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SUMMARY

We consider estimating a functional graphical model from multivariate functional observa-
tions. In functional data analysis, the classical assumption is that each function has been mea-
sured over a densely sampled grid. However, in practice the functions have often been observed, 15

with measurement error, at a relatively small number of points. In this paper, we propose a
class of doubly functional graphical models to capture the evolving conditional dependence re-
lationship among a large number of sparsely or densely sampled functions. Our approach first
implements a nonparametric smoother to perform functional principal components analysis for
each curve, then estimates a functional covariance matrix and finally computes sparse precision 20

matrices, which in turn provide the doubly functional graphical model. We derive some novel
concentration bounds, uniform convergence rates and model selection properties of our estima-
tor for both sparsely and densely sampled functional data in the high-dimensional large p, small
n, regime. We demonstrate via simulations that the proposed method significantly outperforms
possible competitors. Our proposed method is also applied to a brain imaging dataset. 25

Some key words: Constrained `1-minimization; Functional principal component; Functional precision matrix; Graph-
ical model; High-dimensional data; Sparsely sampled functional data.

1. INTRODUCTION

Undirected graphical models depicting conditional dependence relationships among p random
variables, X “ pX1, . . . , Xpq

T, have attracted considerable attention in recent years. Let G “ 30

pV,Eq be an undirected graph characterized by the vertex set V “ t1, . . . , pu and the edge set
E, which consists of all pairs pj, kq such that Xj and Xk are conditionally dependent given the
remaining p´ 2 variables. A central question in understanding the structure of G is to recover
the edge set E. In particular for a multivariate Gaussian distributed X , recovering the structure
of an undirected graph is equivalent to locating the non-zero components in the precision matrix, 35

that is, the inverse covariance matrix, of X (Lauritzen, 1996).

C© 2016 Biometrika Trust
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Table 1: Graphical models for different types of data and corresponding graph.

Graphical Model
Static Functional

Data Static Gaussian graphical model Dynamic graphical model
Functional Static functional graphical model Doubly functional graphical model

The past several years have witnessed the development of Gaussian graphical models in large
p, small n, settings. One popular class of estimation approaches, the graphical lasso, considers
optimizing a criterion involving the Gaussian log-likelihood with a lasso-type penalty on the en-
tries of the precision matrix (Yuan & Lin, 2007; Friedman et al., 2008). For examples of recent40

developments, see Zhou et al. (2010), Ravikumar et al. (2011), Witten et al. (2011), Chun et al.
(2013) and Danaher et al. (2014). Another popular class of neighborhood-based estimation ap-
proaches, first proposed by Meinshausen & Buhlmann (2006), considers recovering the support
of G by solving p lasso problems columnwise. Cai et al. (2011) proposed a Dantzig-type variant
of this approach, named constrained `1-minimization for inverse matrix estimation. Some recent45

work along this line of research includes Cai et al. (2016) and Qiu et al. (2016).
In this paper, we consider estimating functional graphical models based on multivariate func-

tional data. Table 1 illustrates the distinction by dividing the data and corresponding network
into static vs functional categories. The first entry in the table, Gaussian graphical models, cor-
responds to the standard setting involving high dimensional, but static, data from which we es-50

timate a single graphical model. One may also observe multiple samples of independent but
non-identically distributed static data, where distributions evolve over time, and wish to compute
graphical models for each sample. These dynamic graphical models often adopt a nonparametric
approach (Zhou et al., 2010; Kolar & Xing, 2011).

Our setting corresponds to the last row of Table 1, where the data can be considered functional.55

Figure 1 illustrates the data structure and underlying network pattern using a simple example. Its
left-hand side plots n “ 100 realizations of p “ 10 random curves in U “ r0, 1s, each of which
corresponds to one underlying node. In practice, functions can be observed at either a dense grid
of points or a small subset of possible points, and may also be contaminated by measurement
error. Qiao et al. (2019) model such data using a static functional graphical model, where a60

single network is constructed to encode the global conditional dependence relationship among
high-dimensional Gaussian random functions. Li et al. (2018) relax the Gaussian assumption and
explore the additive conditional dependence structure by treating p as fixed. Our goal is to present
a doubly functional graphical model where both the data and the network are functional in nature.
The right-hand side of Figure 1 provides a visualization of our model, where the network edges65

evolve over U . We aim to estimate the functional network in the right-hand panel based on either
sparsely or densely observed functions in the left-hand panel.

