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Abstract

In this article we are interested in modeling the relationship between a scalar,Y, and a functional
predictor,X(t). We introduce a highly flexible approach called ”FunctionalAdaptive Model Estimation”
(FAME) which extends generalized linear models (GLM), generalized additive models (GAM) and pro-
jection pursuit regression (PPR) to handle functional predictors. The FAME approach can model any
of the standard exponential family of response distributions that are assumed for GLM or GAM while
maintaining the flexibility of PPR. For example standard linear or logistic regression with functional
predictors, as well as far more complicated models, can easily be applied using this approach. A func-
tional principal components decomposition of the predictor functions is used to aid visualization of the
relationship betweenX(t) andY. We also show how the FAME procedure can be extended to deal with
multiple functional and standard finite dimensional predictors, possibly with missing data. The FAME
approach is illustrated on simulated data as well as on the prediction of arthritis based on bone shape.
We end with a discussion of the relationships between standard regression approaches, their extensions
to functional data and FAME.

Some key words: Functional predictor; Functional principal components;Generalized linear models; Generalized

additive models; Projection pursuit regression.

1 Introduction

It is increasingly common to encounter regression problemswhere either the predictor, the response or both
are functional in nature. A majority of the previous work in this area involves a functional response. For
instance, Moyeed and Diggle (1994) and Zeger and Diggle (1994) model the relationship between response,
Y(t), and predictor,X(t), both measured over time, using the equation,

Y(t) = α0(t)+ βT
0 X(t)+ ε(t) (1)

whereα0(t) is a smooth function oft, β0 is a fixed but unknown vector of regression coefficients andε(t) is
a zero mean stationary Gaussian process. Hooveret al. (1998), Wuet al. (1998) and Lin and Ying (2001)
use the varying-coefficient models proposed in Hastie and Tibshirani (1993) to extend (1) by allowing the
regression coefficients to vary over time. Fahrmeir and Tutz(1994) and Liang and Zeger (1986) suggest
an even more general framework where the response is modeledas a member of the exponential family of
distributions.
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Figure 1:Two dimensional images of the intercondylar notch from the knee joint of three skeletons exhumed from St.
Peter’s Church, Barton-upon-Humber.

We are interested in an alternative situation where the predictors are functional but the response is
scalar. An example of such a situation is provided in Figure 1. These images come from an excavation
in the north of England that exhumed the skeletons of 2000 adults dating from between 1000 and 1500
C.E. (Shepstoneet al., 1999). The plots show two dimensional cross-sectional outlines of the intercondylar
notch from the knee joint on the femur bone of three such individuals. For each joint in the sample an
indicator of osteoarthritis of the knee was recorded. For example the first two joints here contained no
evidence of osteoarthritis while the third did. It has been conjectured that certain bone shapes may affect
the biomechanics of the joint and lead to osteoarthritis. Hence we are interested in whether the shape of the
bone can be used as a predictor of osteoarthritis and if so what type of shape provides the strongest evidence.

This type of structure arises in numerous applications. Muller and Stadtmuller (2004) provide illustra-
tions in astronomy (Hallet al., 2000), DNA expression arrays with repeated measures (Alter et al., 2000)
and engineering (Hallet al., 2001). However, there has been limited methodological work in this area.
Hastie and Mallows (1993), Ramsay and Silverman (1997), Chapter 10 and Cardotet al. (2003b) discuss
performing linear regression where the response is a scalarand the predictors functional. Ferraty and Vieu
(2002) develop a nonparametric regression procedure. James and Hastie (2001) and Ferraty and Vieu (2003)
use functional linear discriminant analysis models to perform classification for categorical responses with
functional predictors. Marx and Eilers (1999), James (2002) and Muller and Stadtmuller (2004) suggest
somewhat more general methods which provide extensions of generalized linear models (McCullagh and
Nelder, 1989) to functional predictors. In this article we introduce a procedure that facilitates the modeling
of highly non-linear response surfaces on general classes of response distributions using functional predic-
tors. For standardp-dimensional predictors, non-linearity can be achieved through the use of procedures
such as generalized additive models (Hastie and Tibshirani, 1990) or, if even more flexibility is required,
through projection pursuit regression (Friedman and Stuetzle, 1981). Our approach, which we call “func-
tional adaptive model estimation (FAME)”, combines characteristics of projection pursuit regression with
generalized linear and additive models.

In Section 2 we present and motivate the FAME model for data with a single functional predictor as well
as providing a fitting algorithm. We also develop asymptoticresults under the restriction that the FAME
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model can be represented using a finite dimensional basis. These results are used to provide confidence
intervals and significance tests for model parameters. Several extensions are provided in Section 3. We
first illustrate a procedure for applying the FAME methodology where there is measurement error in the
predictors and demonstrate this approach on a simulated data set. We also provide extensions to multi-
ple functional and finite dimensional covariates and apply this method to the femur bone data. Section 4
presents a simulation study which compares the performanceof the FAME approach with other possible
methods. Finally, Section 5 provides a discussion of the relationship of the FAME methodology to other
finite dimensional and functional approaches.

2 Functional adaptive model estimation

In order to motivate our approach we first briefly review generalized linear models (GLM), generalized
additive models (GAM) and projection pursuit regression (PPR). Generalized linear models provide a flex-
ible framework for regressing response variables from the exponential family of distributions. One models
the relationship between predictorsX = (X1,X2, . . . ,Xp) and responseY using the link functiong(µ) =

β0 + ∑p
j=1Xjβ j whereµ = E(Y|X). While GLMs cover a wide class of response distributions they still

assume a linear relationship between the predictors andg(µ). This linearity assumption is relaxed with gen-
eralized additive models using the linkg(µ) = β0 + ∑p

j=1 f j(Xj) where f j is a smooth function estimated as
part of the fitting procedure. GAMs allow for non-linear but still additive relationships between the pre-
dictors andg(µ). The additivity of GAM has the advantage that it allows one toidentify the effect of each
predictor individually while holding all other predictorsconstant but it significantly restricts the range of
functions that can be fit.

