
Index Models for Sparsely Sampled Functional Data.

Supplementary Material.

May 21, 2014

1 Proof of Theorem 2

We will follow the general argument in the proof of Theorem 3 in Li et al. (2010). Write

d = (d1, ..., dp) and dc = (dc1, ..., dcp). Let Gn(dc) denote the difference between the criterion

values for the candidate and the true dimension vectors:

Gn(dc) = logL(dc)− logL(d) + dc log n/[nh
d̃c
n (dc)]− d log n/[nhd̃

n(d)].

Note that the set of candidate dimension vectors is finite. Thus, it is sufficient to show that

for each vector dc not equal to d function Gn(dc) is positive with probability tending to one.

Note that

dc log n/[nh
d̃c
n (dc)]− d log n/[nhd̃

n(d)] = O
(
log n[n−4/(d̃c+4) + n−4/(d̃+4)]

)
= o(1).

If dcj < dj for at least one j, we can choose a positive constant c, such that logL(dc) −
logL(d) > c with probability tending to one, due to the lack of fit. It follows that Gn(dc) > 0

with probability tending to one.

Now consider the remaining case of dcj ≥ dj for all j and dc > d. In this case

dc log n/[nh
d̃c
n (dc)] − d log n/[nhd̃

n(d)] > log n/[nhd̃c
n (dc)] for all sufficiently large n. On the

other hand,

logL(dc)− logL(d) = log(1+
L(dc)− L(d)

L(d)
) = log(1+Op(1/[nh

d̃c
n (dc)])) = Op(1/[nh

d̃c
n (dc)]),

by the classical results on local linear smoothing. Consequently, with probability tending to

one,

Gn(dc) > (1/2) log n/[nhd̃c
n ] > 0.
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2 Proof of Theorems 3 and 4

Theorem 3. For simplicity of the exposition we will focus on the case of a single predictor.

Due to the additive structure of the SIMFE estimation procedure with respect to the predic-

tors, extension to the general case presents only notational challenges, while the argument

itself remains essentially intact. We will also simplify the notation by omitting the superscript

containing the predictor index. For example, we will write µ̃i and P̂i instead of µ̃ij and P̂ij.

Define δkh = [log n/(nhk)]1/2. Observe the relationship ||Aβ̂(t) − β(t)|| = ∥A[η̂]− [η]∥F ,
where [η̂] and [η] denote matrixes [η̂1...η̂d]

T and [η1...ηd]
T , respectively, and ∥·∥F stands for

the Frobenius matrix norm. Hence, we need to show that there exists an invertible matrix A,

for which ∥A[η̂]− [η]∥F = Op(h
4
opt + δ2dhopt

+ n−1/2).

In the new notation µ̂i = (µ̂i1, ..., µ̂iq)
T and η̂ ∗ µ̂i = (η̂T

1 µ̂i, ..., η̂
T
d µ̂i)

T = P̂i. To be

able to conveniently apply existing results, we will slightly modify the trimmed objective

function, replacing P̂l with P̂l− P̂i and writing this expression in terms of η̂ and µ̂. We will

also use µ̂l:i to denote µ̂l − µ̂i. The modified objective function,

1

n

n∑
i=1

n∑
l=1

Iniρη̂i
(
Yl − ai − cTi η̂ ∗ µ̂l:i

)2
K̃h(η̂ ∗ µ̂l:i),

however, corresponds to exactly the same SIMFE estimator as the original trimmed function.

Define Ǩt = Iniρη̂iK̃ht(η̂ ∗ µ̂l:i), ∆̂l:i = ci ⊗ µ̂l:i and ∆l:i = ci ⊗ µ̃l:i. We will use the

superscript (t, τ) to indicate that the estimator corresponds to the τ iteration of the algorithm

corresponding to the bandwidth ht. A simple manipulation of formula (23), taking into

account the modifications to the objective function, yields

η̂(t,τ+1) = ηr1 + {
n∑

i,l=1

Ǩt∆̂
(t,τ)

l:i (∆̂
(t,τ)

l:i )T}−1

n∑
i,l=1

Ǩt∆̂
(t,τ)

l:i {Yl − a
(t,τ)
i − ηr1∆̂

(t,τ)

l:i } (1)

Here ηr1 corresponds to an arbitrary rotation of [η], and the above formula holds for each

such rotation.