Our motivating example is an electroencephalography, EEG, dataset, which measures signals
from 64 electrodes placed at standard brain locations over 256 time points for subjects from an
alcoholic group and from a non-alcoholic group. When the function at each location is specified70

over a period of time, existing work has shown that edges will disappear and emerge over time
(Cabral et al., 2014). The objective is thus to investigate differences between the alcoholic and
control group networks in order to understand how the two populations differ. Other important
examples include different types of medical imaging data and gene expression data measured
over time (Storey et al., 2005).75
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Fig. 1: Data generated from the simulation setting in Section 4. Left: The data matrix consists
of 100 random functional realizations (red line), their noisy observations at either 50 evenly
spaced points (black dots) or 10 randomly selected points (green squares), for j “ 1, . . . , 10
nodes. Right: Visualization of true functional network at 4 selected time points.

One approach to address this sort of functional data would be to first sample each function at
a grid of points, u1, . . . , uT , and then estimate T graphs. This could be achieved by separately
estimating T networks using a standard method, for example, the graphical lasso or constrained
`1-minimization, by jointly estimating T graphs that share certain characteristics (Chun et al.,
2013; Danaher et al., 2014; Cai et al., 2016), or by estimating the functional graph based on 80

the smoothed sample covariance matrix estimator (Qiu et al., 2016). However these approaches
all share one major deficiency, that is they will only work if all random functions are sampled
at a common set of grid points, whereas in practice curves are often observed at different sets
of points. Another approach is to use nonparametric smoothers to estimate the cross-covariance
function between the jth and kth functions for all j, k “ 1, . . . , p, and to use these to compute the 85

functional network. However, this would involve computing ppp` 1q{2 pairwise terms, which
is not computationally scalable, especially under the large p, small n, scenario.

Our proposed method consists of three steps. First, we apply a nonparametric approach to
smooth p covariance functions and represent each curve using the first M functional principal
components, with the functional principal component scores framed as conditional expectations. 90

Second, the finite-dimensional representations of the curves lead to the functional estimate for
the pˆ p covariance matrix as it varies over u P U . Finally, we estimate the functional network
by computing the functional sparse precision matrix on a grid of points. This final step can
be easily implemented through existing approaches for estimating the sparse precision matrix.
Our theoretical results use the constrained `1-minimization method, because we have found that 95

it provides somewhat superior results in our empirical studies, but other methods, such as the
graphical lasso, could easily be applied.

Our approach has six key advantages. First, it is simple to understand and implement, making
use of existing statistical software packages. Second, it can handle noisy curves observed at an
irregular set of points. Third, it is computationally efficient relative to approaches such as non- 100
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parametric smoothing of ppp` 1q{2 cross-covariance functions or jointly estimating T networks,
since we only need to smooth p covariance functions and the networks can be computed sepa-
rately once the functional covariance matrix has been estimated. Fourth, the functional nature of
our covariance matrix tends to ensure similar graphical models for neighboring grid points, even
though the networks are fit separately. Fifth, the method enjoys desirable consistency properties.105

Theoretically, we establish some novel concentration bounds and uniform convergence rates of
the estimated functional precision matrix in the large p, small n, setting, for both sparsely and
densely observed functional data. Finally, empirically we demonstrate the superiority of our pro-
posed method relative to its natural competitors.

2. METHODOLOGY110

2¨1. Notation
We begin by introducing some notation. For a vector a “ pa1, . . . , apq

T, its `r norm is
|a|r “ p

ř

i |ai|
rq1{r. For a matrix A “ pAijq P Rpˆq, we define the elementwise `r norm by

|A|r “ p
ř

i,j |Aij |
rq1{r, in particular r “ 2 corresponds to the Frobenius norm, ||A||F “ |A|2.

