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Abstract

The Lasso is a popular and computationally efficient procedure for automatically
performing both variable selection and coefficient shrinkage on linear regression mod-
els. One limitation of the Lasso is that the same tuning parameter is used for both
variable selection and shrinkage. As a result, it typicallyends up selecting a model
with too many variables to prevent over shrinkage of the regression coefficients. We
suggest an improved class of methods called ”Variable Inclusion and Shrinkage Algo-
rithms” (VISA). Our approach is capable of selecting sparsemodels while avoiding
over shrinkage problems and uses a path algorithm so is also computationally effi-
cient. We show through extensive simulations that VISA significantly outperforms
the Lasso and also provides improvements over more recent procedures, such as the
Dantzig selector, Relaxed Lasso and Adaptive Lasso. In addition, we provide theoret-
ical justification for VISA in terms of non-asymptotic bounds on the estimation error
that suggest it should exhibit good performance even for large numbers of predictors.
Finally, we extend the VISA methodology, path algorithm, and theoretical bounds to
the Generalized Linear Models framework.

Some key words: Variable Selection; Lasso; Generalized Linear Models; Dantzig Selector.

1 Introduction

When fitting the traditional linear regression model,

Yi = β0+
p

∑
j=1

Xi j β j + εi , εi ∼ N(0,σ2), i = 1, . . .n, (1)

with the number of predictors,p, large relative to the sample size,n, there are many ap-
proaches that outperform ordinary least squares (OLS) (Frank and Friedman, 1993). Most
of the alternatives can be categorized into one of two groups. The first set of approaches
uses some form of regularization on the regression coefficients to trade off increased bias
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for a possibly significant decrease in variance. While theseapproaches often produce im-
provements in prediction accuracy, the final fit may be difficult to interpret because allp
variables will remain in the model. The second set of approaches begins by performing
variable selection i.e. determining whichβ j 6= 0. By implementing OLS on the reduced
number of variables one can often gain both increased prediction accuracy as well as a
more easily interpretable model.

More recently interest has focused on an alternative class of methods which implement
both the variable selection and the coefficient shrinkage ina single procedure. The most
well known of these procedures is the Lasso (Tibshirani, 1996; Chenet al., 1998). The
Lasso uses anL1 penalty on the coefficients, which has the effect of automatically perform-
ing variable selection by setting certain coefficients to zero and shrinking the remainder.
This method was made particularly appealing by the advent ofthe LARS algorithm (Efron
et al., 2004) which provided a highly efficient means to simultaneously produce the set of
Lasso fits for all values of the tuning parameter. Numerous improvements have been sug-
gested for the Lasso. A few examples include the adaptive Lasso (Zou, 2006), SCAD (Fan
and Li, 2001), the Elastic Net (Zou and Hastie, 2005), CAP (Zhaoet al., 2006), the Dantzig
selector (Candes and Tao, 2007), the Relaxed Lasso (Meinshausen, 2007), and the Double
Dantzig (James and Radchenko, 2008).

The main limitation of the Lasso is that in situations where the true number of non-zero
coefficients is small relative top, it must choose between including a number of irrelevant
variables or else over shrinking the correct variables in order to produce a model of the
correct size. This tradeoff is caused by the fact that the Lasso uses a single tuning parameter
to control both the variable selection and the shrinkage component of the fitting procedure.
The Relaxed Lasso attacks this problem directly by introducing a second tuning parameter.
The first parameter controls the number of variables that areincluded in the model while the
second controls the level of shrinkage on the selected variables. Meinshausen (2007) shows
that the Relaxed Lasso can significantly outperform the Lasso whenp is large relative ton
and provides comparable performance to the Lasso in other situations.

In this paper we suggest a new approach called the “Variable Inclusion and Shrinkage
Algorithm” (VISA). As with the Relaxed Lasso we utilize two tuning parameters. However,
rather than using the hard thresholding approach enforced by the Relaxed Lasso and other
variable selection methods, where only variables includedaccording to the first tuning pa-
rameter may enter the model, we allow for the potential inclusion of all variables. Our first
tuning parameter divides the variables into two groups. Thefirst group receives preference
for model inclusion but variables from the second group may still be included if there is
evidence that they are significant. Thus errors in the original variables can be eliminated to
produce the correct model.

This paper makes four key contributions. First, we demonstrate through simulations and
real world examples that VISA consistently produces considerable improvements over the
Lasso, as well as related approaches, such as the Dantzig Selector and the adaptive Lasso.
It also provides statistically significant improvements over the Relaxed Lasso. Second, we
develop a fitting algorithm, similar in nature to LARS, for efficiently computing the entire
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sample path of VISA coefficients. Hence, the computation cost is similar to that for the
Lasso or Relaxed Lasso, both of which are considered to be extremely efficient procedures.
Third, we provide theoretical results demonstrating situations where both the Lasso and
Relaxed Lasso will fail but VISA will generate the correct model. In addition we show
that VISA possesses similar types of non-asymptotic boundsto those that Candes and Tao
(2007) proved for the Dantzig selector. The Dantzig selector’s non-asymptotic bounds have
attracted a great deal of attention because they show that the L2 error in the estimated
coefficients is within a factor of logp of that one could achieve if the true model were
known. These bounds suggest VISA should have good levels of performance even forp
much larger thann. Finally, we extend both the VISA fitting algorithms and the theoretical
bounds to the more general class of Generalized Linear Models (McCullagh and Nelder,
1989). To our knowledge, this is the first time that bounds of this form have been proposed
for GLM’s.

The remainder of this paper is organized as follows. In Section 2 we explicitly define
the VISA approach for linear models and develop an efficient path fitting procedure. Our
non-asymptotic bounds and other theoretical contributions are also provided in this sec-
tion. A comprehensive simulation comparison of VISA with the Lasso, Dantzig selector,
Relaxed Lasso and other methods is presented in Section 3. Wedemonstrate the practical
performance of VISA on two real world data sets in Section 4. Finally, Section 5 extends
the VISA methodology and theory to GLM’s and Section 6 provides a discussion.

2 Methodology

In this section we describe the VISA methodology. VISA is in fact a general class of
approaches. In Section 2.1 we explain the general VISA implementation. Then in Sec-
tions 2.2 and 2.3 we provide two specific implementations of this approach using modified
versions of the LARS (Efronet al., 2004) and DASSO (Jameset al., 2008) algorithms. Our
theoretical results are presented in Section 2.4.

2.1 General VISA Methodology

Using suitable location and scale transformations we can standardize the predictors and
center the response, so that

n

∑
i=1

Yi = 0,
n

∑
i=1

Xi j = 0,
n

∑
i=1

X2
i j = 1, for j = 1, . . . , p. (2)

Throughout the paper we assume that (2) holds. However, all numerical results are pre-
sented on the original scale of the data.

Figure 1 illustrates the differences between the Lasso, Dantzig selector, Relaxed Lasso
and our VISA methodology. Letc j = xT

j (Y−Xβ̂) denote the covariance between thejth
predictor and the residual vector. The solid line in the firstplot of Figure 1 represents the
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Figure 1:Here the solid, dashed and dash-dot lines respectively represent constraints ap-
plied to all the variables, a primary subset of variables, and a secondary subset of variables.

maximum absolutec j among all predictors, i.e.‖XT(Y−Xβ̂)‖∞, as a function of the tuning
parameter. The Lasso and Dantzig selector both construct coefficient paths beginning with
the maximum covariance equal to‖XTY‖∞ and systematically reducing it to zero. One then
chooses a tuning parameterλ and selects the point on the path where the maximum covari-
ance equalsλ. We denote this point byβλ(0). It has been well documented (Meinshausen,
2007; Candes and Tao, 2007; James and Radchenko, 2008) that these methods must either
select a largeλ which results in a sparse model but over shrinkage of the coefficients or
else a low value ofλ which reduces the shrinkage problem but also tends to introduce many
undesired variables into the model.

