, we may have prior knowledge about how

many brain regions might contribute to a specific task. And that number would be the best prior

guess of p. On our real examples, we will investigate several values for p that may be appropriate.

Another important tuning parameter is the number of iterations, I. We choose to use I = 2000

based on our experiments. On the one hand, we will see in the next section when using I = 2000,

ê has already converged to some low level for both simulated and real world data. For some

moderate-scale data, an even smaller I can be used (e.g., in our simulated data example when

d = 50). On the other hand, an ultra large I may cause overfitting problems which we demonstrate

in Section 4.

There are additional tuning parameters in the SA algorithms. In the SA-Dense algorithm, ∆r is

a constant that reflects the precision of the optimization results. The magnitude of the step size ∆r

depends on the properties of the objective function that we want to minimize. The determination

of ∆r depends on some experimentation, as well as the decreasing speed of Tl . A good value for

∆r is one that allows the algorithm to escape from a local minimum in a few steps, normally 2-3

steps (Bohachevsky et al., 1986). In our settings, the transformation matrix has unit length. So the

value of ∆r should not be larger than 1. We examined many values of ∆r and found that as long

as it is not too small (< 0.1) or too large (> 0.8), the results are not influenced much. We use

∆r = 0.5 in our examples. In the SA-Sparse algorithm, the choice of ρ should be some number

between 1/(d p) and d/(d p), because we expect that there should be at least one element and at

most d elements to be changed at each step. Setting it between 1/(d p) and 1/p will maintain an

expected number of updates between 1 and d. In particular, in this paper, we choose ρ = 1/p to

obtain roughly the same degree of modification as with SA-Dense. In order to make comparisons
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to the SA-Dense algorithm, we choose σ = 10 to make the transformation matrix relatively sparse.

Note that by choosing different values of σ , the model can be set to different sparsity levels.

The initial T0 should be high enough to make q0 in Equation (4) lie between 0.5 and 0.9 (Bo-

hachevsky et al., 1986). Hence T0 = 1 is used. Note that the smaller the Tl , the smaller the prob-

ability of transition from a lower ê state to a higher one. The constants b and L should be chosen

so that ql will be close to zero at the end of the process. This means near the end of the process

almost all bad moves will be rejected and the search space will be located in a small region. As

for the implementation of SA algorithms, b = 0.9 and L = 30 guarantee the procedure cools down

gradually.

As for tuning parameters in the classification models, since our goal is to demonstrate that

the proposed method dominates unsupervised methods such as conventional PCA and robust PCA

given a specific classification strategy, we do not pay too much attention to the choice of tun-

ing parameters for classification models. However, we examine several different combinations of

parameters, and choose a roughly good set of parameters for the classification model.

3 Applications

Using data from two simulation studies and two real world studies, this section investigates the

relative merits of the proposed method versus CPCA and a robust version of PCA, the ROBPCA

method (Hubert et al., 2005). In order to show data reduction is prerequisite to classification in

ultra high dimensional data, we also implement seven widely used classification methods: logistic

regression (LR), support vector machine (SVM), k-nearest neighbor (kNN), neural network (NN),

partial least squares regression (PLSR), margin tree (MT), and boosting, on the full dimensional

data. Results show that the proposed method obtained better results than all other approaches on
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most of the examples.

3.1 Simulated Data I

In this study, we start by simulating 20 training data sets with each having 100 observations from

a multivariate g-and-h distribution with g = h = [0.5, . . . ,0.5]T ∈ Rd , where d = 50. This is

a skewed, heavy-tailed distribution that has a large departure from normality. In symbols, the

marginal g-and-h distribution can be generated by

τg,h(Z) =


(

exp(gZ)−1
g

)
exp
(

hZ2

2

)
g 6= 0,

Z exp
(

hZ2

2

)
g = 0

(5)

where Z has a standard normal distribution. Let Σ be an arbitrary covariance matrix and µµµ be an

arbitrary location. The general multivariate g-and-h distribution is represented as

X = Σ
1/2

τττg,h(Z)+µµµ, (6)

where Z = [Z1, . . . ,Zd]
T and τττ = [τg1,h1, . . . ,τgd ,hd ]. For more details about the g-and-h distribution,

see Field and Genton (2006); Wilcox (2005).