We denote the matrix operator norm by ||A|| “ sup|x|2ď1|Ax|2. We use x^ y “ minpx, yq and115

x_ y “ maxpx, yq. For a bivariate function ψp¨, ¨q, defined on U2, we denote the Hilbert–
Schmidt norm by ||ψ||S “ t

ş ş

ψpu, vq2dudvu1{2. We write fpnq “ Otgpnqu if fpnq ď cgpnq
for some positive constant c ă 8. The notation fpnq — gpnq means that fpnq “ Otgpnqu and
gpnq “ Otfpnqu.

2¨2. Doubly functional graphical models120

Let Xp¨q “
 

X1p¨q, . . . , Xpp¨q
(T denote a p-dimensional vector of Gaussian random func-

tions, with each Xjp¨q in L2pUq, a Hilbert space of square integrable functions on U , a compact
subset of the real line. Without loss of generality, we assume that Xp¨q has been centered to
have mean zero. Let Cpu, vq “

 

Cjkpu, vq
(

1ďj,kďp
be the pˆ p matrix whose pj, kqth element

is Cjkpu, vq “ covtXjpuq, Xkpvqu for pu, vq P U2.125

Let Gp¨q “ tV,Ep¨qu denote a functional undirected graph with a vertex set V “ t1, . . . , pu
and corresponding functional edge set

Epuq “
 

pj, kq : cov
“

Xjpuq, Xkpuq | tXlpuq, l ‰ j, ku
‰

‰ 0, pj, kq P V 2, j ‰ k
(

, u P U .

Standard results show that, for each u P U , Xpuq follows a multivariate Gaussian dis-
tribution with covariance matrix Σpuq “ Cpu, uq P Rpˆp and Θpuq “ Σpuq´1. Hence,
cov

“

Xjpuq, Xkpuq|tXlpuq, l ‰ j, ku
‰

“ 0 if and only if Θjkpuq “ 0 and Epuq can be equiva-
lently represented by

Epuq “
 

pj, kq : Θjkpuq ‰ 0, pj, kq P V 2, j ‰ k
(

, u P U . (1)

We use a three-step approach to recover Epuq, that is, to identify the locations of the non-zero130

entries of Θpuq in a functional fashion.
Step 1. For each j P V, we adopt a data-driven basis expansion approach through func-

tional principal component analysis. Specifically, the covariance function Cjjpu, vq satisfies
ş

U Cjjpu, vqφjlpvqdv “ ωjlφjlpuq (l “ 1, 2, . . . ), where the eigenpairs tωjl, φjlp¨qulě1 satisfy
ωj1 ě ωj2 ě ¨ ¨ ¨ ě 0 and

ş

U φjlpuqφjl1puqdu “ Ipl “ l1q with Ip¨q being the indicator function.135

The Karhunen-Loève expansion allows us to expand each Xjp¨q as Xjp¨q “
ř8
l“1 ξjlφjlp¨q,

where ξjl “
ş

U Xjpuqφjlpuqdu „ Np0, ωjlq are the principal component scores, with ξjl be-
ing independent of ξjl1 for l ‰ l1. Due to the infinite-dimensional nature of functional data, a
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standard approach is to approximate Xjp¨q using the leading M principal components, that is,
Xj,M p¨q “

řM
l“1 ξjlφjlp¨q, where M is chosen large enough to provide a reasonable approxima- 140

tion to Xjp¨q. Potentially one could use a separate Mj for each j P V . To simplify our notation
we focus on the setting where the Mj’s are the same across j P V . However, our theoretical re-
sults in Section 3 extend naturally to the more general setting. In our empirical studies, we select
different Mj’s, see Section 2¨4 for details.

Step 2. Once Step 1 has been performed for each Xjp¨q the M -dimensional functional rep- 145

resentation leads to a natural approximation for the pˆ p functional covariance matrix ΣM puq,
with pj, kqth entry given by:

Σjk,M puq “
M
ÿ

l“1

M
ÿ

m“1

covpξjl, ξkmqφjlpuqφkmpuq, u P U . (2)

Step 3. Our final step involves computing a functional sparse precision matrix ΘM puq “
ΣM puq

´1 at a set of points in U .