Projection pursuit regression removes the additivity constraint by modeling a Gaussian response using

Y = β0 +
r

∑
k=1

fk(XTβk)+ ε

where bothfk andβk are estimated in the fitting procedure andr is arbitrary. PPR has several advantages
over both GLM and GAM. First, it allows one to model a larger class of functions. For example, GAM
can not model the simple interactiong(µ) = X1X2 while PPR can. In fact by settingr large enough one can
model any continuous function. Second, by studying theβk’s one learns in which directions the variability
of the predictors provide the most information about the response. However, because PPR does not utilize a
link function it has less flexibility in terms of response distributions that can be modeled. Roosen and Hastie
(1993) and more recently Lingjaerde and Liestol (1998) remove this constraint by adding a link of the form

g(µ) = β0 +
r

∑
k=1

fk(XTβk). (2)

This method is called generalized projection pursuit (GPP). The GLM and GAM link functions may both
be considered special cases of (2).
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2.1 The FAME Model

The aim of this paper is to extend GPP to data with functional predictors using our “functional adaptive
model estimation” procedure. FAME can model non-Gaussian responses with the ease of GLM and GAM,
has the flexibility of PPR to fit non-linear response surfacesand can be applied to functional data. One
possible approach to fitting GPP to such data would be to sample the functional predictor,X(t), over a fine
grid of p time points to create a vectorX, thus removing the functional aspect of the problem. However,
this approach has several potential problems. First, it necessitates modeling a very high-dimensional vector
of coefficients, which may lead to an extremely unstable fit. Second, in many applications, individuals
may be measured at different sets of time points and/or have differing numbers of observations. For such
data, it is not possible to create finite dimensional predictors by simple discretization and so (2) can not be
directly applied. A more successful approach is to replace the summationXTβk with its functional analog,
the integral

Zik =
∫

Xi(t)βk(t)dt (3)

whereβk(t) is a coefficient function giving the weighting placed onX(t) at each time. This method has
a couple of advantages over the more ad hoc discretization approach. First, through the use of a smooth
function to estimateβ(t), it properly utilizes the inherent correlation between nearby time points, effectively
reducing the high dimensional nature of the data. Second, byutilizing smoothing techniques the integral
can be calculated even on sparsely sampled predictors wherethe discretization approach would fail.

Combining (2) and (3) gives the FAME link

g(µi) = β0 +
r

∑
k=1

fk(Zik) = β0 +
r

∑
k=1

fk

(

∫

Xi(t)βk(t)dt

)

. (4)

Equation 4 extends standard projection pursuit regressionin two directions by introducing a link function
to allow for non-Gaussian responses and replacing the summation XTβk with an integral overX(t)βk(t) to
allow for functional predictors. Formally the FAME model can be written as

p(yi ;θi ,φ) = exp

(

yiθi −b(θi)

a(φ)
+c(yi ,φ)

)

, (5)

g(µi) = β0 +
r

∑
k=1

fk(Zik), (6)

Zik =
∫

Xi(t)βk(t)dt, i = 1, . . . ,N (7)

where (5) is the response distribution, assumed to be a member of the exponential family withµi = E(Yi |Xi)

and thefk’s andβk’s are suitably smooth curves. The relationship between predictor and response is speci-
fied through the unobserved latent variablesZ1, . . . ,Zr which are linear functions ofX(t). Note that (5) and
(6) are related through the standard exponential family identity µ= b′(θ). As with standard PPR the FAME
model can experience confounding of parameters. In particular, βk and fk are confounded because identical
values of fk(Zk) can be achieved by multiplyingβk by a constant and adjustingfk accordingly. Hence we
restrict

∫

βk(t)dt = 1 k = 1, . . . r. (8)
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Using (8)βk(t) can be interpreted as a weighting function on the predictor at any given time. In addition,
for r > 1, fk and f j may be confounded. Thus we constrain

cor(Zik,Zi j ) = 0 (9)

for all j 6= k. Equation (9) is analogous to the restriction placed on the eigenvectors in a principal components
analysis and should have the additional advantage of reducing collinearity between terms.

As specific examples of FAME we consider two of the most commonsituations. First, for a Gaussian
response with identity link the FAME model becomes

Yi = β0 +
r

∑
k=1

fk

(

∫

Xi(t)βk(t)dt

)

+ εi, εi ∼ N(0,σ2
y),

a functional analogue of projection pursuit regression. When the response is Bernoulli and a logistic link is
used the FAME model reduces to

Yi ∼ Bern(pi), log

(

pi

1− pi

)

= β0 +
r

∑
k=1

fk

(

∫

Xi(t)βk(t)dt

)

. (10)

An alternative formulation of FAME can help facilitate interpretation. Consider the decomposition of
the predictor function into a sum over its principal component curves,

Xi(t) = X̄(t)+
∞

∑
m=1

ζimρm(t), (11)

whereρm(t) represents themth principal component curve andζim the corresponding weighting for theith
individual. Principal component curves have similar interpretations to their finite dimensional counterparts
with themth component explaining the largest proportion of the variability in the predictors subject to being
orthogonal to the firstm−1 terms. Combining (7) and (11) we can reformulateZik as

Zik = αk +
∞

∑
m=1

ζimβ∗
km (12)

whereαk =
∫

X̄(t)βk(t)dt is the mean ofZik andβ∗
km =

∫

βk(t)ρm(t)dt. Using this parameterization,β∗
km

gives the weight placed on themth principal component curve in constructingZik. For example, ifr = 1 and
β∗

km = 0 for all m> 1 then an individual’s score on the first principal componentwould solely determine
their value forZik and henceµi . We explore these two different formulations of FAME further in Section 3.