In this simulation we let µµµ be the zero vector. In order to introduce multicollinearity, we let

the diagonal elements of Σ be 1 and the off-diagonal elements be 0.5. Furthermore, we rescaled

the first p = 5 columns to have a standard deviation of 10. In principle PCAs should be able to

extract linear combinations of the first p columns. The projection matrix obtained by PCAs should

be similar to [B1,0p×(d−p)]
T , where B1 ∈ Rp×p is some full rank squared matrix. We create two

scenarios, which match PCAs’ working mechanism to different degrees.

In scenario 1, we design the true transformation matrix A1 = [Ip,0]T . And the true reduced
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data is denoted by Z1. It is easy to see that Z1 will only contain the information from the first p

columns of X. Presumably, PCAs should perform well on Z1, because all group information is

associated with the first p variables having the most variability, and PCAs should be able to pick

them out. While in scenario 2, we design the true transformation matrix A2 = [0p×(d−p),B2]
T

where B2 ∈ Rp×p is a squared matrix with elements from N (0,1). B2 has been rescaled so that

each column has length one. Then the reduced data Z2 only contains information from the last five

columns with little variance. That is, the group information only resides in the last five variables

with least data variance. CPCA and ROBPCA should perform poorly in this scenario, because

PCA methods will still pick out the first five variables with the most variance, but there is no group

information in these variables. We expect SA to be able to find better solutions in scenario 2.

In order to create group labels, we use a logistic regression model

Pr(yi = 1|Xi) =
exp(XT

i Aβββ )

1+ exp(XT
i Aβββ )

=
exp(Ziβββ )

1+ exp(Ziβββ )
, (7)

where Zi is the ith data point in the true reduced data, and βββ = [β1, . . . ,βp] with each element

randomly generated from the uniform distribution U (−0.5,0.5) for the first situation and from

U (−2,2) for the second. We make this change in order to make the Bayes error remain around

0.1.

Two different classification methods are applied to the reduced data: LR and SVM. We exam-

ined different kernels and different margins for SVM, but the MCR is not sensitive to these tuning

parameters. We use a radial kernel and a margin of 1 in this study. We examine p = 2,5,10, and

20. For each training data set, we generate a test sample with n = 1000 observations to evaluate

the model performance. We evaluate methods based on the average test MCR over the 20 test data

sets. Since the true p for these data is 5, we would expect worse results when p = 2,10,20.
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Figure 1 shows the box plots for SA-Dense and SA-Sparse with different p’s for both scenarios

using LR. Similar results were obtained when SVM is used. As these box plots show, the proposed

method gives the best classification accuracy when p = 5. The test errors produced by p = 5 are

constantly smaller than using any other p’s. This indicates the proposed method is able to produce

a good classification accuracy when an appropriate number of dimensions is chosen.

We also computed the test MCR using the data reduction methods: CPCA and ROBPCA,

and using seven popular classification methods: LR, SVM, kNN, NN, PLSR, MT and boosting,

on the full dimensional data (FD). We intend to show that without data reduction, even an ad-

vanced classification technique may produce poor classification accuracy. The tuning parameters

of these classification methods are selected roughly by examining several different sets of values

and choosing the best set.

Tables 1 and 2 list the Bayes error rates, the average test MCR for CPCA, ROBPCA, and the

two versions of the SA-based method when p = 5 and 10. The average test MCR for p = 2 and

20 cases are not reported here. Similarly to the p = 5 and the p = 10 cases, in the p = 2 and the

p = 20 cases, CPCA and ROBPCA do not show any advantages over SA. In addition, the MCR

for these two cases are generally higher than that for the case when p = 5.

As expected, PCAs perform well in scenario 1. In particular, ROBPCA does well on these data.