Let M denote the number of time point configurations, at which the predictor functions

are observed. We will only consider configurations that are generated with positive proba-

bilities. Denote by Ak, k = 1, ...,M , the index set of the observations corresponding to the

k-th time point configuration. Note that, using the basis representation for the predictors

and the projection functions, equation (10) simplifies to

Yi = m̃k

(
ηT
1 µ̃i, . . . ,η

T
d µ̃i

)
+ ε∗i , i ∈ Ak, (2)
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where E(ε∗i |Wi) = 0. The last equality also implies E(ε∗i |µ̃i) = 0. This formulation of the

SIMFE model allows us to apply some of the theory developed for the MAVE approach. We

will first focus on the right-hand side of display (1), for sufficiently large n, with ∆̂ replaced

by ∆, and rewrite it as ηr1 + {
∑M

k=1 Σ̃k}−1{
∑M

k=1Σk}, where Σ̃k =
∑

i,l∈Ak
Ǩt∆

(t,τ)
l:i (∆

(t,τ)
l:i )T

and Σk =
∑

i,l∈Ak
Ǩt∆

(t,τ)
l:i (Yi − a

(t,τ)
j − ηr1∆

(t,τ)
l:i ). We will apply Lemma A.5 in the supple-

mental material of Xia (2008) to each Σk, and use a natural generalization of Lemma A.4 to

handle {
∑M

k=1 Σ̃k}−1. For each k ≤ M , write πk for the probability of the k-th time point

configuration, and let µ̃(k) denote µ̃i for some i in Ak. Define

Φn = n−1

M∑
k=1

|Ak|
n

|
∑
i∈Ak

ρ(f̃i(η ∗ µ̃i))
(
∇m̃k(η ∗ µ̃i)⊗ ν(µ̃i)

)
ε∗i ,

D1 =
M∑
k=1

π2
kEρ(f̃(η ∗ µ̃(k)))

(
∇m̃k(η ∗ µ̃(k))⊗ ν(µ̃(k))

)(
∇m̃k(η ∗ µ̃(k))⊗ ν(µ̃(k))

)T
, (3)

and

D2 = 2
M∑
k=1

π2
kEρ(f̃(η ∗ µ̃(k)))∇m̃k(η ∗ µ̃(k))∇T m̃k(η ∗ µ̃(k))⊗ ω(µ̃(k))

)T
. (4)

where ν(µ̃) = µ̃ − E(µ̃|η ∗ µ̃) and ω(µ̃) = E(µ̃µ̃T |η ∗ µ̃) − E(µ̃|η ∗ µ̃)E(µ̃|η ∗ µ̃)T . We

will use superscript + to denote the MoorePenrose inverse. By Lemmas A.4 and A.5 in the

supplemental material of Xia (2008), there exists a rotation of [η], call it [ηr2 ], such that

ηr1 + {
n∑

i,l=1

Ǩt∆
(t,τ)
l:i (∆

(t,τ)
l:i )T}−1

n∑
i,l=1

Ǩt∆
(t,τ)
l:i {Yl − a

(t,τ)
i − η∆

(t,τ)
l:i }

= ηr2 + (I −D+
2 D1)

−1D+
2 Φn +Op(h

4
t + δ2dht

), (5)

provided η̂(t,τ) − ηr1 = op(ht). Note that Φn = Op(n
−1/2). Due to the assumption A3, the

unknown parameters ∆,µδ and σ2 are estimated at the usual parametric rate, n−1/2, and

hence µ̂ = µ̃(1 +Op(n
−1/2)). Consequently, equations (1) and (5) imply

η̂(t,τ+1) − ηr2 = Op(h
4
t + δ2dht

+ n−1/2), (6)

as long as η̂(t,τ) − ηr1 = op(ht). Note that δ2dht
= o(ht), and hence the stochastic bound in

display (6) can be written as op(ht). It follows that the final estimator for the bandwidth ht,

