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Abstract

A new class of plug in classi�cation techniques have recently been developed in the statistics literature.
A plug in classi�cation technique (PaCT) is a method that takes a standard classi�er (such as LDA or
nearest neighbors) and plugs it into an algorithm to produce a new classi�er. The standard classi�er
is known as the Plug in Classi�er (PiC). These methods often produce large improvements over using
a single classi�er. In this paper we investigate one of these methods and give some motivation for its
success.

1 Introduction

Dietterich and Bakiri (1995) suggested the following method, motivated by Error Correcting Coding Theory,
for solving k class classi�cation problems using binary classi�ers.

� Produce a k by n (n large) binary coding matrix, ie a matrix of zeros and ones. We will denote this
matrix by Z, its i; jth component by Zij , its ith row by Zi and its jth column by Zj .

� Use the �rst column of the coding matrix (Z1) to create two super groups by assigning all groups with
a one in the corresponding element of Z1 to super group one and all other groups to super group zero.

� Train your plug in classi�er (PiC) on these two super groups.

� Repeat the process for each of the n columns (Z1;Z2; : : : ;Zn) to produce n trained classi�ers.

� For a new test point apply each of the n classi�ers to it. Each classi�er will produce a p̂j which is the
estimated probability the test point comes from the jth super group one. This will produce a vector
of probability estimates, p̂ = (p̂1; p̂2; : : : ; p̂n)

T .

� To classify the point calculate Di =
Pn

j=1 jp̂j�Zij j for each of the k groups (ie for i from 1 to k). This
is the L1 distance between p̂ and Zi (the ith row of Z). Classify to the group with lowest L1 distance
or equivalently argiminDi

I call this the L1 PaCT. Each row in the coding matrix corresponds to a unique (non-minimal) coding for the
appropriate class. Dietterich's motivation was that this allowed errors in individual classi�ers to be corrected
so if a small number of classi�ers gave a bad �t they did not unduly inuence the �nal classi�cation. Several
PiC's have been tested. The best results were obtained by using tree's, so all the experiments in this paper
are stated using a standard CART PiC. Note however, that the theorems are completely general to any PiC.

In the past it has been assumed that the improvements shown by this method were attributable to the
error coding structure and much e�ort has been devoted to choosing an optimal coding matrix. In this
paper we develop results which indicate that a randomized coding matrix should match (or exceed) the
performance of a designed matrix.
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2 Bias and Variance E�ects

As in regression estimation problems, the accuracy of a classi�er can be considered in terms of bias and
variance. It has been postulated that the L1 PaCT is a method for converting a tree classi�er (which is
high variance - low bias) into a low variance - low bias classi�er. To test this hypothesis one must �rst
de�ne what is meant by bias and variance of a classi�er. There have recently been a number of de�nitions
proposed (Dietterich and Bakiri (1995), Breiman (1996), Friedman (1996), Kohavi and Wolpert (1996),
Tibshirani(1996)). James (1997) suggests the following decomposition.

ER = P (Y 6= SY )| {z }
Bayes ER

+ [P (Y 6= SC)� P (Y 6= SY )]| {z }
Systematic E�ect (SE)

+ [P (Y 6= C)� P (Y 6= SC)]| {z }
Variance E�ect (VE)

where Y is the class label, SY is the Bayes classi�er, C is our classi�er, and SC is the mode of C (ie the
most common group that C classi�es to at each value of X). Note that C is a random variable | it depends
on the training data. The intuition here is that the mode (SC) is the closest non random classi�er to C (in
terms of minimizing the 0-1 loss function). So P (Y 6= SC) � P (Y 6= SY ) is the increase in error of using
the systematic part of C (SC) rather than the Bayes Classi�er. Similarly P (Y 6= C) � P (Y 6= SC) is the
change in error introduced by the variability of C about SC. SE is the equivalent of Bias2 in the regression
setting and VE equates to V ar(Ŷ ).

To illustrate the e�ect of the L1 PaCT on these quantities we produced a simulated data set of 26 classes.
Each class was distributed as a bivariate normal with identity covariance matrix and uniformly distributed
means. The training data consisted of 10 observations from each group. The estimates are averaged over 20
di�erent random training sets and each of the L1 PaCT's are also averaged over 5 random coding matrices.
The test data consisted of 40 observations from each group. The Bayes error rate (which is the minimum
possible error rate) for this test set was 23%. We tested three classi�ers. The �rst was CART, the second
was the L1 PaCT with n = 26 and the last was the L1 PaCT with n = 100. The following table illustrates
the results for the three classi�ers tested.

Classi�er Bayes Error SE VE Reducible Error Total Error

CART 0.231 0.020 (0.002) 0.073 (0.002) 0.093 (0.003) 0.324 (0.003)
L1 PaCT (n = 26) 0.231 0.015 (0.001) 0.062 (0.001) 0.077 (0.001) 0.308 (0.001)
L1 PaCT (n = 100) 0.231 0.017 (0.001) 0.042 (0.001) 0.059 (0.001) 0.290 (0.001)

The numbers in parentheses are approximate standard errors using a mixture of bootstrap and normal ap-
proximations. It is clear that the L1 PaCT is lowering the reducible error (Total error - Bayes Error). With
n = 100 the reducible error has declined by 36% over using CART. Most of this reduction is attributable to
the Variance E�ect though there does seem to be some indication of a decrease in the Systematic E�ect also.
These �gures tend to support the hypothesis that the method is reducing errors by decreasing the variance.