The Relaxed Lasso (Meinshausen, 2007), illustrated in the second plot of Figure 1,
proposes a solution to this problem. First, for a given valueof λ, the Lasso is used to find
the pointβλ(0) where the maximum covariance equalsλ. The variables at the covariance
boundaryA1 = { j : |c j | = λ} are selected for the final model. The Relaxed Lasso then
continues the path by driving the covariances forA1 to zero, as represented by the dashed
line. This approach allows one to select a sparse model without requiring over shrinkage
on the nonzero coefficients. However, any errors in the initial model selected byβλ(0) can
not be corrected.

Our VISA methodology, illustrated in the final plot of Figure1, also removes the over
shrinkage problem, but without the requirement to permanently exclude variables. As with
the Relaxed Lasso, a value forλ is chosen,βλ(0) is computed as the starting point for the
coefficient path, we identify the variablesA1, and drive their covariances to zero. We call
A1 the “primary” variables. However, VISA differs from the Relaxed Lasso in several key
respects. First, at no point do we fix any of the coefficients tozero and hence, as the fit to
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our data improves, new variables may always enter the model.As a result, mistakes in the
primary variables can be corrected. Second, while driving the covariances towards zero we
require that at all points of the coefficient path

‖XT(Y−Xβ̂)‖∞ ≤ λ. (3)

One can show that, for appropriateλ, bound (3) will hold with high probability for the
true coefficient vector,β, thus it is sensible to enforce this constraint on the estimated
coefficients. In addition, (3) provides an automatic form ofvariable selection, because if a
covariance reaches the threshold±λ as the primary covariances are driven to zero, a new
predictor will be added to the model to maintain the constraint. Finally, as represented by
the dash-dot line, after the covariances for the primary variables have reached zero, we then
identify the “secondary” set of variables currently at the boundary|c j | = λ, and send their
covariances to zero.

We provide theoretical justification for the VISA method in Section 2.4, and illustrate its
excellent practical performance via a comprehensive simulation study in Section 3. How-
ever, the intuition for this three step approach can be described as follows, using the VISAL
implementation introduced in the next subsection. We fix thevalue ofλ, and in the first step
of our algorithm select a sparse initial Lasso estimateβλ(0) that satisfies (3). In the second
step we use thec j ’s as measures of the “current” importance of each variable.The vari-
ables with maximum importance are selected as the “primary”predictors, and a pathβλ(s)
is constructed that systematically drives their|c j |’s towards zero, while maintaining (3) for
the remaining predictors. The primary variables representour initial guess for the model,
and by contracting their covariances we reduce or eliminateover shrinkage on their coeffi-
cients. However, while the focus is on the primary variables, at all stages of our algorithm
any predictor may enter the model. For instance, we show in Section 2.4 that, under cer-
tain conditions, the “true” variables, i.e. those related to Y, that miss being classified as
primary variables may see their|c j |’s rise until they reach the thresholdλ. At this point
these predictors will be included in the model, providing anautomatic correction for ini-
tial “mistakes”. This self correcting property is not possible with other approaches such as
the Relaxed Lasso. Finally, once the primary covariances have reached zero, in the third
step of our algorithm we identify a secondary set of variables whose|c j |’s are now at the
boundaryλ. This secondary set of predictors can be thought of as newly identified model
variables. Because they have large covariances, it is likely that their coefficients will also
be over shrunk, so the final section of the VISA path involves driving the secondary|c j |’s
towards zero, while maintaining the primary covariances atzero.

2.2 VISA Using LARS

Here we detail the algorithm for implementing one version ofour VISA methodology.
We call this approach VISAL because it involves an adaptation of the LARS algorithm.
Throughout the algorithm, index setA↓ represents the variables whose absolute covariances
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are being simultaneously driven to zero, andC denotes the common value of all those co-
variances. Index setA= represents the variables whose covariances are being held constant,
either at the levels±λ or at zero. WriteA for A↓∪A= and letXA be the matrix consisting
of the columns ofX in A . Let sA be an|A |-dimensional vector with components corre-
sponding toA↓ equal to the signs of the respectivec j ’s, and the components corresponding
to A= equal to zero. Finally, recall thatβλ(0) is the Lasso solution for which max|c j |= λ.
The VISAL algorithm consists of the following steps.

1. Initializeβ1 = βλ(0), A↓ = { j : |c j |= λ}, A= = /0, andl = 1.

2. Compute the|A |-dimensional direction vectorhA =
(

XT
A

XA

)−1sA . Let h be thep-
dimensional vector with the components corresponding toA given byhA and the
remainder set to zero.

3. Computeγ, the distance to travel in directionh until C = 0 or a new|ci | reaches the
levelλ. Defineβl+1 = βl + γh, add indexi to A=, and setl ← l +1.

4. Repeat steps 2 and 3 untilC = 0.

5. RenameA↓ andA= to A= andA↓, respectively. Repeat steps 2 and 3 untilC = 0.

The coefficient pathβλ(·) is constructed by linearly interpolatingβ1,β2, . . . ,βL, whereβL

is the endpoint of the algorithm. The starting point,βλ(0), can be computed easily by im-
plementing the first few steps of LARS. Steps 2 through 4 produce the red dashed line, from
Figure 1, corresponding to the first part of the VISA path where the covariances for the pri-
mary variables are driven to zero. Step 5, corresponding to the dash-dot line, then identifies
the secondary variables and sends their covariances to zero. The zeros insA ensure that
the |c j |’s in A= remain fixed at eitherλ or zero, while the±1’s in sA ensure that the|c j |’s
in A↓ decrease at a constant rate. Note that whensA has no zeroes,h is simply the LAR
direction. Similarly to LAR,γ is computed using

γ =
+

min
j /∈A

{

c j −λ
xT

j Xh
,

c j +λ
xT

j Xh
,

ck

xT
k Xh

}

,

where the minimum is taken over the positive components, andk is some member ofA↓.
In our simulations we use a slightly modified version of the above algorithm by forcing

the first computed direction to be LARS-Lasso rather than LAR. This is done by the fol-
lowing small change to step 1: if the LARS path that producedβλ(0) has a coefficient that
hit zero at the breakpoint corresponding toλ, remove this coefficient from the setA↓.

2.3 VISA Using DASSO

In this section we detail the algorithm for implementing another version of our VISA
methodology, VISAD. This approach uses a modified version of DASSO (Jameset al.,

6



2008). The DASSO algorithm generates the entire path of the Dantzig selector solutions.
The Dantzig selector (Candes and Tao, 2007) is defined as the solution to

minimize ‖β̃‖1 subject to ‖XT(Y−Xβ̃)‖∞ ≤ λ (4)

but it can also be viewed as the value that minimizes‖XT(Y−Xβ̃)‖∞ subject to‖β̃‖1≤ s.
This is the same optimization as for the Lasso, except that the loss function involves the
maximum of the partial derivatives of the sum of squares. Jameset al. (2008) demonstrate
strong connections between the Lasso and Dantzig selector and also between DASSO and
LARS. The main difference is that with LARS, when a new variable enters the active set,
A , this variable will automatically enter the model, while with DASSO this is not always
the case. LARS adjusts the coefficients in the direction

(

XT
A

XA

)−1sA , wheresA is a vector
of 1’s and−1’s. However, while this direction systematically reducesthe maximum abso-
lute covariance, it does not always result in the largest reduction per unit increase in‖β‖1.
By comparison, for each active set,A , DASSO computes a corresponding set,B, indexing
the variables in the model, i.e. those with non-zero coefficients. With LARSA andB are
identical, but DASSO choosesB so that the direction

(

XT
A

XB

)−1sA produces the greatest
reduction in the maximum absolute covariance per unit increase in‖β‖1.