The reason is that the data from this g-and-h distribution contain a large number of extreme values,

for which CPCA would not be able to handle. However, SA methods perform as well as, if not

better than, PCAs. In scenario 2, both SA-Sparse and SA-Dense outperform CPCA and ROBPCA

significantly. In particular, SA-Sparse dominates others in both scenarios. This is because this

experiment is a highly sparse case, which should favor SA-Sparse’ working mechanism. Overall,

SA methods are more stable over different conditions. Figure 2 displays the average MCR for SA-
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Dense and SA-Sparse on the 20 training data sets as functions of the number of steps in scenario

1. Note the training MCR are obtained by performing a 10-fold CV on the training data as we

described in Section 2.2. From these plots, we see that the MCR decreases rapidly and then levels

off. Similar trends are observed in scenario 2 and hence the figures are omitted here.

Table 3 shows results for the seven classification methods on the full-dimensional data. As

can be seen, most classification methods are unsatisfactory. MT performs the best among all these

methods in both scenarios, but it is still worse the SA approach. This example is an intermedi-

ate data dimension example, which many advanced classification methods are able to handle. In

Sections 3.3 and 3.4, we will give two real world examples on ultra-high dimensional data, where

conventional classification methods have predictive difficulties.

Table 1: Average test MCR and standard errors on the 5-dimensional reduced data in Simulation I.

Scenario Classifier CPCA ROBPCA SA-Dense SA-Sparse Bayes

1
LR 0.132(0.010) 0.084(0.008) 0.125(0.008) 0.115(0.009)

0.061(0.003)
SVM 0.168(0.015) 0.142(0.009) 0.138(0.008) 0.152(0.010)

2
LR 0.464(0.009) 0.475(0.007) 0.320(0.010) 0.162(0.012)

0.083(0.004)
SVM 0.469(0.008) 0.467(0.008) 0.358(0.009) 0.197(0.014)

Table 2: Average test MCR and standard errors on the 10-dimensional reduced data in Simulation
I.

Scenario Classifier CPCA ROBPCA SA-Dense SA-Sparse

1
LR 0.138(0.006) 0.102(0.004) 0.136(0.008) 0.120(0.006)
SVM 0.209(0.007) 0.139(0.007) 0.142(0.009) 0.161(0.009)

2
LR 0.444(0.008) 0.442(0.009) 0.329(0.012) 0.233(0.013)
SVM 0.448(0.007) 0.448(0.008) 0.371(0.006) 0.246(0.010)
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Figure 1: Box plots for SA-Dense and SA-Sparse in Simulation I when p = 2,5,10,20 using LR.

(a) SA-Dense in scenario 1
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(b) SA-Sparse in scenario 1
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(c) SA-Dense in scenario 2
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(d) SA-Sparse in scenario 2

●

p=2 p=5 p=10 p=20

0.
15

0.
20

0.
25

0.
30

M
C

R

16



Table 3: Average test MCR and standard errors on the full dimensional data in Simulation I.

Scenario LR SVM kNN NN PLSR MT Boosting

1
0.327 0.398 0.206 0.201 0.218 0.198 0.258

(0.008) (0.007) (0.009) (0.010) (0.009) (0.005) (0.024)

2
0.295 0.435 0.482 0.407 0.397 0.285 0.312

(0.009) (0.011) (0.003) (0.006) (0.006) (0.008) (0.006)

Figure 2: Average êCV on training data using LR models in Simulation I Scenario 1.
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3.2 Simulated Data II

In this study, we create a dense situation where the data variance is equally distributed among all

the variables. We simulated the input training data X ∈R100×50 from the same multivariate g-and-

h distribution as in Section 3.1. Unlike the previous case, the elements of the 5-dimensional true A

were generated from the standard normal distribution. This setting results in linear combinations

of columns in X. We use a non-linear LR model to generate group labels:

Pr(yi = 1|Zi) =
eg(Zi)

1+ eg(Zi)
. (8)
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where g(Zi) = sin(0.05πZi)
Tβββ , and elements of βββ are generated from U (−1,1). We use this

non-linear LR to avoid the linear combinations of the columns of Z when generating group labels.