Note that there is a decrease in the error rate between the 26 and 100 column classi�ers. This e�ect is
very common and is apparent in real data sets also. In fact if we consider �gure 1, which is a plot of the
number of columns (n) of our coding matrix vs error rate for the LETTER data set (available from the
Irvine Repository of machine learning), it is noticeable that there is a strong relationship. We will see later
that the exact structure of this relationship can be theoretically explained.

3 Theory

The above results show that the L1 PaCT reduces the error rate by reducing the variance e�ect and to a
lesser extent also the systematic e�ect. However, they do not shed any light on why this should be the
case. To explore this question we need to develop the probability structure of the L1 PaCT. The coding
matrix, Z, is central to the L1 PaCT. In the past the usual approach has been to choose one with as large
a separation between rows (Zi) as possible (in terms of hamming distance) on the basis that this allows the
largest number of errors to be corrected. In the next two sections we will examine the tradeo�s between a
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Figure 1: Error rates for di�ering values of n

designed (deterministic) and a completely randomized matrix.

Some of the results that follow will make use of the following assumption.

E[p̂j j Z;X ] =

kX
i=1

Zij�
x
i = ZjT�x j = 1 : : : n (1)

where �xi = P (Gi j X) is the posterior probability that the test observation is from group i given that our
predictor variable is X . This is an unbiasedness assumption. It states that on average our classi�er will
estimate the probability of being in super group one correctly. The assumption is probably not too bad given
that trees are considered to have low bias.

3.1 Deterministic Coding Matrix

Obviously the L1 PaCT can not outperform the Bayes Classi�er. However we would hope that it would
achieve the Bayes Error Rate when we use the Bayes Classi�er as our PiC. If not we would be better o�
using the PiC directly. We have de�ned this property as Bayes Optimality.

De�nition 1 A PaCT is said to be Bayes Optimal if, for any test set, it always classi�es to the bayes group
when the Bayes Classi�er is our PiC.

For the L1 PaCT this means that argimax�
x
i = argiminD

x
i for all values of X when we use the Bayes

Classi�er as our PiC. The following theorem and corollary will help us to determine under what circumstances
the L1 PaCT is Bayes Optimal.

Theorem 1 If assumption 1 holds and Z is deterministic then

EDx
i =

X

l6=i

�xl

nX
j=1

(Zlj � Zij)
2 i = 1 : : : k

Corollary 1 If we use the Bayes classi�er as our plug in classi�er (ie use the Bayes classi�er to produce
p̂j) then Dx

i is non random and

Dx
i =

X

l6=i

�xl

nX
j=1

(Zlj � Zij)
2 i = 1 : : : k
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The corollary suggests that argimax�
x
i may not equal argiminD

x
i = argimin

P
l 6=i �

x
l

Pn
j=1(Zlj �Zij)

2

for all X . In fact the following theorem tells us that only in very restricted circumstances will the L1 PaCT
be Bayes Optimal.

Theorem 2 The Error Coding method is Bayes Optimal i� the Hamming distance between every pair of
rows of the coding matrix is equal.

The hamming distance between two binary vectors is the number of points where they di�er. For general
n and k there is no known way to generate a matrix with this property so the L1 PaCT will not be Bayes
Optimal.

3.2 Random Coding Matrix

We have seen in the previous section that there are potential problems with using a deterministic matrix.
Now suppose we randomly generate a coding matrix by choosing a zero or one with equal probability for
every coordinate. Let �Dx

i = Dx
i =n =

P jp̂j � Zij j=n. Then we have the following theorem which indicates
that by randomizing we have eliminated one of the concerns with a deterministic matrix.

Theorem 3 When the coding matrix is randomly chosen the L1 PaCT is asymptotically Bayes Optimal ie
Pr(argimin �Dx

i = argimax�
x
i )! 1 as n!1

This theorem is a consequence of the strong law and theorem 4.

Theorem 4 Under assumption 1 for a randomly generated coding matrix

E �Dx
i =

1

2
(1� �xi ) i = 1 : : : k

or in vector notation

E �Dx =
1

2
(1� �x)

This tells us that argiminE �Dx
i = argimax�

x
i which gives us the �rst indication of why the L1 PaCT is

successful. If �Dx had no randomness this would say that the L1 PaCT is equivalent to the Bayes Rule.

Of course in general �Dx will vary so there is no guarantee that argimin �Dx
i = argimax�

x
i . However if

the variability of �Dx is low we might hope that Pr(argimin �Dx
i = argimax�

x
i ) is high. To evaluate this

probability we need to consider the distribution of �Dx.