2¨3. Estimation 150

Let Xip¨q “
 

Xi1p¨q, . . . , Xipp¨q
(T (i “ 1, . . . , n) be independent and identically distributed

copies of Xp¨q. We assume that Xijp¨q is observed, with measurement error, at random time
points, Uijt P U for t “ 1, . . . , Tij , where for dense measurement schedules all Tij are larger
than some order of n, and for sparse designs all Tij are bounded. Let Yijt represent the observed
value of XijpUijtq. Then 155

Yijt “ XijpUijtq ` eijt “
8
ÿ

l“1

ξijlφjlpUijtq ` eijt, (3)

where the eijt’s are independent and identically distributed with Epeijtq “ 0 and varpeijtq “ σ2,
independent of Xijp¨q. We provide estimation details to implement our three-step approach from
Section 2¨2 as follows.

Step 1. To perform functional principal component analysis based on realizations Yij “
pYij1, . . . , YijTij q

T (i “ 1, . . . , n) for each j P V, we first compute the estimator for Cjjpu, vq. 160

Let ΣYij be the covariance matrix for Yij with pt, t1qth element,
`

ΣYij

˘

tt1
“ covpYijt, Yijt1q “

CjjpUijt, Uijt1q ` σ
2Ipt “ t1q. A local linear surface smoother is applied to the off-diagonals of

the raw covariances, tYijtYijt1u1ďt‰t1ďTij . Denote Khp¨q “ h´1Kp¨{hq for a univariate kernel
function K with a positive bandwidth h. We consider minimizing
n
ÿ

i“1

wij
ÿ

1ďt‰t1ďTij

!

YijtYijt1 ´ β0 ´ β1pUijt ´ uq ´ β2pUijt1 ´ vq
)2
Khj pUijt ´ uqKhj pUijt1 ´ vq,

(4)
with respect to pβ0, β1, β2q, where the weight wij is chosen for the ith subject and jth vari- 165

able such that
řn
i“1 TijpTij ´ 1qwij “ 1. For details on the choices of wij under different mea-

surement schedules, we refer to Zhang & Wang (2016). The resulting covariance estimator is
obtained as pCjjpu, vq “ pβ0.

We next perform eigen-decomposition on pCjjpu, vq and obtain the estimated eigen-
pairs tpωjl, pφjlp¨qu1ďlďM . A natural estimate for the principal component score, ξijl, is
ş

U
pXijpuqpφjlpuqdu, which, for very dense data, can be well approximated by numerical inte-

gration based on observations tUijt, Yijt, pφjlpUijtqu1ďtďTij . However, this numerical integration
approach fails in settings with sparse designs or dense designs with missing values. Instead, we
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propose to use the best linear unbiased predictors rξijl “ ζT
ijlΣ

´1
Yij
Yij (Rice & Wu, 2001), where

ζijl is a Tij-dimensional vector with tth component

ζijlt “ covpξijl, Yijtq “ E

"
ż

XijpvqφjlpvqdvXijpUijtq

*

“

ż

CjjpUijt, vqφjlpvqdv.

Although we do not place any distributional assumptions on the errors here, when eijt and ξijl are
jointly Gaussian, rξijl reduces to the conditional expectation of ξijl given Yij (Yao et al., 2005).170

We then obtain the estimator for rξijl as

pξijl “ pζT
ijl
pΣ´1
Yij
Yij , (5)

where pζijlt “
ş

pCjjpUijt, vqpφjlpvqdv and
`

pΣYij

˘

tt1
“ pCjjpUijt, Uijt1q ` pσ2Ipt “ t1q. See Yao

et al. (2005) for details on the estimate pσ2 of σ2.
Step 2. Once the functional principal components analysis has been performed, we substitute

the terms in (2) by their estimated values and thus obtain pΣpuq with its pj, kqth entry given by175

pΣjkpuq “ n´1
řn
i“1

řM
l“1

řM
m“1

pξijlpξikmpφjlpuqpφkmpuq.
Step 3. Finally, for a set of points u P U , we estimate Θjkpuq. One of the advantages of our