Since all the variables have roughly equal variances, PCAs should have difficulties accessing

group information. Twenty pairs of training and test data sets with the same sizes as Simulation I

are generated. We examined p= 2,5,10,20. As with Simulation I, we report results from p= 5,10

cases. The average Bayes rate, the average test MCR and standard errors on the reduced data are

listed in Table 4. As we can see, both versions of the SA method outperform PCAs. Furthermore,

SA methods perform better in the p = 5 case than p = 10 indicating that a correct dimension can

be identified by SA. However, PCAs perform better in the p = 10 case. This is because since

the data variance is equally distributed, more principal components provides better information to

identify the groups. In particular, SA-Dense performs better than SA-Sparse in this simulation

because the true transformation matrix is dense. It is interesting to see that the results from the LR

classifier are better than that from SVM in general. One possible reason is that the curvature for

the sine function that we used to introduce non-linearity is not too large. In addition, results from

SVM may be improved by selecting the tuning parameters more carefully. Table 5 shows different

classification methods on the full-dimensional data.

Table 4: Average test MCR and standard errors on the reduced data in Simulation II.

p Classifier CPCA ROBPCA SA-Dense SA-Sparse Bayes

5
LR 0.372(0.005) 0.360(0.005) 0.163(0.005) 0.177(0.006)

0.101(0.002)
SVM 0.379(0.006) 0.365(0.006) 0.164(0.008) 0.189(0.009)

10
LR 0.292(0.008) 0.294(0.008) 0.169(0.009) 0.185(0.009)
SVM 0.296(0.009) 0.294(0.008) 0.175(0.009) 0.197(0.010)
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Table 5: Average test MCR and standard errors on the full dimensional data in Simulation II.

LR SVM kNN NN PLSR MT Boosting

0.319 0.291 0.213 0.210 0.289 0.191 0.204
(0.006) (0.005) (0.005) (0.007) (0.007) (0.005) (0.008)

3.3 fMRI Data

Exploiting temporal information in fMRI has several difficulties: First, for whole brain studies,

thousands of voxels can be involved. Second, the sample size is usually very small. Third, brains

differ in subjects. Even for one subject, variations can occur in different runs. These differences

lead to large inter-subject variability and intra-subject variability. Finally, the recording errors and

the system noises can make classification tasks even more difficult. Consequently, most classifica-

tion methods can not be readily applied, and data reduction steps are needed.

Our data were collected from the Image Center of the University of Southern California. The

participant was shown four kinds of figures: faces, objects, scenes and scrambled images. The

experiment consisted of eight blocks with each block showing one of the four figures for 12 time

points followed by 12 time points of resting (baseline). The first eight time points were resting,

and then from time point nine the experiment began. A total of 200 time points with eight blocks

are available. Pre-processing was done by BrainVoyager and MATLAB 7.1. It included slice

time correction, motion correction, highpass filter, linear trend removal and background removal.

Finally, the 4-D image was expanded. A data matrix X ∈ Rn×d was obtained, where n = 200

represents the number of time points and d = 11,383 represents the number of voxels. Our goal is

to do classification over time. That is, classify the time points into two classes: when the subject

is doing the task and when the subject is resting.

To examine the relationship between ê and p, we consider p = 20,50,80,100,150. SVM and

kNN are applied in our SA algorithms. A radial kernel version of the SVM and a 3-nearest-
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neighbor method seem to provide relatively good results. In addition, we randomize the 200 ob-

servations and take 150 for the training set, and the rest as the test set.

In order to compare the proposed method with conventional dimensionality reduction methods

on classification tasks, CPCA and ROBPCA are also applied. The resulting test MCR for all

four approaches are presented in Table 6. In general, the proposed method gives the best overall

results: the test MCR are all smaller than those obtained from PCA when p < 80. For the two SA

algorithms, one might not have strong preference for one or the other. Figure 3 displays ê paths on

training data for both SA-Dense and SA-Sparse using SVM, when p = 50. There are declines in

ê’s for both algorithms. Similarly, the MCR paths using kNN have the same pattern as using SVM,

so we do not present them here.