2.2 FAME fitting procedure

In this section we present a fitting algorithm for FAME which is based on maximizing a penalized likelihood.
In practice we only ever observeXi(t) at a finite set of time points so the predictors must be estimated using
the observed values. LetXi(t) = B(t)Tγi ,

βk(t) = B(t)Tηk and fk(t) = s(t)T δk (13)
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whereB(t) ands(t) are both orthogonal finiteq-dimensional bases, chosen prior to fitting the model. We
utilize cubic splines. If one assumes that the predictors have been measured without error, then the estima-
tion can be achieved by interpolating the observations as nearly as possible, usingB(t). In Section 3.1 we
address the case in which the predictors are measured with error. For the FAME model given by (5)-(7) the
log likelihood, up to additive constants, is

l( fk,β0,βk,φ) =
N

∑
i=1

[

yiθi −b(θi)

a(φ)
+c(yi ,φ)

]

(14)

subject tog(µi) = β0 + ∑r
k=1 fk(Zik).

To initialize the FAME procedure we employ interpolating cubic splines with minimum integrated
squared second derivative to estimate theXi ’s. This is just one of many bases that could be used. An it-
erative approach is then used to maximize a penalized version of (14). We start by fitting the model with
r = 1. At the first stage,β0 and f1 are held fixed andβ1 is estimated. The fit is achieved by maximizing (14)
overη1 subject to a penalty termP(β) to ensure a smooth fit. There are several possible choices forP(β).
A common smoothness penalty involves using

P1(β) = λβ

∫

β′′
k(t)

2dt (15)

which penalizes large second derivatives ofβk. However, in the original basis space theXi ’s tend to vary
little, if at all, in certain directions meaning that it is impossible to produce reasonable estimates ofβk in
those dimensions. Hence it may be beneficial to penalizeβk away from these directions using

P2(β) = λβ

q

∑
m=1

∫

(βk(t)ρm(t)/sm)2dt (16)

whereρm is themth principal component function ofXi andsm is the corresponding standard deviation of
the principal component scores.P2(β) imposes a high penalty onβk’s that have significant variability in the
directions ofXi with little variance. It is interesting to note that (16) hassimilarities to condition 1 in Cardot
et al. (2003b). In this paper we explore both penalty approaches. The parameterλβ can be selected using
cross-validation and a standard non-linear optimization package used to maximize the penalized likelihood
overηk.

The second stage involves estimatingβ0 and f1 with all other parameters held constant. Notice however,
that with β1 fixed theZi1’s are also fixed and henceβ0 and f1 can be estimated using any standard GAM
package. The FAME procedure iterates through these two steps until the penalized likelihood converges.
Thenβ1, f1 and theZi1’s are fixed and the process is repeated for ther = 2 model, producing estimates of
β2, f2 and theZi2’s subject to zero correlation betweenZi1 andZi2. This continues untilr reaches the preset
maximum value. This nested structure has the advantage thatto reduce the number of components in the
link function one simply eliminates the redundant values offk andβk without needing to refit the model.

2.3 Finite Dimensional Asymptotic Theory

In this section we derive asymptotic results for the FAME model under the assumptions of equation (13) i.e.
that theβk’s and fk’s can be represented by finite dimensional bases and hence the FAME model is finite. Let
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ξ0 = (β0,η1, . . . ,ηr ,δ1, . . . ,δr) denote the true vector of parameters for the FAME model givenby (5)-(7).
For notational simplicity we will assumeφ to be known. However, the theory can easily be extended to the
case whereφ is also estimated. We denote byξ̂N the corresponding estimators obtained from the penalized
maximum likelihood fitting procedure. We show, under mild conditions, that̂ξN is a consistent estimator for
ξ0 and that

√
N(ξ̂N −ξ0) asymptotically has a Gaussian distribution. These resultsare then used to provide

asymptotic confidence intervals forβk(t) and significance levels forfk.
Let l(ξ) be the likelihood function for the FAME model and

IN = −Eξ0(l ′′(ξ0)) = −Eξ0

[

∂l2

∂ξ∂ξ

]

be the corresponding information matrix. In order to prove our results we make the following assumptions.

A-1 There exist functionsMi such that
∣

∣

∣

∣

∣

∂3

∂ξ j∂ξk∂ξl

(

Yiθi −b(θi)

a(φ)
+c(yi ,φ)

)

∣

∣

∣

∣

∣

≤ Mi(Yi)

wherePξ0( 1
N ∑i Mi(Yi) < m1) → 1 for somem1 < ∞ and allξ.

A-2 limN→∞
1
N Eξ0(−l ′′(ξ0)) = limN→∞ IN/N = Ī where Ī is a positive definite matrix with finite compo-

nents.

A-3 limN→∞
1

N2Varξ0(l ′′(ξ0) jk) = 0 for all j andk.

A-4 There exists anε > 0 andm2 < ∞ such that

Eξ0





∣

∣

∣

∣

∣

(Yi −µi)

g′(µi)Var(yi)

r

∑
k=1

∂ fk(Zik)

∂ξ j

∣

∣

∣

∣

∣

2+ε


 ≤ m2

for all i and j.

(A-1) and (A-3) place bounds on the third derivative and variance of the second derivative of the like-
lihood functions. For all common members of the exponentialfamily, they will hold under very general
conditions onfk andXi(t). (A-2) requires that the information provided byYi andXi(t) approaches infinity.
This assumption is standard in any linear models framework such as GLM. If, for example, the predictors
converged to a constant,IN/N would approach zero and a consistent estimator would not exist. Finally,
(A-4) is required to ensure asymptotic normality of the estimators. Again for all standard members of
the exponential family (A-4) will hold under general conditions on fk and f ′k. Utilizing these assumptions
Theorems 1 and 2 prove asymptotic consistency and normalityof the solutions of the FAME likelihood
equations.

Theorem 1 Assuming (A-1) through (A-3) and (13) hold, asymptoticallya sequence{ξ̂N} of solutions of
the FAME likelihood equations exists and is consistent for estimatingξ0.