DASSO can be thought of as an extension of LARS. We adapt VISAL in a similar
manner to produce VISAD. The setB is initialized to index the nonzero coefficients
of βλ(0), which is now the solution to problem (4). The active set,A , is now defined
as AM

↓ ∪A=, whereAM
↓ corresponds to the variables inA↓ with the maximum absolute

covariance. Steps 2 and 3 of VISAL are replaced by

2. Identify either the index to be added toB or the index to be removed fromAM
↓ . Use

the newA andB to calculate the|B|-dimensional direction vectorhB =
(

XT
A

XB

)−1sA .
Let h be thep-dimensional vector with the components corresponding toB given
by hB and the remainder set to zero.

3. Computeγ, the shortest distance to travel in directionh until a new|c j | reaches the
level λ, a new |cm| hits C for m∈ A↓, a coefficient path crosses zero, orC = 0.
Defineβl+1 = βl + γh and addi to A= or m to AM

↓ . Setl ← l +1.

The details for these steps are provided in the appendix, while all other steps are unchanged
from those of VISAL.

A key advantage of VISAD derives from the fact that the path of coefficients it generates
can be shown to provide the set of all solutionsβλ(s) that minimize‖β̃‖1 subject to

‖XT (Y−Xβ̃)‖∞ ≤ λ, for s in [0,2λ]

‖XT
A1

(Y−Xβ̃)‖∞ ≤ λ−s, for s in (0,λ] (5)

‖XT
A1

(Y−Xβ̃)‖∞ = 0, ‖XT
A2

(Y−Xβ̃)‖∞ ≤ 2λ−s, for s in (λ,2λ] (6)

whereλ and s are tuning parameters. Here we defineA1 = { j : |c j | = λ} when solv-
ing the above optimization problem withs = 0, andA2 = { j : |c j | = λ} when solving it
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with s = λ. The proof of this result is analogous to that given for the DASSO in James
et al. (2008). Notice that fors= 0 the Dantzig selector and VISAD optimization criteria
are identical. However, ass increases, the covariances inA1 are driven down to zero, and
the level of shrinkage on the primary variables is reduced. For s≥ λ the shrinkage on the
primary variables has been eliminated, and the newly identified secondary variables have
their shrinkage reduced, as the covariances inA2 are driven to zero. Equations (5) and (6)
can both be formulated as linear programming problems, so, as an alternative to computing
the entire path using the previously mentioned algorithm, we can also efficiently compute
the VISAD solution for any givenλ ands.

2.4 Theoretical Results

In this section we give some theoretical results providing justification for the VISA ap-
proach. First, in Section 2.4.1 we illustrate a scenario where one can prove that the LARS
and Relaxed Lasso methods will fail but VISA will still produce the correct model. Then in
Section 2.4.2 we show that VISA possesses non-asymptotic bounds on its estimation errors
which suggest good performance for largep.

2.4.1 Comparison Between VISA and LARS

Lemma 1 below outlines a scenario, with two “signal” and many“noise” variables, where
one can provide general conditions such that VISA will choose the correct model even in
situations where LARS will fail. Recall the linear model (1)and view the model sizepn

as a function ofn. Suppose thatβ has two non-zero coefficients,β = (β1,β2,0, ...,0),
and writeρlk for the sample correlation betweenXl and Xk. Note that we suppress the
dependence on the sample sizen to simplify the notation. Writean≫ bn and cn & dn

to meanbn/an → 0 anddn/cn = O(1) as n tends to infinity. Denote byβols
1,2 the OLS

solution using a model with onlyX1 andX2 and denote byJn the set of indexes{3, ..., pn}
corresponding to the noise variables.

Lemma 1 Let β1 and β2 be positive. Suppose that there exists a positiveδ, such that
for each n the correlations{ρ1 j ,ρ2 j , j ∈ Jn} lie in (δ,1− δ) and |ρ12| < 1− δ. Assume
thatβ1 & n1/2 and n1/2≫ β2≫

√
logpn.

1. If for some positiveδ1, the inequalityρ1 j +ρ2 j < 1+ρ12−δ1 holds for all j in Jn and
all n, then, with probability tending to one, LARS can identify the correct model, and
there is a VISAL coefficient path that identifies the correct model and stops at βols

1,2.

2. If for some positiveδ2, the inequalitymaxJn(ρ1 j +ρ2 j) > 1+ρ12+δ2 holds for all n,
then, with probability tending to one, LARS cannot identifythe correct model. If, in
addition, there exists a positiveδ3, such that

max
j∈Jn

(ρ2 j −ρ1 jρ12

1−ρ1 j

)

< 1−ρ2
12−δ3 (7)
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for all n, then, with probability tending to one, there is a VISAL coefficient path that
identifies the correct model and stops atβols

1,2.

The assumption here that theβ’s grow with n is reasonable because these are the coef-
ficients after normalizingx j . Hence asn grows theβ’s must also to maintain the original
scale. Figure 2 provides a graphical representation of the regions where VISA and LARS
will differ. For this figure we have assumed common correlations between signal and noise
variables,ρ1 j andρ2 j , and have plotted them on the x axis. The correlation betweenthe
two signal variables,ρ12, is plotted on the y axis. In the middle region both methods work.
Alternatively, in the two side regions LARS fails while VISAwill still choose the correct
model. Finally, whenρ1 j andρ2 j become too large neither method works. However, it
is worth noting that even in this third region VISA could be adapted to choose the cor-
rect model at the expense of introducing a third tuning parameter. We have not explored
that option here because of the practical problems associated with three tuning parame-
ters. If LARS can not identify the correct model, then the Relaxed Lasso will also fail,
so Lemma 1 applies equally well to the latter method. With some additional assumptions,
the results from Lemma 1 can also be extended to the LARS-Lasso, Dantzig selector and
VISAD. Lemma 1 refers to a simplified situation with only two signalvariables but the
ideas also apply to more complicated situations.

2.4.2 Non-Asymptotic Bounds on VISA Errors

As before, we assume that the columns ofX have been standardized and thatσ is the
standard deviation of the errors,εi . Given an index setJ ⊂ {1, . . . , p}, write XJ for the n
by |J| submatrix obtained by extracting the columns ofX corresponding to the indices inJ.

Definition 1 Let φ(k) denote the smallest eigenvalue of the matrices in{XT
J XJ, |J| ≤ k}.

Note thatφ(k) is positive if all subsets ofk columns ofX are linearly independent. Also
note thatXT

J XJ is a sample correlation matrix for the variables specified bythe subsetJ.
Then Theorem 1 allows us to place a non-asymptotic bound on the L2 error in the VISA
estimate.

Theorem 1 Suppose thatβ ∈ R
p is an S-sparse coefficient vector. Consider an a> 0, and

defineτp = σ
√

2(1+a) logp. If β̂ is a VISA estimator with k non-zerôβ j coefficients for
whichβ j = 0, andλ∞ = ‖XT(Y−Xβ̂)‖∞, then

P

(

||β̂−β||2 >
(S+k)1/2

φ(S+k)
(λ∞ + τp)

)

≤
(

pa
√

4π logp
)−1

.