The estimated MCR from CPCA and ROBPCA are very similar. One reason might be that this

data set does not contain many extreme values. When the goal is classification, both methods can

fail. As we can see, the minimal test MCR for all methods are obtained when p = 50. As for

the full-dimensional case (see Table 7), all methods fail, some methods such as LR, NN, PLSR,

MT, and boosting, cannot be applied on our Dell Precision workstation (CPU 3.00GHz; RAM

2.99GHz, 16.0GB).

3.4 Microarray Data

Our second real-world example is a microarray data set. Usually microarray data sets include

only a handful of observations, but several thousand variables, which necessitates a dimension

reduction technique. A well-known microarray data set on Colon cancer (Alon et al., 1999) is used

in our study. Colon adenocarcinoma tissues were collected from patients, paired normal colon

tissue was also obtained. Gene expression in 40 tumor and 22 normal colon tissue samples was
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Table 6: Test MCR on fMRI data.

Classifier p CPCA ROBPCA SA-Dense SA-Sparse

SVM

20 0.360 0.340 0.260 0.240
50 0.220 0.240 0.200 0.200
80 0.260 0.260 0.240 0.260

100 0.320 / 0.340 0.360
150 0.320 / 0.360 0.400

kNN

20 0.320 0.360 0.240 0.200
50 0.340 0.420 0.160 0.200
80 0.340 0.320 0.240 0.240

100 0.340 / 0.320 0.260
150 0.380 / 0.340 0.280

Table 7: Test MCR on the full dimensional data for fMRI and Colon data.

LR SVM kNN NN PLSR MT Boosting

fMRI / 0.42 0.46 / / / /
colon 7/12 5/12 5/12 6/12 4/12 4/12 4/12

analyzed with a microarray consisting of more than 6500 human genes. The data set contains the

expression of the 2000 genes with highest minimal intensity across the 62 tissue samples. Each

gene intensity has been derived from about 20 feature pairs that correspond to the gene on the chip

by using a filtering process. The goal is to classify the tissues as being cancerous or noncancerous.

In previous studies, data reduction for gene microarray data had mostly focused on selecting a

subset of relevant genes having higher variances than irrelevant ones (Dettling and Bühlmann,

2003; Hedenfalk et al., 2001). This is an example of selection technique. Although the microarray

data have numerous genes, only a small number of genes are important in terms of classification

(West et al., 2001). Selecting a small subset of genes will identify the ones most associated with

colon cancer. However, as we mentioned earlier, a disadvantage of variable selection is that it is

usually difficult to access the joint effect of genes when the data have multicollinearities. In our

study, we use combinations of genes as data reduction for classification.
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Figure 3: ê paths using SVM when p = 50 on the fMRI data.

After a rough parameter investigation, SVM with radial kernels and kNN with k = 5 are applied

in this example. The training set consists of 50 randomly selected tissues with the remainder

used as the test set. We use p = 10,30,50,80. Table 8 reports the test MCR for all four data

reduction methods after applying SVM or kNN. Similarly to the fMRI example, it is found that

SAs outperform other methods in general. We could roughly observe that the best p lies around 10

to 30. Note that the SVM models might not be the best ones for all the examples. Instead, our goal

is to compare the performance of the four dimensionality reduction approaches under some given

classification models. The full dimensional case (second row of Table 7) shows that even modern

classification methods, such as MT and boosting, without dimension reduction perform worse than

more classical methods with an appropriate dimension reduction. The ê paths are also plotted in

Figure 4. Similar to all previous studies, ê’s decrease rapidly.
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Table 8: Test MCR on Colon data.

Classifier p CPCA ROBPCA SA-Dense SA-Sparse

SVM

10 4/12 4/12 2/12 3/12
30 6/12 / 1/12 2/12
50 7/12 / 1/12 2/12
80 / / 4/12 4/12

kNN

10 2/12 2/12 1/12 2/12
30 2/12 / 2/12 2/12
50 3/12 / 3/12 2/12
80 / / 5/12 4/12

4 Investigating Convergence

Since SA is a stochastic based approach, solutions from different runs may be different. However,

as long as they span the same space, they may achieve the same classification accuracy. In this

section we examine the empirical convergence rate and the solution similarity.