Theorem 2 Let ξ̂N be a consistent solution of the FAME likelihood equations. Then assuming (A-1) through
(A-4) and (13) hold, √

N(ξ̂N −ξ0) ⇒ N(0, Ī−1).
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Proofs of these results can be found at www-rcf.usc.edu/∼gareth. The proofs utilize standard meth-
ods from maximum likelihood theory with the added complication that the observations are not identically
distributed. In practicēI will be approximated byIN/N = 1

N

[

∑N
i=1

I∗i
Var(yi)g′(µi)2 +DΩ

]

where

I∗i =



























1 f ′1(Zi1)γ∗T
i f ′2(Zi2)γ∗T

i · · · sT(Zi1) sT(Zi2) · · ·
f ′1(Zi1)γ∗i f ′1(Zi1)

2γ∗i γ∗T
i f ′1(Zi1) f ′2(Zi2)γ∗i γ∗T

i · · · f ′1(Zi1)γ∗i sT(Zi1) f ′1(Zi1)γ∗i sT(Zi2) · · ·
f ′2(Zi1)γ∗i f ′1(Zi1) f ′2(Zi2)γ∗i γ∗T

i f ′2(Zi2)
2γ∗i γ∗T

i · · · f ′2(Zi2)γ∗i sT(Zi1) f ′2(Zi2)γ∗i sT(Zi2) · · ·
...

...
...

.. .
...

...
. ..

s(Zi1) f ′1(Zi1)s(Zi1)γ∗T
i f ′2(Zi2)s(Zi1)γ∗T

i · · · s(Zi1)sT(Zi1) s(Zi1)sT(Zi2) · · ·
s(Zi2) f ′1(Zi1)s(Zi2)γ∗T

i f ′2(Zi2)s(Zi2)γ∗T
i · · · s(Zi2)sT(Zi1) s(Zi2)sT(Zi2) · · ·

...
...

...
.. .

...
...

. ..



























(17)
andγ∗i j = γi j −

∫

B j (t)dt
∫

Bq(t)dt γiq for 1 ≤ j ≤ q− 1. DΩ is a block diagonal matrix corresponding to the penalty

terms onβk(t) and fk(t). For example when usingP1(β), the penalty onηk is Ωηk
= λβ

∫

B′′(t)B′′T(t)dt.
Theorem 2 suggests approaches for calculating pointwise confidence intervals onβk(t) and significance

levels onfk. We summarize these results in Corollaries 1 and 2.

Corollary 1 Let β̂k(t) = BT(t)η̂k. Then under the assumptions given in Theorem 2, for any fixed t,

P
{

β̂(t)−Φ−1
1−α/2

√

BT(t)Ση̂k
B(t)/N ≤ β(t) ≤ β̂(t)+ Φ−1

1−α/2

√

BT(t)Ση̂k
B(t)/N

}

→ 1−α

whereΣη̂k
is equal to the block diagonal component ofĪ−1 corresponding toηk andΦ is the standard normal

cdf.

Corollary 2 LetΣδ̂k
be the block diagonal component ofĪ−1

(−ηk)
corresponding toδk whereĪ(−ηk)

is equal to
Ī with all elements involvingηk removed. Then under (A-1), (A-3), (A-4), (13) and the null hypothesis of no
relationship between Y and X(t)

X2
1 = Nδ̂

T
1 Σ−1

δ̂1
δ̂1 ⇒ χ2

q. (18)

Under the null hypothesis that there are exactly r terms in the model

X2
r+1 = δ̂

T
r+1Σ−1

δ̂r+1
δ̂r+1 ⇒ χ2

q. (19)

Notice that under the null hypothesis of no relationship between response and predictorf ′k = 0 so that the
information matrix given by (17) is non-singular which is a violation of (A-2). In fact it is easily seen that
there is no consistent estimator ofβ(t) in this case. However, a small modification of the proof of Theorem 2
shows that̂δ1 will still converge to a normal distribution with the information matrix given by the terms in
(17) that correspond toβ0 andδ1 i.e.

I∗i =

[

1 sT(Zi1)

s(Zi1) s(Zi1)sT(Zi1)

]

.

The ability to remove the terms involvingη1 from the information matrix can significantly increase the
power of the test. Corollary 2 suggests an iterative approach for choosingr. First fit FAME with r = 1 and

8



calculate the significance of the first term using (18). Then proceed stepwise adding additional terms and
testing significance using (19) until ther +1st term fails the test.

3 Extensions

3.1 FAME with measurement error

In some circumstances it may be more reasonable to assume that the predictors,Xi(t), have not been ob-
served exactly. For example, one often has measurement error in medical experiments. In this case if we
denote the observed values byXobs

i (t) and the measurement error byei(t) then

Xobs
i (t) = Xi(t)+ei(t), i = 1, . . . ,N. (20)

with Xi(t) = B(t)Tγi. We make the standard choice of modeling the error terms at each observed time as
uncorrelated Gaussian random variables with varianceσ2

x. Hence if theith individual is observed at times
ti1, . . . , tini then from (5)-(7) and (20) the log likelihood, up to additiveconstants, is

l(σ2
x, fk,β0,βk,φ,Xi) =

N

∑
i=1

[

yiθi −b(θi)

a(φ)
+c(yi ,φ)− 1

2

ni

∑
l=1

[

logσ2
x +

1
σ2

x

(

Xobs
i (til )−Xi(til )

)2
]

]

(21)

subject tog(µi) = β0 + ∑r
k=1 fk(Zik). The assumption of independence of the error terms may, in some

circumstances, be an oversimplification. Provided the predictors are observed at enough time points a cor-
relation term could potentially be estimated but we have notfound this necessary in practice.

The FAME algorithm with measurement error in the predictorsis fit in a similar manner to that outlined
in Section 2.2 with the addition of one extra step in the iteration. Instead of initializing the procedure by
fixing the Xi ’s one uses the current values of the other parameters as wellas the observed measurements,
Xobs

i (t), and the responses,Yi , to provide an updated estimate of theXi ’s. It is an interesting feature of this
problem that the responses provide additional informationin the estimation of theXi ’s. We again start with
r = 1 but at each step use the current estimates ofβ1,β0 and f1 along with the response to update theXi ’s.
The fit is obtained by maximizing (21) over theγi ’s subject to the penalty term

λx

∫

X′′
i (t)2dt (22)

which ensures smooth fits of theXi ’s. To reduce computational burdenλx is chosen prior to fitting the model
using cross-validation on the predictors alone. The maximization of the penalized likelihood can be achieved
relatively quickly using any standard non-linear optimization package because it is possible to calculate the
derivatives analytically. An estimate ofσ2

x is also produced using the maximum likelihood value

σ2
x =

1

∑N
i=1 ni

N

∑
i=1

ni

∑
l=1

(

Xobs
i (til )−Xi(til )

)2
.