approach is that a variety of standard sparse precision matrix methods can be used to implement
this step. Our empirical results suggest that the constrained `1-minimization (Cai et al., 2011)
provides the most accurate results so we use that approach here. To be specific, we solve the180

following constrained optimization problem

qΘpuq “ arg min
ΘPRpˆp

|Θ|1 subject to |pΣpuqΘ´ I|8 ď λnpuq, (6)

where I P Rpˆp is the identity matrix and λnpuq ě 0 is a tuning parameter which controls the
sparsity level of qΘpuq. The convex problem (6) can be further decomposed into p separate opti-
mization problems. For each j P V, we solve

pβjpuq “ arg min
βPRp

|β|1 subject to |pΣpuqβ ´ ej |8 ď λnpuq, (7)

where ej P Rp is the unit vector with jth coordinate being 1 and pβjpuq corresponds to the jth185

column of qΘpuq.
Our target estimator pΘpuq is attained by the final step of symmetrizing qΘpuq whose pj, kq and

pk, jq-th entries are obtained by

pΘjkpuq “ pΘkjpuq “ qΘjkpuqI
 

|qΘjkpuq| ď |qΘkjpuq|
(

` qΘkjpuqI
 

|qΘjkpuq| ą |qΘkjpuq|
(

. (8)

This symmetrization procedure guarantees that pΘpuq achieves the same elementwise `8 estima-
tion error rate as qΘpuq. We obtain the final estimated functional edge set as190

pEpuq “
!

pj, kq : |pΘjkpuq| ą τnpuq, pj, kq P V
2, j ‰ k

)

, u P U , (9)

where τnpuq ą 0 is a threshold parameter. Empirical results suggest that τnpuq can be set to zero
or a very small value, so we include this term merely for establishing the graph support recovery
consistency in Section 3.

2¨4. Selection of tuning parameters
To fit our proposed method, we must choose optimal values for the tuning parameters, hj ,Mj195

pj “ 1, . . . , pq and λnpuq.
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We adopt leave-one-curve-out cross validation (Rice & Silverman, 1991) to select optimal
values for hj in (4). See Zhang & Wang (2016) for a discussion of two advantages of using this
method. Typical approaches to choose the Mj’s include leave-one-curve-out cross validation
and the Akaike Information Criterion (Yao et al., 2005). We take the later approach since it 200

is computationally less intensive while numerical performance is similar to that obtained from
cross-validation.

Popular approaches, such as cross-validation and the information criterion, for the selection
of λnpuq have been broadly studied in the static graphical models literature (Yuan & Lin, 2007;
Cai et al., 2011). We adopt the more computationally efficient Bayesian Information Criterion 205

approach, which chooses an optimal λnpuq by minimizing

BICtλnpuqu “ ntr
 

pΘλnpuqpuq
pΣpuq

(

´ n log det
 

pΘλnpuqpuq
(

` logpnq| pEpuq|, (10)

over a series of λnpuq values, where pΘλnpuqpuq is the regularized estimator corresponding to
λnpuq and | pEpuq| is the number of non-zero components in pΘλnpuqpuq. It is worth noting that
pΣpuq is obtained in Step 2 of the estimation, so is a fixed quantity in terms of (10). Hence, the
effective sample size in the BIC is n, which is independent of the Tij’s. 210

2¨5. Relationship to relevant work
We compare the doubly functional graphical model with the static functional graphical model

of Qiao et al. (2019), To illustrate the difference, we consider a simplified setting, where, for each
j P V, Xjp¨q “ ξTj φjp¨q belongs to an M -dimensional Gaussian process. The static functional
graphical model generates a single network by recovering the block sparsity pattern in Ω´1 P 215

RMpˆMp whose pj, kqth block is Ωjk “ covpξj , ξkq. By contrast, the doubly functional graphical
model constructs a separate network for each value of u by estimating the sparsity structure
in Θpuq “

 

ΦpuqTΩΦpuq
(´1

, where Φpuq P RMpˆp is block-diagonal with jth block given by
φjpuq P RMˆ1. Each approach has different pros and cons. The static functional graphical model
provides a single global network, an advantage which aids interpretation. However, the network 220

will exhibit an edge if two functions are conditionally related at even very distinct time points, so
may end up with an overly dense set of edges. By comparison, the doubly functional graphical
model provides a cross-sectional view of the graphical model which has the potential to illustrate
structural changes in the network as a function of u, a detail that the static model may miss.