4.1 Empirical Convergence

We used I = 2000 in our studies. One may question whether or not this number is large enough to

achieve relatively good accuracy. We examine situations when I = 20,000, on Simulations 1 and

2. We use LR as the classifier and let p = 5 in both cases. The same data as in previous simulations

are used in this study. That is, we use the same 20 training data sets and the same 20 test sets in

each simulation study. Table 9 lists test MCR when I = 2000 and I = 20,000. As we can see, in

all simulation studies, there are not big differences between I = 2000 cases and I = 20,000 cases.

In particular, when I = 20,000 is applied, the test MCR are generally higher than the test MCR

when I = 2000 is applied. This trend may suggest the problem of overfitting when I is too large.

Since the algorithm itself is rather complex and there are several tuning parameters in the model,

overfitting is a potential problem. This can be seen more obviously by plotting the training and test
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Figure 4: ê paths using SVM when p = 30 on the microarray data.

MCR paths over iterations.

Figure 5 (a) shows the CV error on the training data as a function of the number of iterations in

Simulation I Scenario 1. Figures in other simulations are similar. The training MCR continuously

goes down and then levels off after about 1000 steps. We also plot the test MCR path in Simulation

I Scenario 1 [see Figure 5 (b)]. That is, at each iteration, we obtain an Anew, we then apply this

transformation matrix to the test data. Note that the testing step is an additional step for the purpose

of visualization, and is not a part of the algorithm. As we can see, the test MCR decreases rapidly

at the beginning, then it levels off, and it jumps to about 0.15 and levels off again. Overfitting

may be avoided by applying a test step at each iteration and stop the algorithm when the test MCR

reaches the lowest point. In our simulation studies, I = 2000 is a better number than I = 20,000.

We also investigate the computational cost of the proposed method by examining the CPU time

given different values of d, I and p. The data we used are from Simulation I scenario 1 and the

fMRI study in Section 3.3. Table 10 lists the CPU time in seconds for SA-Sparse. As we can see,
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Figure 5: Training and test error paths using I = 20,000 in Simulation 1 (1).

the computation time linearly increases with I. When I = 2000, the computational cost for the

proposed method are not very high, and even with I = 20,000 are acceptable.

Table 9: Test MCR on the simulated data.

Method
Sim I (1) Sim I (2) Sim II

I = 2000 I = 20,000 I = 2000 I = 20,000 I = 2000 I = 20,000

SA-Dense 0.125(0.008) 0.157(0.009) 0.320(0.101) 0.332(0.012) 0.163(0.005) 0.191(0.010)
SA-Sparse 0.115(0.009) 0.149(0.008) 0.162(0.012) 0.187(0.010) 0.177(0.006) 0.210(0.011)

4.2 Solution Similarity

Since there is randomness in our algorithm, one may be also interested in how the solutions from

different runs differ from each other. Note that different transformation matrices can produce the

same reduced subspace. Hence two Z’s are equivalent as long as they have the same orthogonal

bases even though they may be rotated differently. Therefore, we investigate solution stability by

computing the principal components (PC) for different Z’s and calculating their pairwise correla-
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Table 10: CPU time (sec.) when running SA-Sparse with LR.

d = 50 d = 11,383
p = 5 p = 20 p = 10 p = 80

I = 2000 80.28 118.20 175.75 796.34
I = 20,000 793.18 1171.12 1700.21 7642.31

tions. We define the average of absolute pairwise correlation for the kth PC, γk as

γk =
1(2
N

)∑
i< j
|ξi, j|, (9)

where ξi, j is the correlation coefficient between the kth PC from the ith and the jth runs. We use

γk as one of the criteria to evaluate the solution similarity. The larger the γk is, the more similar

the solutions would be. Another criterion is the proportion of the data variance that a specific PC

captures. If, for example, the kth PC from different runs captures 90% of the data variance on

average, and its γk is 0.98, then one may conclude the solutions from different runs are similar to

each other and the algorithm is stable.