By construction of VISA,λ∞ is bounded by the tuning parameterλ. In addition, in the
simulation study of Section 3, for the solutions chosen using a validation set, we foundλ∞ to
be always lower thanτp. Hence the bound is generally proportional toσ(S+k)1/2√2logp
which has a similar form to that of the Dantzig selector. The main differences are that our
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Figure 2:Possible scenarios for different correlations between signal and noise variables
(x axis) and between the two signal variables (y axis). VISA and LARS both choose the
correct model in the center region. Only VISA chooses the correct model in the two side
regions, and neither succeed in the lower region.

bound requires a smaller constant but involvesk, which is not present for the Dantzig selec-
tor. Of course, in practicek can always be bounded by the number of non-zero coefficients
in β̂.

The bound presented in Theorem 1 assumes thatX has columns of norm one. If we let
the sample sizen grow, then maintaining the norm one columns would involve growing the
individual entries of the coefficient vectorβ. To understand the implications of the error
bounds for the parameter vector on its original scale, we nowconsider the situation where
the columns are assumed to have squared norms proportional to n. Suppose that instead of
normalizing the predictor vectors, we rescale them to make their squared norms equalϑ2n,
whereϑ2 is the average squared element of the original design matrix. Denote byβ∗ andβ̂∗

the corresponding rescaled versions of the true parameter vector and the VISA solution.
The following result is a direct consequence of Theorem 1.
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Corollary 1 Under the assumptions of Theorem 1,

P

(

||β̂∗−β∗||2 >
1√
n

(S+k)1/2

ϑφ(S+k)
(λ∞ + τp)

)

≤
(

pa
√

4π logp
)−1

. (8)

Corollary 1 makes it easier to trace the estimation error of the VISA estimator asn andp
tend to infinity. In particular, if the ratio(S+k)1/2/(ϑφ(S+k)) stays stochastically bounded
andλ∞ < τp, then||β̂∗−β∗||2 = Op

(

n−1/2√logp
)

.

3 Simulation Study

In this section we present a detailed simulation study comparing VISAL and VISAD to five
competing methods. We conducted a total of 48 simulations. Tables 1 and 2 report re-
sults from a representative sampling of nine of the simulations. Each simulation compared
VISAL and VISAD to the Double Dantzig (DD), Relaxed Lasso (Relaxo), Adaptive Lasso,
Dantzig selector and Lasso. The Double Dantzig uses one tuning parameter to perform
variable selection and a second to adjust the level of shrinkage on the selected variables, in
a similar fashion to the Relaxed Lasso. The main difference is that it uses the Dantzig selec-
tor criteria rather than the Lasso’s. The Adaptive Lasso uses the least squares fit to reweight
the variables and then produces a Lasso fit based on the reweighted predictors. Since these
approaches are all efforts to improve on the Lasso fit they arenatural competitors to VISA.
Our simulations contained five parameters that we altered. Namely, the number of variables
(50 or 100), the number of observations (50 or 100), the number of non-zero coefficients (5
or 10), the values of the non-zero coefficients (0.5,0.75 or 1) and the correlations among the
columns in the design matrix (0,0.25,0.4 or 0.5). In the zero correlation case, the design
matrices were generated using iid random Gaussian entries and we tested all combinations
of the other parameters resulting in 24 simulations. For thecorrelated case, we fixed the
non-zero coefficients at 1 and tested out all other combinations for an additional 24 simula-
tions. In all 48 simulations, iid errors with a standard Normal distribution were added to the
response variable. For each method and simulation we computed four statistics: False Pos-
itive, the number of variables with zero coefficients incorrectly included in the final model;
False Negative, the number of variables with non-zero coefficients left out of the model; L2
square, the squaredL2 distance between the estimated coefficients and the truth; and MSE,
the average prediction error of each method on a large test data set. We have not reported
the MSE statistic, because it was generally very similar to theL2 statistic. Tables 1 and 2
provide the other three statistics averaged over 200 data sets.

Table 1 reports results from a representative sample of six simulations with zero cor-
relation and three with 0.5 correlation. All but the 50 variable, 100 observations with 0.5
correlation simulation used ten non-zero coefficients. These results illustrate the best pos-
sible performance of the various approaches with the tuningparameters chosen using the
optimal point on the path, in terms of minimizing L2, for eachof the seven methods. The
tuning parameters were chosen individually for each of the 200 data sets. For the L2 statis-
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Simulation Statistic VISAL VISAD DD Relaxo Adaptive Dantzig Lasso

50 var False-Pos 1.84 2.01 2.35 2.24 6.27 13.78 15.32
100 obs False-Neg 0.050 0.050 0.045 0.045 0.040 0.005 0.005
Coef= 0.5 L2-sq 0.202 0.203 0.218 0.216 0.290 0.373 0.356
50 var False-Pos 0.23 0.43 0.46 0.39 2.98 13.71 15.84
100 obs False-Neg 0 0 0 0 0 0 0
Coef= 1.0 L2-sq 0.121 0.120 0.129 0.128 0.173 0.366 0.345
100 var False-Pos 2.97 3.23 4.16 3.88 26.48 14.97 18.72
100 obs False-Neg 0.140 0.140 0.150 0.135 1.805 0.08 0.035
Coef= 0.5 L2-sq 0.276 0.274 0.305 0.302 1.174 0.553 0.516
100 var False-Pos 0.49 0.61 0.90 0.72 33.80 15.10 18.66
100 obs False-Neg 0 0 0 0 0.44 0 0
Coef= 1.0 L2-sq 0.136 0.137 0.154 0.149 1.84 0.592 0.539
100 var False-Pos 8.07 9.96 9.73 8.45 NA 13.86 15.15
50 obs False-Neg 2.380 1.805 2.180 2.340 NA 2.145 1.980
Coef= 0.5 L2-sq 1.256 1.145 1.211 1.270 NA 1.417 1.397
100 var False-Pos 7.30 10.40 9.77 8.38 NA 15.00 17.52
50 obs False-Neg 0.240 0.150 0.400 0.235 NA 0.425 0.185
Coef= 1.0 L2-sq 1.264 1.211 1.596 1.400 NA 2.891 2.254

50 var,100 obs False-Pos 0.49 0.82 1.14 0.57 1.46 9.74 8.57
Cor= .5 False-Neg 0 0 0 0 0.005 0 0
Coef= 1.0 L2-sq 0.132 0.130 0.128 0.137 0.160 0.306 0.314
100 var,50 obs False-Pos 11.30 13.61 11.46 10.84 NA 15.41 13.57
Cor= .5 False-Neg 0.190 0.130 0.425 0.340 NA 0.520 0.305
Coef= 1.0 L2-sq 1.852 1.640 1.984 2.032 NA 3.618 2.904
100 var,100 obs False-Pos 5.94 8.32 7.63 6.01 31.32 14.58 13.93
Cor= .5 False-Neg 0 0 0.020 0.005 0.815 0.055 0.005
Coef= 1.0 L2-sq 0.439 0.454 0.450 0.448 2.903 1.273 0.858

Table 1:Simulation results using the optimal point on the path for each method.