We then estimateβ0, f1 andβ1 just as in the zero measurement error case and iterate until the penalized
likelihood converges. At this point we fixβ1, f1,σ2

x, theXi ’s andZi1’s and increaser by one. This process
continues, with theXi ’s now fixed, until the maximum value forr is reached.
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Figure 2 illustrates the FAME with measurement error approach on a simulated data set where the
predictors were sampled with uncertainty. The model was runwith r = 1, so we drop the subscriptk in
our discussion. To produce the simulated data we first generated β, f and 100Xi ’s. These curves were
all produced using third order polynomials with random Gaussian coefficients. The observed values of the
predictors were obtained by sampling eachXi at 50 random time points and adding Gaussian noise. Finally,
the responses were generated from a Gaussian distribution with mean f (Z) whereZ was given by (7). We
used 15-dimensional cubic b-splines as the basis forβ and theXi ’s andP2(β) as the penalty term onβ. Both
λβ andλx were chosen by cross-validation. The functionf was fit using the GAM package in R. Figure 2(a)
gives the trueβ curve, its estimate and 95% pointwise confidence intervals produced from Corollary 1. For
this simulation we found that the best results forβ were obtained using the penalty termP2(β) although a
fairly similar fit was produced usingP1(β). Figure 2(b) gives the observed responses and the mean response
function together with its FAME fit. Notice that even though the responses have considerable noise and the
Zi ’s that generate the mean function are never observed it is possible to accurately recover all the components
of the data. Theβ curve shows that individuals with low predictors at early and late times will have highZ
scores and vice versa. The mean curve indicates that subjects with low Z scores will have high responses
and vice versa. Thus individuals with high values ofXi at the early and late time periods will have high
responses. Values ofXi in the middle time periods have comparatively less influenceonZi and hence on the
response. The fact that the response surface is clearly non-linear indicates that a standard functional GLM
(James, 2002), which assumes linearity and a fixed linkg, would not be adequate for this data. Another
possible approach here would be to use a more advanced functional GLM approach which also estimates
the link. Such a method could be expected to give similar results to FAME with r restricted to one.

In this example the first four principal component curves explain almost 100% of the variability in the
Xi ’s. Hence from (12) we see that

Zi ≈ α+
4

∑
m=1

ζimβ∗
m (23)

whereζim is the loading for themth principal component on theith predictor,Xi. Equation 23 provides an
alternative method of presenting the FAME results, which isoften more illuminating about the relationship
betweenXi andZi than the rawβ curve. For this dataβ∗T = (−20.296,−0.386,−0.006,0.015) so in calcu-
latingZi almost all the weight is placed on the first component loading. Figures 2(c) and (d) provide plots of
the first two principal component curves. The+ and− curves correspond respectively to the mean function
plus or minus three times the principal component. Hence an individual whose predictor curve looks like
the+ curve for PC 1 would haveζT = (3,0,0,0) and theirZ would be 20.296×3 below the average. The
effect of this value ofZ on the response can in turn be seen in Figure 2(b). Similar observations can be
made for the other principal component curves. However, since the other components have much smallerβ∗

coefficients they have a comparatively low effect on theZ score and hence the response. A formulation such
as (23) allows one to easily asses the types of variation in the predictors that have the greatest impact on the
response. Notice that in this exampleβ had a similar shape to the first principal component curve. This helps
explain the superior performance ofP2(β) which shrinks towards the dominant directions of variability.

3.2 Multivariate Data

The FAME model presented in Section 2 was for a single predictor. However, extending the model to
multiple functional and finite dimensional covariates is straightforward. Suppose that for each individual
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Figure 2:(a) and (b) Results from the FAME fit to a simulated data set. Solid black curves indicate the truth, dashed
lines give estimates and grey lines represent95%confidence intervals. (c) and (d) The first two principal component
curves of the predictors on the simulated data set.

a) b)

c) d)

we observe measurements from the predictor functionsXi1, . . . ,Xip and a vector of standard covariatesωT
i =

(ωi(p+1), . . . ,ωi(p+s)). The FAME model can be augmented in one of two ways. The first approach, most
directly analogous to PPR, uses the same link function as standard FAME, (6), but replaces (7) by

Zik =
p

∑
j=1

∫

Xi j (t)βk j(t)dt + ωT
i βkω. (24)

Equation 24 modelsZik as a linear combination of all the predictors. In all other respects the FAME model
remains identical. The second approach, more closely akin to GAM, fits a separate smooth function for each
predictor. In this case (6) becomes

g(µi) = β0 +
p

∑
j=1

f j(Zi j )+
p+s

∑
j=p+1

f j(ωi j ) (25)

whereZi j =
∫

Xi j (t)β j(t)dt. The first approach includes the second as a special case and has the advantage
of providing a more flexible fit. However, it becomes very difficult to separate out the individual effects of
each predictor using (24) while this is still possible with (25). Hence, as a general rule one should utilize
the first approach when the ultimate goal is prediction of theresponse and the second if inference about the
individual predictors is desired. We illustrate this technique on the femur bone data set.
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β∗ f1
PC 1 PC 2 PC 3 EDF χ2 p-value

Term 1 0.181 0.005 −0.032 1 7.5 0.0062
(0.024,0.338) (−0.145,0.155) (−0.152,0.088)

Table 1: A table for the femur bone data. The first three columns contain the weights ofβ on the corresponding
principal components of the predictors. Confidence intervals are provided in parentheses. The remaining columns
give the estimated degrees of freedom and significance values for f1.