We use two data sets from Simulation I Scenario 1 and Simulation II, respectively. For each

data set, we run SA-Dense and SA-Sparse 50 times and obtain 50 estimated transformation matri-

ces, and hence, 50 reduced subspaces. We compute the average of absolute pairwise correlations

for the first PC, γ1, because this PC captures the most data variance. Table 11 lists γ1 and the aver-

age variance that PC1 captures over all 50 runs for Simulation I Scenario 1 and Simulation II. We

examine the performance of the proposed method given different initial transformation matrices.

First, we use the first p columns of the loading matrix from PCA for all 50 runs, and, second, we

use randomly generated matrices for each run. Note that in the former case, the initial A(0)’s are

all the same, but in the later case, the initial A(0)’s are different for the 50 runs. Our intention

is to investigate if the choice of the starting point will affect the results. As we can see, in both
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Simulations I and II γ1 is considerably large (more than 0.9 in most cases) for PC1, which captures

a large fraction of the data variance. This indicates that the solutions from different runs are similar

to each other and the proposed algorithm is stable. It is not very surprising that the change of the

starting point does not affect the results much.

Table 11: γ1 (standard errors) and average percentage of data variance (standard errors).

A(0) Method
Sim I (1) Sim II

γ1 % Variance γ1 % Variance

PC
SA-Dense 0.903(0.001) 73.8(0.010) 0.945(0.001) 82.5(0.011)
SA-Sparse 0.956(0.001) 89.2(0.008) 0.897(0.002) 74.3(0.011)

Random
SA-Dense 0.907(0.002) 74.9(0.011) 0.935(0.001) 75.6(0.012)
SA-Sparse 0.935(0.001) 85.2(0.010) 0.802(0.005) 68.8(0.013)

5 Conclusions

We have introduced a new approach for dealing with classification problems with high dimensional

data. Because the commonly used data reduction methods, such as PCAs, are not designed for

minimizing classification errors, they do not consider the response variable when reducing the

data space. Therefore, the intermediate dimensionality reduction stage may remove some useful

information, and their first directions might not (and in practice often will not) reveal the class

structures that are needed for proper classification. Unlike PCA methods, the proposed method

uses classification to guide dimensionality reduction. It projects the original data onto a lower-

dimensional space with the goal of minimizing MCR. We have presented a simulated annealing

algorithm for exploring a “good” projection using MCR from the classification model to guide the

search path. In our simulation studies and real data experiments, it has demonstrated the ability to

find a relatively good projection of the data.

One advantage of SA is that the number of steps required to find the solution does not increase
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very rapidly with the dimensionality of the problem (Bohachevsky et al., 1986). In our experi-

ments, the number of steps is 2000, which has been shown to be enough. Our results indicate that

SA generally performs better than PCAs.

In this paper, we have only considered highly dense and highly sparse algorithms, which result

in linear combinations of variables and subsets of input variables, respectively. The advantages

and disadvantages of these two kinds of models are opposing. Dense models might deal well with

multicollinearities, but fail to select informative variables. Moreover, it may be difficult to inter-

pret the model itself. Sparse models might benefit from informative variables and better model

interpretations, but may have trouble with multicollinearities. In our future work, we will investi-

gate methods that lie between highly dense and highly sparse, and hence gain the benefits of both

methods.

We have seen from Section 4 that the computational cost for the proposed method is higher

than most of the deterministic methods (e.g., PCA), but it is acceptable. However, for many real-

time applications, any stochastic search based method is hard to apply. This drawback may be

cured by adding a preliminary reduction step before the SA algorithm is applied. This preliminary

reduction step reduces the ultra-large data into an intermediate sized dimension. As Fan and Lv

(2008) noted, as long as the intermediate space is not too small, the classification accuracy will

not be significantly affected. Then the proposed method can be applied on this intermediate space

without losing much classification information, while we can obtain a tremendous time saving.

Further investigation is planned.
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