tic we performed tests of statistical significance, comparing each method to the best VISA
approach. Since most differences were statistically significant, any differences between
VISA and the other methods that were not significant were placed in bold font. For exam-
ple, in the first simulation with 50 variables and 100 observations VISAL and VISAD were
statistically identical, but the other methods were all significantly worse. In general, VISAL
and VISAD performed similarly, with VISAL having slightly lower false positive rates but
higher false negative rates. In comparison to the other methods, VISA generally had lower
false positive rates and similar false negative. In terms oftheL2 error, the VISA methods
were overall superior to all the other approaches in the zerocorrelation case, and in the
correlated case were overall superior to everything exceptthe Double Dantzig. In cases
with more observations than variables, the Adaptive Lasso provided improved performance
relative to the Dantzig selector and Lasso. However, because of its reliance on the least
squares estimators, it performed poorly in other settings.The Double Dantzig and Relaxed
Lasso performed somewhat similarly, and both provided considerable improvements over
all methods except for VISA.
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Simulation Statistic VISAL VISAD DD Relaxo Adaptive Dantzig Lasso

50 var False-Pos 2.92 3.27 3.41 3.39 6.66 13.52 15.08
100 obs False-Neg 0.045 0.045 0.070 0.065 0.065 0.005 0.005
Coef= 0.5 L2-sq 0.226 0.228 0.246 0.245 0.304 0.382 0.365
50 var False-Pos 0.93 1.65 1.28 1.26 3.55 13.70 15.45
100 obs False-Neg 0 0 0 0 0 0 0
Coef= 1.0 L2-sq 0.141 0.146 0.148 0.149 0.184 0.376 0.353
100 var False-Pos 4.06 4.78 4.87 4.60 27.29 14.67 18.03
100 obs False-Neg 0.155 0.145 0.170 0.170 1.805 0.075 0.040
Coef= 0.5 L2-sq 0.303 0.314 0.334 0.331 1.212 0.560 0.521
100 var False-Pos 0.90 1.24 1.52 1.18 33.89 14.99 18.09
100 obs False-Neg 0 0 0 0 0.465 0 0
Coef= 1.0 L2-sq 0.153 0.158 0.174 0.167 1.862 0.598 0.543
100 var False-Pos 8.09 12.32 10.28 8.48 NA 13.40 15.05
50 obs False-Neg 2.805 2.025 2.375 2.770 NA 2.365 2.135
Coef= 0.5 L2-sq 1.393 1.333 1.352 1.404 NA 1.461 1.438
100 var False-Pos 7.72 11.44 10.53 9.10 NA 15.15 17.09
50 obs False-Neg 0.265 0.200 0.390 0.245 NA 0.425 0.200
Coef= 1.0 L2-sq 1.339 1.378 1.672 1.469 NA 2.922 2.273

50 var,100 obs False-Pos 1.55 2.06 1.66 1.80 2.65 11.15 10.21
Cor= .5 False-Neg 0 0 0 0 0.005 0 0
Coef= 1.0 L2-sq 0.161 0.192 0.177 0.170 0.182 0.344 0.333
100 var,50 obs False-Pos 12.02 14.05 11.73 11.36 NA 15.37 13.70
Cor= .5 False-Neg 0.195 0.205 0.475 0.355 NA 0.515 0.300
Coef= 1.0 L2-sq 1.985 1.982 2.175 2.153 NA 3.708 2.919
100 var,100 obs False-Pos 7.18 10.05 8.47 7.06 31.67 14.57 14.46
Cor= .5 False-Neg 0 0 0.020 0.005 0.810 0.025 0.005
Coef= 1.0 L2-sq 0.478 0.601 0.520 0.482 2.953 1.333 0.866

Table 2:Simulation results using a validation data set to choose thetuning parameters.

In Table 2 we examine the deterioration in performance when the tuning parameter
must also be chosen. For each of the 200 data sets in each simulation we produced a
corresponding validation data set. The validation data sets were identically distributed to
the training data and had the same number of observations andvariables. We then selected
the tuning parameters that gave the lowest mean squared error between the response and
predictions on the validation data. As one would expect, this caused some deterioration in
performance for all seven methods, but, with a few exceptions, the conclusions from Table 1
remain the same. Among the 24 zero correlation cases, VISA still generally outperformed
the other methods, with VISAL being the best overall, however the advantage over the
Double Dantzig and Relaxed Lasso was not as dramatic as for the optimal point. In the 24
correlated cases VISAL again produced the best results followed by the Double Dantzig.

We also performed three additional simulations withp = 300 predictors,n = 50 ob-
servations, ten non-zero coefficients and varying degrees of correlation and values of the
coefficients. With these simulations we found VISAD was the best performer at low corre-
lations. At higher correlation VISAL performed as well, followed by the Double Dantzig.
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Figure 3:Histograms of the100bootstrap coefficient estimates for the Diabetes data.

4 Empirical Results

Here we present results from applying VISA to two real world data sets. We also provide
VISA fits to a simple sparse simulated data set to evaluate performance in a setting where
the truth is known. For all three data sets we implement VISAL using cross-validation
to choose the optimal tuning parameters,λ ands. For a fixed value ofλ, the VISA path
for all values ofs can be computed significantly faster than the whole LARS path. Of
course, VISA uses two tuning parameters in comparison to LARS, which has only one.
Hence, overall VISA is not quite as computationally efficient as LARS but the difference is
generally fairly small. As a result, using cross-validation is quite feasible.

The first real world data set we examine is the Diabetes data used in the LARS paper of
Efron et al. (2004). The data contains ten baseline predictors, age, sex, body mass, blood
pressure and six blood serum measurements (S1,. . ., S6), forn= 442 diabetes patients. The
response is a measure of disease progression one year after baseline. The average absolute
pairwise correlation among the ten predictors is 0.31. As a result of the efficiency in com-
puting the cross-validated VISA solution, we are able to implement a bootstrap approach,
where the data is resampled, and the coefficients are estimated based on the resampled
data. We useB = 100 bootstrap resamples and estimate the tuning parametersseparately
for each bootstrap data set. Histograms of the bootstrap estimates of the ten coefficients
are presented in Figure 3. There appears to be strong evidence that Sex, BMI, BP and S5
are all statistically significant predictors of disease progression. In addition, there are clear
spikes at zero for Age, S1, S2, S4 and to a slightly lesser extent S6. As opposed to standard
linear regression, where one can only say that there is no evidence to include a variable,
using VISA we see that there is actually evidence that these variables should be excluded.
S3 is an interesting case. It has no spike at zero, indicatingthat it is being included in most
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Figure 4:Histograms of the coefficient estimates for the first five variables on100simulated
data sets. VISA estimates are in the first row and Lasso in the second.

of the bootstrap models but its coefficients fall either sideof zero. This suggests that the
variable may well be significant but it is unclear what effectit has on disease progression.
One can also use a similar approach to compute the Lasso coefficient estimates. These fits
show a similar pattern to those of VISA but with more spread inthe insignificant variables
and a lower spike at zero, resulting in a smaller signal.

Next we examine a simple simulated data set with ten predictors, generated from an iid
standard Gaussian distribution, one hundred observationsand normal errors with a standard
deviation of two. The coefficients forX1 andX2 are both set to one while the remaining
coefficients are zero. We first apply both VISA and Lasso to thedata with the tuning
parameters chosen using cross-validation. The resulting coefficient estimates are provided
in Table 3. VISA has chosen the correct two variables with a small level of shrinkage of
the coefficients. Lasso has had to choose between including too many variables or over
shrinking the coefficients. In the end, the fit is a compromisewith both, two additional
variables included, andβ1 andβ2 over shrunk towards zero. The VISA coefficient vector is
considerably more accurate, with a mean squared error relative to the trueβ equal to 0.006,
compared to 0.032 for the Lasso. Additionally, when compared to the true response surface
VISA has a mean squared error of 0.07 compared to 0.32 for Lasso. Next we generated 100
data sets with an identical distribution to the original, and applied VISA and the Lasso to
each. Figure 4 plots histograms of the first five predictor coefficients for the two methods.
The VISA coefficients forX1 andX2 are centered close to the truth of one, with means
of 0.95 and 0.97, respectively. However, the Lasso coefficients are biased towards zero
with means of 0.82 and 0.81, respectively. This bias also results in a considerably larger
mean squared error for Lasso relative to VISA. In addition VISA produces many more zero
estimates forX3 throughX10 with 86% estimated as zero, compared to only 69% for the
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Method β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10

VISA 0.975 0.758 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Lasso 0.767 0.499 0.000 0.000 −0.126 0.000 0.000 0.000 0.000 0.056

Table 3:VISA and Lasso coefficient estimates for the ten variable simulated data set.