The femur bone data consists of two-dimensional functions describing cross-sectional images of bones
from 96 individuals. The data were preprocessed to produce amatrix of 50 two-dimensional points, equally
spaced by arc length, giving the outline of a specific sectionof each individual’s femur bone. An image
for a typical subject is provided in Figure 3(a). Full details of the preprocessing are given in Ramsay and
Silverman (2002). By indexing the observations from 1 to 50 moving in a clockwise direction we can plot
the data using two curves for each individual, one each for the x andy directions. Figures 3(b) and (c) show
the x andy curves that correspond to Figure 3(a). For each person the data also include an indicator for
osteoarthritis. We wish to use thex andy curves as predictors of arthritis. Since the curves here arereally
just two dimensions of a single function we are not primarilyinterested in the individual effect ofx andy so
it is natural to apply the multivariate version of FAME using(24).

Unlike the simulated data in the previous section which contained noisy observations of each curve,
for this data we essentially have measurements of the entirefunction with no noise. Thus we fit the no
measurement error version of FAME using a variety of values for r, 15-dimensional cubic b-spline bases
and bothP1(β) andP2(β). The fit usingP2(β) and r = 1 is given in Figure 3. Theβ curves, along with
95% confidence intervals, for thex andy directions are provided in Figures 3(d) and (e) respectively. The
confidence intervals suggest no clear trend in thex direction and positive, but decreasing, weight on the
second half of observations in they direction. Unfortunately, the two-dimensional nature of the data makes
theβ curves more difficult to interpret. However, as in the one-dimensional case, one can analyze the data
by decomposing the predictor functions into their first few principal component curves and examining the
corresponding values ofβ∗. The first three principal component curves are given in Figures 3(f) through
(h) andβ∗ is provided in Table 1. The first component accounts for a highproportion of all variability
and primarily corresponds to variation in they direction. The next two components relate more strongly to
variability in thex direction. By examiningβ∗ it is clear that most of the weight in calculatingZi is placed
on the first component indicating that this type of variationin they direction is the most important predictor
of arthritis. In fact, judging from the confidence intervalsfor β∗ provided in parentheses the first component
is the only significant term. The variability in the other components explains the wide confidence intervals
in the first half of Figure 3(d). The last three columns of Table 1 provide the estimated degrees of freedom
as well as significance values for the smooth term,f1(Zi). The edf indicates that a linear fit is optimal and
the p-value suggests that the bone images are highly significant predictors of arthritis. The slope of the
smooth term was negative which, when combined with the positive value ofβ∗

1, indicates that individuals
with shrunken bones in they direction are at greater risk for developing arthritis. We next repeated the
procedure withr = 2. The second term placed most of its weight on the second principal component but
was not statistically significant.
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Figure 3: Plots for the femur bone data showing a typical curve (a)-(c), β curves (solid) with confidence intervals
(dashed) for the FAME fit (d) and (e) and the first three principal component curves (f)-(h).
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e) f) g) h)

4 Simulation study

4.1 FAME predictive performance

This section provides the results from a simulation study designed to test the performance of FAME in
comparison with other approaches. We compared six different procedures on four test distributions. The
first two methods were FAME with penaltiesP1(β) and P2(β) and 15-dimensional cubic b-spline bases.
The third procedure, Functional Generalized Linear Models“FGLM” (James, 2002) provides a GLM fit
to functional predictors. It is essentially identical to FAME with r = 1, f1 restricted to be linear and the
link g taken to be fixed. With the fourth approach, “S. Spline”, we fita cubic smoothing spline to each
individual predictor curve, produced estimates of the curve at each of ten equally spaced time points and
used these ten observations as predictors in a standard linear regression. For the fifth method, “All points”,
the original measurements for each curve were sorted by timeof observation and then used as predictors in
a linear regression. This approach is only feasible if all the subjects have the same number of observations
and may perform poorly if individual curves are observed at very different time points. The final procedure,
“Average”, just involved taking the mean of the existing observations for each curve and using this value as
the predictor in a simple linear regression.

For each of the four simulations a test data set of 1000 observations was drawn from a given distribution.
Each observation consisted of measurements along a predictor curve and a corresponding scalar response.
In addition 100 training data sets were produced from the same distribution and fit with each of the six
procedures. The goal was to use the training data and the predictors from the test data to provide as accurate
predictions as possible for the 1000 test responses. The results for all four simulations are shown in Table 2
with standard errors over the 100 training data sets in parentheses. All results are shown as a percentage
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Method Simulation
1 2 3 4

FAME P1(β) 3(0.1) 29(0.8) 38(1.5) 33(1.3)
FAME P2(β) 3(0.1) 26(0.5) 33(0.4) 29(0.6)
FGLM 3(0.1) 60(0.3) 62(0.6) 63(0.6)
S. Spline 4(0.2) 66(0.5) 73(1.4) 67(1.0)
All points 60(1.6) 110(1.8) 137(4.3) 113(2.6)
Average 106(0.7) 101(0.3) 103(0.6) 102(0.4)

Table 2: Results from the four simulation studies with standard errors in parentheses. Results are shown as a per-
centage of the mean squared error produced by simply using the average of the training responses to predict the test
responses.

of the mean squared error produced by simply using the average of the training responses to predict the
test responses. For example, on the first simulation the predictions from FAME produced mean squared
deviations from the actual test responses that were only 3% of those obtained using the average of the
training data. Taking the complement of this number gives the percentage of test sample error explained by
using the predictor curves and is analogous toR2. For instance FAME explained 97% of all the variability
in the test responses in simulation 1.