which is also the initial estimator for the bandwidth ht+1, satisfies η̂
(t+1,0) − ηr = op(ht+1),

for some rotation of [η]. Hence, as long as η̂(0,0) − η = op(h0) holds for the initialization

estimator, we can establish, by induction, that the final SIMFE estimator satisfies

||[η̂]− [ηr]||F = Op(h
4
opt + δ2dhopt

+ n−1/2), (7)
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where [ηr] is an appropriate rotation of [η]. The required bound for the initialization estima-

tor follows from Theorem 4 in Li et al. (2010), which establishes that the gOPG estimator

converges at the rate Op(h
2
0+δ2p̃h0

h−1
0 ). The last stochastic bound is op(h0) by the definitions

of h0 and δp̃h0 .

Theorem 4. In the case where ni = 1 for all i, we can repeat the proof of Theorem 3,

treating S as an additional univariate predictor. The reduced dimension increases from d

to d + 1. As a result, the convergence rate changes from Op

(
n−4/(d+4) log n + n−1/2

)
to

Op

(
n−4/(d+5) log n+n−1/2

)
. In the general case, some of the expressions in the proof of The-

orem 3 need to be modified. However, because the sequence {ni} is bounded, the stochastic

bounds (6) and (7) remain the same as in the case ni = 1.

3 Proof of Theorem 5

Partition the rows of the matrix (I −ΩiSi)∆(I −ΩiSi)
T + σ2ΩiΩ

T
i into p groups of adjacent

rows, so that the size of the j-th group is qj. Partition the columns of the same matrix

analogously. This corresponds to a partition of the matrix into p2 blocks, Vijk, where j is

the group index in the row partition, and k is the group index in the column partition.

Write vijk for the vectorized form of the block Vijk. Recall the definitions of matrices Σi

and vectors ξi in sections 2.4 and 3. Each element of ξi has the form cov(Uijl1 , Uikl2) for

some indexes j, k, l1, l2 that satisfy: p ≥ k ≥ j ≥ 1, dj ≥ l1 ≥ 1, dk ≥ l2 ≥ 1, and l2 ≥ l1

whenever k = j. Consequently, each element of ξi can be written as ηT
jl1
Vijkηkl2 . Thus,

there exists a collection of vectors γjl1kl2 , with the indexes satisfying the inequalities given

above, such that for each i the elements of ξi have the form γT
jl1kl2

vijk. We will denote this

representation of the vector ξi as γ ∗ vi, where γ is the vector constructed by stacking the

vectors γjl1kl2 , and vi is similarly constructed from vijk. Using the derivations in Section 2.4

and the notation in Appendix D, we see that m̃ti(P̃i) can be written as m̌(η ∗ µ̃i,γ ∗vi), for

some function m̌, which does not depend on i.

We can now follow the argument in the proof of Theorem 3, with some small modifica-

tions. Our initialization estimator is still gOPG, however we use (µ̂i, v̂i) , instead of µ̂i, as the

predictor vectors. Here v̂i are constructed analogously to vi, but the unknown parameters ∆

and σ2 are replaced with their estimates. We initialize the bandwidth as n−1/(p̌+4), where p̌

is the dimension of (µ̂i, v̂i). As in the proof of Theorem 3, the parameters ∆ and σ2 are

estimated at the parametric rate, n−1/2, and the aforementioned gOPG estimator of (η,γ) is

4



consistent. We no longer partition the observations by time point configuration, but instead

treat vi as an additional predictor. Equation (2) is replaced with

Yi = m̌ (η ∗ µ̃i,γ ∗ vi) + ε∗i ,

and the dimensionality of the corresponding model increases from d to d̃ = d+d(d+1)/2. The

rest of the proof is the same as that of Theorem 3, with the appropriate modifications, such as

replacing η̂ with (η̂, γ̂) and µ̂i with (µ̂i, v̂i). Taking into account the increased dimensionality

of the problem, stochastic bound in display (7) changes to Op(h̃
4
opt + δ2

d̃h̃opt
+ n−1/2), which

simplifies to Op(n
−4/(d̃+4) log n+ n−1/2).
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