Order Variable Coefficient Confidence Interval
1 Tuition 0.13 (0.10,0.16)
2 Graduation Rate 5.61 (1.69,11.27)
3 Expenditure per student 0.02 (0.00,0.04)
4 Number of applications 0.06 (0.02,0.13)
5 Cost of Books 0.48 (0.08,0.85)
6 Parttime undergraduates 0.06 (0.00,0.17)
7 Alumni donation rate −11.72 (−18.26,−4.47)
8 Percent faculty with PhD 0.00 (−5.70,6.57)

Table 4:Coefficients and confidence intervals for the first eight variables to enter the model
when fitting the college data. The variables are listed in theorder that they entered.

Lasso.
The final data set we examine is a subset of the USNews data usedfor the ASA 1995

Data Analysis Exposition. The data contains measurements on 18 variables from 777 col-
leges around the United States. The response of interest is the cost of room and board at
each institution. The average absolute pairwise correlation among the 17 predictors is 0.32.
We first randomly divide the data into a test data set of 100 observations, with the remainder
making up the training data. Table 4 lists the first eight variables to enter the model, along
with their coefficients and 95% bootstrap confidence intervals. The order that the variables
enter provides a measure of their importance. We fit both VISAand Lasso to the training
data and make predictions on the test data. The VISA predictions are statistically superior
with a p-value of 0.02. Finally, Figure 5 provides plots of the cross-validatedVISA errors
for different values ofλ ands. The dotted lines in the left hand plot demarcate decreasing
values ofλ, and hence larger models. Within each dotted region we have plotted the error
for different values ofs. Notice that for many values ofλ, the optimal value ofs is some-
where in the middle. The right hand plot provides the CV error, as a function ofs, for the
optimalλ. Again we see that the optimals is not at the most extreme value. This provides
further motivation for the VISA path approach as opposed to asimpler method where vari-
able selection is performed first and then an OLS fit is used on the selected variables. On
this data set, the entire set of cross-validated errors for all values of both tuning parameters
took approximately four seconds to run in R.

We have opted here to compare VISA with Lasso because the Lasso is the most widely
used of the methods we examine. From our simulation study we know that, while the
improvement of VISA over the Double Dantzig or Relaxed Lassois highly statistically
significant, it is less extreme than that relative to the Lasso. Hence, had we compared VISA
with the Double Dantzig or Relaxed Lasso one would not expectto have seen such dramatic
differences.
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Figure 5:Cross validated VISA error rates on the USNews data set for different values ofλ
and s.

5 GLM VISA

Generalized linear models provide a framework for relatingresponse and predictor vari-
ables (McCullagh and Nelder, 1989). For a random variableY, we model the relationship
between predictorX i and responseYi asg(µi) = XT

i β, whereµi = E(Y|X i) andg is referred
to as the link function. Common examples ofg include the identity link used for normal
response data and the logistic link used for binary responsedata. In a standard GLM setup,
the coefficient vector is generally estimated using maximumlikelihood. However, whenp
is large relative ton, the maximum likelihood approach becomes undesirable for several
reasons. First, maximum likelihood will not produce any coefficients that are exactly zero,
and, as a result, the final model is less interpretable and probably less accurate. Second,
for large p the variance of the estimated coefficients will become largeand whenp > n
there is no unique solution. To address these limitations several extensions of the Lasso
to GLM data have been proposed (Park and Hastie, 2007). However, these extensions still
suffer from over shrinkage of the coefficients. In this section we address this problem by
extending VISA to the GLM setting.

5.1 GLM VISA Methodology

Notice that, for Gaussian error terms,xT
j (Y−Xβ) = σl ′j(β) wherel ′j is the partial derivative

of the log likelihood function with respect toβ j , σ2 = var(εi) andx j denotes thejth column
of X. For a GLM model, using the canonical link,l ′j(β) = xT

j (Y−µ) with µ = g−1(Xβ).
Hence, the VISAD optimization criteria, given by (5) and (6), can be extendedin a natural
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fashion by computing theβλ(s) that minimizes‖β̃‖1 subject to

‖XT (Y− µ̃)‖∞ ≤ λ, for s in [0,2λ]

‖XT
A1

(Y− µ̃)‖∞ ≤ λ−s, for s in (0,λ] (9)

‖XT
A1

(Y− µ̃)‖∞ = 0, ‖XT
A2

(Y− µ̃)‖∞ ≤ 2λ−s, for s in (λ,2λ]. (10)

Here we defineA1 andA2 in an analogous fashion to the definitions for the linear case,
except thatXβ is replaced byµ. For the Gaussian distribution with the identity link function,
the GLM VISA reduces to the standard VISA but it can also be applied to a much wider
range of response distributions. For example, solving (9) and (10) using a logistic link
function allows us to perform regression for categorical{0,1} response data.

Unlessg is the identity function, the GLM VISA constraints are not linear, so linear
programming software can not be directly used to computeβλ(s). However, recall that in
the standard GLM setting, an iterative weighted least squares algorithm is used to solve
the likelihood equation. In particular, given a current estimate β̃, an adjusted dependent
variableZi = XT

i β̃ + (Yi − µ̃i)/Vi is computed, whereVi is the conditional variance ofYi

given X i . A new estimate forβ is then produced using weighted least squares, i.e. by
solvingxT

j W(Z−Xβ̃) = 0 for j = 1, . . . , p, whereW is a matrix consisting of theVi ’s on

the diagonal. This procedure is iterated untilβ̃ converges.
An analogous iterative approach can be used to compute the GLM VISA.

1. At thek+ 1th iteration, letVi equal the conditional variance ofYi given the current
parameter estimates, and defineZi = XT

i β(k) +(Yi −µ(k)
i )/Vi, where(k) denotes the

corresponding estimate from thekth iteration.

2. LetZ∗i = Zi
√

Vi andX∗i j = Xi j
√

Vi .

3. Optimize (5) and (6) to computeβ(k+1) usingZ∗ as the response andX∗ as the design
matrix.

4. Repeat steps 1 through 3 until convergence.

As mentioned previously, (5) and (6) can be formulated as linear programming problems,
thus step 3 can be computed efficiently. James and Radchenko (2008) use a similar algo-
rithm and note that it generally converges within a few iterations, in which case the com-
putation time for the GLM VISA would only be a small multiple of that for the standard
VISA.

In addition to directly computing the GLM VISA solution for each givenλ ands, we
can also adapt the VISA algorithm to generate the entire pathof GLM VISA coefficients.
Our path algorithm is a natural generalization of the algorithms given in Park and Hastie
(2007) and James and Radchenko (2008). Although GLM VISA coefficient paths are not
piece-wise linear, they can be well approximated by a piece-wise linear solution. Given a
point on the path, we use the linear approximation to the GLM VISA optimization prob-
lem together with the steps 2 and 3 of the VISAD algorithm to approximately identify the
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next point on the path where a coefficient becomes nonzero, a coefficient hits zero, or a
new constraint becomes active. Then we use the new coefficient vector to iteratively solve
the corresponding GLM VISA optimization problem, as described above. We call this a
correction step. The fact that we know the set of active constraints and the set of nonzero
coefficients allows us to avoid using an optimization package in the correction step, and
instead solve a system of linear equations at each iteration.