The first simulation, intended to illustrate a situation where many simple approaches may work, in-
volved producing responses that were a linear functional ofthe predictor curves. For each observation two
predictor curves,Xi1 andXi2, were produced and each curve was sampled at ten random time points with-
out measurement error. The curves were generated using cubic functions with randomly chosen Gaussian
coefficients. Each response was then produced by taking a linear combination of the coefficients for each
of the two predictor curves and adding a small amount of random noise. A total of 50 observations were
produced for each training data set. Since the data had little measurement error and did not involve any non-
linear transformation of the predictors one would expect FAME to lose much of its advantage over other
methods. Table 2 shows that FAME, using either type of penalty function, produced considerably improved
results over those from using the training response mean. Asone would expect given the linearity of the data
FGLM produced almost identical results. In problems involving linear data with more measurement error
one may even expect FGLM to slightly outperform FAME becauseit should produce less variable results.
The smoothing spline fit, S. Spline, gave similar, though slightly inferior results. The other two methods,
All points and Average, both resulted in far inferior fits with the latter actually producing worse results than
simply using the mean of the training response.

The second simulation used the distribution of the data fromSection 3.1 withσx = 0.1 andσy = 50.
These data had a non-linear relationship between the predictors and response, a situation where FAME
might be expected to provide significant improvements over other approaches. In fact both FAME methods
produced considerably superior results over the other, linear, methods. FGLM was the best of the linear
approaches but still produced error rates approximately twice those of FAME. More complicated versions
of FGLM exist in which the link function is also estimated. Itis likely such an approach would produce
results more similar to FAME withr = 1. S. Spline gave similar fits to FGLM but the other two methods
failed completely. In this example the penalty termP2(β) gave slightly better results but it is possible that
further fine tuning of the smoothing parameterλβ would reduce the difference in performance.

The final two simulations were designed to test the robustness of FAME to violations of the Gaussian
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error assumptions for both the predictors and response. In Simulation 3 we replicated the data from the
previous simulation but used noise from at-distribution with three degrees of freedom, appropriately scaled
to maintain the original standard deviations. This change in the error distribution produced only a minor de-
terioration in the performance of FAME. While at-distribution is heavier tailed than the Gaussian it still has
a symmetrical bell shape. For the final simulation we utilized errors from the exponential distribution, stan-
dardized to have mean zero and the correct standard deviations. Again there were only minor deteriorations
noted in the FAME fit suggesting that the procedure is fairly robust to violations of the model assumptions.

4.2 Coverage, significance and power

We also performed simulations to test the true pointwise coverage of the confidence intervals onβ(t) and the
type one error probability and power of hypothesis tests fora relationship betweenY andX(t). The results
of these simulations are summarized in Figure 4. Figure 4(a)gives the true coverage levels of 90%,95%
and 99% confidence intervals from FAME fits to 100 simulated data sets for various values of the smoothing
parameterλβ. The data was simulated from essentially the same distribution as the second simulation of the
previous section withσx = 0, as is assumed for the asymptotic results, and the sample ofX(t)’s fixed across
data sets to maintain comparability. For all reasonable values of the smoothing parameter the coverage levels
are generally very close to, and in some cases even above, those predicted. When the parameter is set too
high the coverage is reduced but one would expect the effect of the smoothing term to diminish with larger
sample sizes. We also performed simulations with measurement error in the predictors and non Gaussian
error terms. We found little change in the coverage for smallamounts of measurement error and only an
average reduction of 1% in the coverage for thet and exponential error distributions explored in the previous
section.

To test significance levels and power we produced 200 data sets with predictors generated in an identical
fashion to the previous simulation but with categorical(0,1) responses. The log odds for theith response
was modeled usingβ0 + β1Zi. For β1 = 0 we estimated the probability of a type one error for a particular
nominal significance level,α, by calculating the fraction of p-values less thanα. We used an identical
approach to calculate power for various values ofβ1 > 0. The results are summarized in Figure 4(b). With
β1 = 0 the observed and nominal significance levels are all very close. For comparison we also calculated
the type one error probabilities when using p-values from the final GAM fit which treats the latentZi ’s
as fixed. These errors where much higher. For example withα = 0.1 the type one error probability was
actually 0.24. This illustrates the importance of incorporating the variability of the latent variables in the
analysis. Asβ1 increases from zero the power increases in an approximatelylogistic fashion. These results
were withλβ = 200. We found the observed significance levels reduced even further if less flexibility was
allowed inβ(t) and were higher for more flexible fits. Finally, we tested the power for a fit withr = 2 using
log odds equal toβ0 + β1Z1 + β2Z2

2 whereZ1 andZ2 represented two different linear combinations of the
predictors. The powers for detecting significant effects for the first term,f1, and the second term,f2, are
shown respectively in Figures 4(c) and (d). Both figures are plotted as a function ofβ1. The power levels
for f1 are all high. The power forf2 with α = 0.01 is relatively low while forα = 0.05 and 0.1 the power
is moderate and increasing withβ1. In general, power will decrease asr increases because more flexible fits
are produced. As one might expect, it is only possible to detect multiple fk’s provided the sample size is
relatively large or the signal is clear.
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Figure 4:(a) Coverage levels with pluses, triangles and circles respectively indicating90%,95%and99%confidence
intervals with dotted lines corresponding to theoretical coverage. (b) Significance levels and power for various values
of β1 with pluses, triangles and circles respectively corresponding toα = 10%,5%and1%and dotted lines indicating
the correct significance levels. Note the Zi ’s ranged fairly uniformly between−10 and10 so, for example, atβ1 = .1
the range of the log odds was2. (c) Power for f1. (d) Power for f2.

5 Discussion

In this paper we have suggested a general methodology for fitting a flexible class of models to data consisting
of functional predictors and scalar responses. Figure 5, which provides a summary of methods for modeling
predictor-response data, indicates the relationship between FAME and other standard approaches. The six
procedures in the upper boxes can all be used on data sets withstandardp-dimensional predictors. Models
range from least to most flexible moving from left to right. The top row corresponds to methods assuming a
Gaussian response. Linear regression provides the simplest approach. Additive models give extra flexibility
by permitting non-linear fits for each predictor. Finally, projection pursuit regression allows an almost
unlimited range of possible relationships. Neural nets (Hastieet al., 2001, Chapter 11) and boosting (Freund
and Schapire, 1997) methods provide similar highly flexiblefits and can be placed in the same category as
PPR. The second row of Figure 5 gives extensions of these three methods to non-Gaussian responses through
the use of a link between the mean of the response and the predictors.