Let �xi = E[jp̂1 � Zi1j j Training set] and �x = (�x1 ; �
x
2 ; : : : ; �

x
k)

T . Then �x is the expected value of �Dx

conditional on the training set. Theorem 5 gives the asymptotic distribution of �Dx.

Theorem 5 For any �xed training set
p
n(�Dx � �x)) N(0;�)

If we remove the conditioning on the training set, �x is a random variable with E�x = 1
2 (1� �x).

Theorem 5 is a simple application of the multi-variate central limit theorem. Notice that Dx
i is just

an average of n random variables (jp̂j � Zij j). If we condition on a training set then each of these random
variables are independent and identically distributed (with mean �xi ) because each one will only depend on Z

j .

This leads to an important result.

Theorem 6 If we randomly choose Z then for any �xed X

jPr(argimin �Dx
i = argimax�

x
i )� Pr(argimin�

x
i = argimax�

x
i )j � c � e�mn

for some constants c and m or equivalently

Pr(argimin
�Dx
i 6= argimin�

x
i ) � c � e�mn
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Figure 2: Comparison's of 1=
p
n and 1=n vs error rates

Note that theorem 6 does not depend on assumption 1. What this tells us is that the probability we
correctly classify a point using �Dx is equal to the probability using �x plus an error term which decreases
exponentially in the limit. This exponential decay is a result of the central limit theorem. From the CLT
we know that �Dx = �x + Op(1=

p
n) so �Dx only approaches �x at a rate of 1=

p
n. However because of the

normality of �Dx it can be shown that

Pr(argimin �Dx
i 6= argimin�

x
i ) �

k

m
p
n

1p
2�

e�m
2n=2 for some m > 0

which gives an exponential decay. This only gives an upper bound on the error rate and does not neces-
sarily indicate the behavior for smaller values of n. Under certain conditions a Taylor expansion indicates
that Pr(argimin

�Dx
i 6= argimin�

x
i ) � 0:5 �m

p
n for small values of m

p
n. So we might expect that for

smaller values of n the error rate decreases as some power of n but that as n increases the change in error
rate looks more and more exponential.

To test this hypothesis we calculated the error rates for 6 di�erent values of n (15; 26; 40; 70; 100; 200) on
the LETTER data set. Figure 2 illustrates the results. The �rst row shows plots of the error rate vs 1=n
or 1=

p
n for the �rst four values of n (15; 26; 40; 70). Each value of n contains 5 points corresponding to 5

random matrices. Each point is the average over 20 random training sets. It is clear that the error rate looks
far more like 1=

p
n than 1=n. However if we consider the second row which contains plots of the last four

groups (40; 70; 100; 200) the trend is reversed. This supports our hypothesis that the error rate is moving
through the powers of n towards an exponential �t. Figure 3 illustrates this e�ect in an alternate manor.
Here we have two curves. The lower curve is the best �t of 1=

p
n to the �rst four groups. It �ts those groups

well but under predicts errors for the last two groups. The upper curve is the best �t of 1=n to the last four
groups. It �ts those groups well but over predicts errors for the �rst two groups.

We can see from �gure 3 that even for relatively low values of n the reduction in error rate has slowed
substantially. This indicates that almost all the remaining errors are as a result of argimin�

x
i 6= argmax�xi

which we can not eliminate by changing the coding matrix. Thus, the coding matrix is simply a method for
randomly sampling from the distribution of jp̂j � Zj j to estimate �x (its mean). It is well known that the
optimal way to estimate such a parameter is by random sampling so it should not be possible to improve on
this by designing the coding matrix. It is clear that what we are really interested in is �x. We can, with
relative ease, estimate �x to a high level of accuracy. From theorem 5 we know that E�x = 1

2 (1 � �x) so
if the variability of �x is low so will be the error rate. In general the variability of �x will depend on the
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Figure 3: Best �t curves for rates 1=
p
n and 1=n

variability of the PiC. Theorem 7 shows how these quantities are related.

Theorem 7 Under assumption 1

V ar(�xi ) = V ar(p̂1)� 1

4
�2i �E[V ar[jp̂1 � Zi1jjTraining Data]]

Unfortunately the last two terms are unknown. However they are both positive so this does provide an
upper bound for V ar(�xi ). This area is the subject of future research.

4 Conclusion

The L1 PaCT was originally envisioned as an adaption of error coding ideas to classi�cation problems.
Our results indicate that the error coding matrix is simply a method for randomly sampling from a �xed
distribution. This idea is very similar to the Bootstrap where we randomly sample from the empirical
distribution for a �xed data set. There you are trying to estimate the variability of some parameter. Your
estimate will have two sources of error, randomness caused by sampling from the empirical distribution and
the randomness from the data set itself. In our case we have the same two sources of error, error caused by
sampling from jp̂j � Zij j to estimate �x and error's caused by �x itself. In both cases the �rst sort of error
will reduce rapidly and it is the second type we are really interested in. It is apparent (based on empirical
evidence) that the variability of �x is lower than that of directly estimating �x using our PiC.
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