5.2 Non-Asymptotic Bound

Similar non-asymptotic bounds to those for standard VISA, exist for GLM VISA. In partic-
ular, letH be the parameter space of coefficients,β. Further, letD be the set of all diagonal
matrices withith diagonal entry(g−1(XT

i α)−g−1(X iβ))/XT
i [α−β] whereα ∈H .

Definition 2 Let ψ(k) denote the smallest eigenvalue of the matrices in{XT
J DXJ, |J| ≤

k,D ∈D} .

Then Theorem 2 extends the non-asymptotic bounds from Section 2.4 to the GLM domain.

Theorem 2 Suppose thatβ ∈ R
p is an S-sparse coefficient vector. Letβ̂ be a GLM VISA

estimator with k false positive coefficients, and letλ∞ = ‖XT(Y− µ̂)‖∞. Then,

P

(

||β̂−β||2 >
(S+k)1/2

ψ(S+k)
(λ∞ + τ)

)

≤ P
(

ξ > τ
)

for each positiveτ, whereξ = ||XT(Y−µ)||∞.

Whenψ(S+k) = 0, we assume that the probability on the left-hand side of theabove in-
equality equals zero. In the Gaussian case,ψ≡ φ, andP(ξ > a

√
logp)≤ (pa√4π logp)−1,

as shown in the Appendix. In the more general setting Theorem3 places a bound on
P(ξ > τ) for most typical response distributions.

Theorem 3 Fix a positive a.

1. Suppose that there exist positive constants K and v, such that the response variables
satisfy K

(

Ee|Yi−µi |2/K−1
)

≤ v for every i. Setτp = a
√

logp and defineγ = a2[8K +

8v]−1. Then
P(ξ > τp)≤ 2p1−γ.

2. Suppose that there exist positive constants M and v, such that the response variables
satisfy2M2E

(

e|Yi−µi |/M−1− |Yi−µi |
M

)

≤ v for every i. Setτ′p = alogp and defineγ =

a[2M +2v/(alogp)]−1. Then

P(ξ > τ′p)≤ 2p1−γ.
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The first part of Theorem 3 covers, for example, the normal distribution with bounded
variance and the binomial distribution. The second part covers, for example, the poisson and
the exponential distributions, both with the assumption ofbounded variance. Combining
Theorems 2 and 3 allows us to construct bounds on theL2 error in the coefficient estimates,
which hold with high probability, for all the common response distributions. For example,
consider the binomial distribution withYi = 0 or 1. Then the condition in part 1 holds, for
example, withK = 1/2 andv = 1/2. Consequently, inequality

||β̂−β||2≤
(S+k)1/2

ψ(S+k)
(λ∞ +4γ1/2

√

logp)

is satisfied for each positiveγ with probability at least 1−2p1−γ.

6 Discussion

The Lasso, Dantzig selector, Relaxed Lasso and Double Dantzig, all use a hard thresholding
rule to select the model variables. The Relaxed Lasso and Double Dantzig then use a
second tuning parameter to adjust the level of shrinkage on the selected variables. Our
simulation results, along with previous studies, demonstrate that this two stage approach
can produce considerable improvements over the Lasso and Dantzig selector. However, the
hard thresholding rule means that none of these approaches can correct any mistakes in the
initial model selection step. The key contribution of the VISA methodology is to introduce
a more flexible selection scheme, where variables can potentially enter or leave the model as
the fit to the data improves. Our simulation results show thatthis more flexible strategy can
produce considerable improvements over the Lasso and Dantzig selector as well as smaller,
but still statistically significant, improvements over theRelaxed Lasso and Double Dantzig.
In addition to its strong practical performance VISA also possesses interesting theoretical
properties, that suggest it should perform well asp tends to infinity. Finally, the standard
VISA methodology can be extended to the class of GLM responsedistributions, providing
an added level of flexibility.

We see a few possible future directions for this work. VISA isessentially performing a
three step procedure, where first a primary set of variables is identified, then a secondary set,
and finally the optimal level of shrinkage is chosen. However, this idea could be extended
beyond three steps. For example, one could use the same path approach to implement a
four step procedure by selecting a tertiary set of variables. In theory we could keep adding
steps, but one may imagine that there are diminishing levelsof return. In addition, we
currently use the same cutoff for determining both the primary and secondary variables. The
advantage of this approach is that it can be implemented withonly two tuning parameters.
However, the results in Lemma 1 could be strengthened with the addition of a third tuning
parameter to allow a different cutoff for the secondary variables. It is an open question
whether any potential improvement in the practical performance of VISA would outweigh
the difficulty of selecting a third tuning parameter.
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A Steps 2 and 3 of the VISAD algorithm

Write β+ andβ− for the positive and negative parts ofβl . Suppose that the indexes inA

(and, correspondingly, inAM
↓ ) are ordered according to the time they were added toA .

Let Ĩ be an|A | by |AM
↓ | matrix in which thei j ’th element equals one if thei’th member

of A is also thej-th member ofAM
↓ , and it equals zero otherwise. WriteS for the |A |-

dimensional diagonal matrix containing the signs of covariancesc j for the variables inA ,
and compute the|A | by 2p+ |AM

↓ |matrixA=
[

−SXT
A

X SXT
A

X Ĩ
]

. The firstp columns
of A correspond toβ+ and the nextp columns toβ−. Let B̃ be the matrix produced by
selecting all the columns ofA that correspond to the non-zero components ofβ+ andβ−,
and letAi be one of the remaining columns. Write the two matrices in thefollowing block
form:

B̃ =

(

B1

B2

)

and Ai =

(

Ai1

Ai2

)

,

whereB1 is a square matrix of dimension|A |−1, andAi2 is a scalar. Define

i∗ = argmax
i: |qi |6=0,α/qi>0

[

1TB−1
1 Ai1−1{i≤2p}

]

/|qi|, (11)

where qi = Ai2 − B2B−1
1 Ai1, α = B2B−1

1 1̃− 1̃, and (1̃T , 1̃) is a zero-one row vector of
length|A | that indicates whether the corresponding element ofA belongs toAM

↓ .
If i∗ ≤ 2p, augment the setB by the index of the corresponding variable. Ifi∗ = 2p+m

for m= 1, ..., |AM
↓ |, leaveB unchanged, but remove them-th element from the setAM

↓ .
As with VISAL, the first point at which a new|c j | reachesλ is given by

γ1 =
+

min
j∈Ac

=\A↓

{

c j −λ
xT

j Xh
,
c j +λ
xT

j Xh

}

.

Let xk be a variable that is a member of the setAM
↓ . Then, as with LARS, the first point a

new|cm| hitsC for m in A↓ is given by

γ2 =
+

min
j∈A↓\AM

↓

{

ck−c j

(xk−x j)TXh
,

ck +c j

(xk +x j)TXh

}

,

and the first point that non-zero coefficient crosses zero is given byγ3 = min+
j

{

−βl
j/h j

}

.

Combining the above with the possibility thatC = 0, we getγ = min{γ1,γ2,γ3,ck/xT
k Xh}.
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B Proof of Lemma 1

Write Z j for xT
j ε and note thatZi ∼N(0,σ2) for eachi. Absolute covariances at the start of

the path are given by

|c1|= |xT
1 Y|= |β1+ρ12β2+Z1|

|c2|= |xT
2 Y|= |ρ12β1+β2+Z2|

|c j |= |xT
j Y|= |ρ1 jβ1+ρ2 jβ2+Z j | for j ∈ Jn.