All of the first six approaches require adaptation before they can be used for data with functional pre-
dictors. The bottom two rows of Figure 5 correspond to their functional extensions. Some of these methods
have been previously explored but most have not. Functionallinear regression is discussed in Ramsay and
Silverman (1997) and functional GLM techniques are developed in Marx and Eilers (1999), James (2002)
and Muller and Stadtmuller (2004). However, we are not awareof any previous work on the other four
functional modeling types. FAME, which corresponds to the bottom right box, provides an extension of
generalized projection pursuit to functional data of whichthe other methods can all be seen as special cases.
Since neural networks with one hidden layer are a special case of projection pursuit regression, we note that
FAME also provides a natural method for fitting neural networks to functional data.

The FAME methodology suggests a number of interesting areasfor future work. First, the asymptotic
hypothesis tests of Section 2.3 are only one of several possible approaches that might be taken. For example,
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Figure 5:A chart indicating the relationships among the various standard regression methodologies and their func-
tional extensions. Arrows point from more to less general models.

Cardotet al. (2003a) develop hypothesis tests for functional linear models. The asymptotic theory could
also be extended to arbitrary smooth functional data. We have given results for a finite dimensional FAME
model but in principle it should be possible to derive similar results without this restriction. In particular
the approach of Muller and Stadtmuller (2004), who develop fully functional asymptotics for a generalized
functional linear model, may be adapted to the FAME model. Second, in implementing FAME we utilize
high dimensional bases for theβk’s andXi ’s. The exact choice of a basis and its dimension are not critical
because of the use of penalty terms to regularize the fits. However, the simulations of Section 4 suggest
that there is some sensitivity to a reasonable choice for thepenalty coefficientλβ. In this paper we utilized
standard cross-validation but one might also use less computational approaches such as generalized cross-
validation or possibly BIC or AIC type criterion. Third, forvery sparse data, fitting eachXi(t) individually
could provide inaccurate estimates. It may be possible to produce better answers by building strength across
the predictors by assuming common covariances. This approach is taken for functional data in James (2002)
and James and Sugar (2003). Finally, while in practice we have found that the constraints placed on the
βk’s and theZk’s seem to produce identifiable parameter estimates a general functional proof does not exist.
However, Chiou and Muller (2004) do give a proof of identifiability for a non-functional “multiple index”
model which is similar to FAME. This approach could potentially be adapted to the functional domain so
we briefly outline their conditions and proof in the appendix. On the surface, their proof can be extended
to the functional case by simply replacing the vectors by functions and the inner products of vectors by
integrals of products of functions. However this raises a larger question as to the meaning of identifiability
in a functional data analysis setting. While there will, in principle, be sets of predictors that allow us to
distinguish between any given parameter functions, these predictors may be functions that are unlikely to
be realized in practice. A detailed analysis of identifiability would therefore require additional constraints
on either or both of the predictor functions or the parameterfunctions. To give a full treatment, one would
clearly have to allow families of constraints beyond simpleSobolev space constraints on the square-integrals
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of derivatives of functions, and so a careful considerationof both the philosophical and mathematical aspects
of this issue is a topic for considerable further research.

Another interesting problem for future research is the development of a functional generalized additive
models procedure. Linear regression, generalized linear models and projection pursuit all naturally extend
to functional data because they involve first taking a linearfunction of the predictors. In these cases the
summation overXjβ j can be replaced by an integral overX(t)β(t). However, no such linear function of the
predictors is employed in additive models, making it unclear how best to proceed. One possibility would
be to assume that the predictor functions lie approximatelyin a finite dimensional space by, for example,
taking the firstK principal component curves. An additive model could then befit to theK weights for each
curve and the results interpreted by examining the form of the principal component curves.

A Appendix

Chiou and Muller (2004) prove identifiability for a non-functional model similar in nature to FAME. Here
we give their key conditions and provide a brief outline of the proof. Chiou and Muller require a number of
technical conditions which, in particular, ensure that thespace of predictors is asymptotically dense. They
also assume that thefk’s are strictly monotone. They then impose a restriction on the magnitude of the
coefficient vectorβk which is similar, though not identical, to the one we use in (8). In addition they state
the following condition.

(M6) For any linearly independent set of vectorsα1, . . . ,αr ∈ R
p, such thatαk = βk does not hold for all

k = 1, . . . , r, for r ≥ 2, there exists ac∈ R such that the level setLc = {x ∈ R
p|∑r

k=1 fk(xTβk) = c}
has the following property: There existx1,x2 ∈ Lc andk0 ∈ {1, . . . , r} such thatxT

1 αk = xT
2 αk,k 6= k0

for 1≤ k≤ r, andxT
1 αk0 6= xT

2 αk0.

Under these conditions Chiou and Muller prove identifiability using the following argument. Suppose there
exists fk, f̃k,βk, β̃k such that

r

∑
k=1

fk(xT βk) =
r

∑
k=1

f̃k(xT β̃k) (26)

for all x i.e. the model is not identifiable. But by (M6) and monotonicity of the fk’s there existx1,x2 ∈ Lc

such thatf̃k(xT
1 β̃k) = f̃k(xT

2 β̃k) for k 6= k0 and f̃k0(x
T
1 β̃k0

) 6= f̃k0(x
T
2 β̃k0

). Hence

r

∑
k=1

f̃k(xT
1 β̃k) 6=

r

∑
k=1

f̃k(xT
2 β̃k). (27)

But sincex1,x2 ∈ Lc we know∑r
k=1 fk(xT

1 βk) = ∑r
k=1 fk(xT

2 βk) and hence by (26)

r

∑
k=1

f̃k(xT
1 β̃k) =

r

∑
k=1

fk(xT
1 βk) =

r

∑
k=1

fk(xT
2 βk) =

r

∑
k=1

f̃k(xT
2 β̃k).

This is a contradiction of (27) so, since the space of predictors is assumed to be asymptotically dense the
βk’s are identifiable. In addition, since there is a constrainton the magnitude of theβk’s the fk’s are also
identifiable.
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