Observe that|c1| = β1 + op(n1/2) and |c2| < (1− δ)β1 + op(n1/2). Note the stochastic
bound maxJn |Z j | = Op(

√
logp), and deduce that maxJn |c j | < (1−δ)β1+op(n1/2). Thus,

with probability tending to one, the first variable selectedby LARS isX1.
The first part of the LARS algorithm drives the absolute covariance|c1| towards zero

using one non-zero coefficient:β̂1. Absolute covariances on this part of the LARS path are
given by

|c1|= |xT
1 (Y− β̂1x1)|= |(β1− β̂1)+ρ12β2+Z1|

|c2|= |xT
2 (Y− β̂1x1)|= |ρ12(β1− β̂1)+β2+Z2|

|c j |= |xT
j (Y− β̂1x1)|= |ρ1 j(β1− β̂1)+ρ2 jβ2+Z j | for j ∈ Jn.

If |c2| is the first absolute covariance that rises up to|c1|, then simple algebra shows that
when|c2| becomes active,

|c2|= (1+ρ12)β2+op(β2). (12)

If |c j | with j > 2 is the first absolute covariance that rises up to|c1|, then when|c j | becomes
active,

|c j |=
(ρ2 j −ρ1 jρ12

1−ρ1 j

)

β2+op(β2). (13)

Conclude that under the assumptions of part 1 of the lemma, the second variable selected
by LARS isX2, with probability tending to one. Setλ to the maximum absolute covariance
at this point,λ = (1+ρ12)β2+op(β2), and consider the corresponding VISA pathβ̂L(λ, ·).
VISA starts by driving|c1| and|c2| towards zero at the same rate, using the coefficientsβ̂1

andβ̂1. Absolute covariances|c j | for the noise variables inJn are given by

|xT
j (Y− β̂1x1− β̂2x2)|= |ρ1 j(β1− β̂1)+ρ2 j(β2− β̂2)+Z j |=

ρ1 j +ρ2 j

1+ρ12
|c1|+Op(1),

hence maxJn |c j | < (1− δ1/2)λ + op(β2). Conclude that with probability tending to one,
none of the|c j |’s will rise up to the levelλ throughout the VISA path. This completes the
proof of part 1, because the final point of the coefficient pathis the solution to the system
of equationsxT

1 (Y− β̂1x1− β̂2x2) = 0 andxT
2 (Y− β̂1x1− β̂2x2) = 0, namelyβols

12 .
Recall the assumptions of part 2 of the lemma and compare the expressions for the

absolute covariances in equations (12) and (13). Conclude that with probability tending
to one, LARS will select a noise variable ahead ofX2. Setλ to the maximum absolute
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covariance right before the noise variable enters the model:

λ = max
j∈Jn

ρ2 j −ρ1 jρ12

1−ρ1 j
β2+o(β2).

Consider the corresponding VISA pathβ̂L(λ, ·). The fact that the correlation between each
noise variable andX1 is positive guarantees that as|c1| is decreased, the maximum absolute
covariance for the noise variables remains below the levelλ with probability tending to
one. If |c1| gets driven all the way down to zero, the corresponding valueof β1− β̂1 is
−ρ12β2+op(β2), hence the corresponding value of|c2| is (1−ρ2

12)β2 +op(β2). Compare
the latter value toλ taking into account inequality (7) and conclude that, with probability
tending to one, the absolute covariance|c2|will reach the levelλ at some point on the VISA
path before|c1| hits zero. Thus, VISA selectsX2 as a secondary variable. Again, the fact
that all the noise variables are positively correlated withX1 andX2 guarantees that maxJn |c j |
will remain below the levelλ throughout the VISA path. Complete the proof by noting that
the final point of the path is again the oracle least squares solution βols

12 .

C Proof of Theorem 1

Defineh = β̂−β, let J be the index set of theS+k nonzero elements ofh, and writehJ for
the corresponding subvector ofh. Note that

‖XT
J XJhJ‖∞ = ‖XT

J X(β̂−β)‖∞ = ‖XT
J (Y−Xβ)−XT

J (Y−Xβ̂)‖∞ ≤ λ∞ +‖XTε‖∞.

Hence the inequality‖XTε‖∞ ≤ τp implies

λ∞ + τp≥ ‖XT
J XJhJ‖∞ ≥ (S+k)−1/2‖XT

J XJhJ‖2≥ (S+k)−1/2φ(S+k)‖hJ‖2,

thus the boundφ(S+k)‖h‖2≤ (S+k)1/2(λ∞+τp) holds with probability at leastP(‖XTε‖∞≤
τp). Note that each component of the vectorXTε has aN(0,σ2) distribution, hence the de-
sired probability boundP(‖XTε‖∞ > τp)≤ (pa√4π logp)−1 follows from standard results
for normal random variables.

D Proof of Theorem 2

Note that vectorXT(µ̂−µ) can be written asXTDX(β̂−β) for some matrixD in the setD.
Argue as in the proof of Theorem 1 to establishψ(S+k)‖β̂−β‖2≤ (S+k)1/2(λ∞ +τ) with
probability at leastP(‖XT(Y−µ)‖∞ ≤ τ).
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E Proof of Theorem 3

We first present two lemmas and a corollary used in the proof. The following lemma can
be found in Bennett (1962), pages 37-38.

Lemma 2 (Bernstein’s inequality) Let V1,...,Vn be independent random variables with zero
mean such that inequalities E|Vi|m≤m!Mm−2vi/2 hold for every m≥ 2 (and all i) and some
positive M and vi . Then

P
(

|V1+ ...+Vn|> x
)

≤ 2exp

[

− x2

2
(

Mx+∑n
i=1vi

)

]

.

The next result is a direct consequence.

Corollary 2 Suppose that W1,...,Wn are independent random variables with expectation
zero and withmaxi≤n2M2E

(

e|Wi |/M−1− |Wi |
M

)

≤ v for some positive M and v. Then for all
positive x and real ai with |ai| ≤ 1,

P
(

|a1W1 + ...+anWn|> x
)

≤ 2exp

[

− x2

2
(

Mx+v∑n
i=1a2

i

)

]

.

Proof: For eachi, write out the Taylor expansion for the left-hand side of inequality 2M2E
(

e|Wi |/M−
1− |Wi |

M

)

≤ v to deriveE|Wi |m≤m!Mm−2v/2 for everym≥ 2. DefineVi = aiWi and note
thatE|Vi|m≤m!Mm−2a2

i v/2. Apply Bernstein’s inequality to complete the proof.

The following lemma is from Van de Geer (1999), Lemma 8.2.

Lemma 3 Suppose that W1, ...,Wn are independent random variables with expectation zero
and withmaxi≤nK(Ee|Wi |2/K −1) ≤ v for some positive K and v. Then for all real ai and
x > 0,

P
(

|a1W1 + ...+anWn|> x
)

≤ 2exp

[

− x2

8(K +v)∑n
i=1a2

i

]

.

Theorem 3 follows from the above results. LetX i denote the i-th column of matrixX
and writeW forY−µ. Observe thatP

(

||XTW||∞ > x
)

is bounded above by∑p
i=1P

(

|XT
i W|>

x
)

. Bound each summand by 2p−γ by applying either Lemma 3 withx= c
√

logp or Corol-
lary 2 withx = c(logp), depending on the behavior of the tails of the response distribution.
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