Two other papers with similarities to our approach are Zhou et al. (2010) and Qiu et al. (2016), 225

which both fit dynamic graphical models. As with our work, the data in these papers consists of
Xiputq “

`

X1putq, . . . , Xpputq
˘T (i “ 1, . . . , n; t “ 1, . . . , T ) and both approaches fit a sepa-

rate graphical model at a given set of values for u P U . However, Zhou et al. (2010) assumes
only one observation at each ut, that is, n “ 1, and models the Xiputq’s as independent over ut,
so their data structure is a special case of that in our work and Qiu et al. (2016). Alternatively, Qiu 230

et al. (2016) models tXiputqu
n
i“1 as following a lag-one stationary vector autoregressive model,

that isXiputq is correlated withXi´1putq. By contrast, we treat tXipuqu
n
i“1 as independent real-

izations of an underlying multivariate Gaussian process, with each Xijpuq observed, with error,
at an irregular set of points, as described in (3). All three methods generate graphical models at
a specified set of values for u, but are designed to tackle rather different situations. In addition, 235

as mentioned previously, both Zhou et al. (2010) and Qiu et al. (2016) require that the data be
sampled on a common grid of values for u so can not be implemented in the more realistic setting
we consider where functions are observed at different points.
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3. THEORY

In this section, we investigate the theoretical properties of our proposed approach for both the240

sparse and dense measurement schedules. We begin by introducing parameter spaces of func-
tional approximately sparse precision matrices

Ctq, s0ppq,K;Uu “
!

tΘpuq, u P Uu
ˇ

ˇ

ˇ
sup
uPU
||Θpuq||1 ă K, sup

uPU
max
jPV

p
ÿ

k“1

|Θjkpuq|
q ď s0ppq

)

,

(11)
for 0 ď q ă 1. In the special case of q “ 0, then Cp0, s0ppq,K;Uq corresponds to the functional
truly sparse situation, where even the densest Θpuq over u P U has at most s0ppq non-zero entries
on each row. Similar classes were used in estimating static covariance models (Bickel & Levina,245

2008) and its generalization to the dynamic setting (Chen & Leng, 2016). We extend the class
of static approximately sparse precision matrices (Cai et al., 2011) to the functional version via
(11), uniformly over which Theorems 1-2 hold.

To present the main theorems, we need the following regularity conditions. We relegate some
standard conditions to the Supplementary Material.250

Condition 1. In the sparse measurement design Tij ď T0 ă 8 for all i “ 1, . . . , n, j P V, and
in the dense design Tij “ T Ñ8 with the Uijt’s independent of i.

Condition 2. For each j P V, there exist some positive constants c1, c2, c3 and γ ď 1{2 such
that for any 0 ă δ ď 1,

pr
´

›

› pCjj ´ rCjj
›

›

S ě δ
¯

ď c2 expp´c1n
2γδ2q, (12)

255

pr
!

sup
pu,vqPU2

ˇ

ˇ pCjjpu, vq ´ rCjjpu, vq
ˇ

ˇ ě δ
)

ď c2n
c3 expp´c1n

2γδ2q, (13)

where rCjjpu, vq is a deterministic covariance function which converges to Cjjpu, vq as hj “
hÑ 0. See (B.9) in the Supplementary Material for the exact form of rCjjpu, vq.

To simplify notation, we assume Tij “ T for the dense case in Condition 1 and hj “ h in
Condition 2. We also assume in Condition 2, for each j P V, a single value of γ, which depends
on h and possibly T for the dense design. Condition 2 is satisfied by a large class of measurement260

designs with larger values of γ corresponding to a more frequent measurement schedule. For
sparsely sampled functional data, we have proved in Lemma 4 in the Supplementary Material
that (12)–(13) hold by choosing γ “ 1{2´ a and c3 “ 1` 2a with h — n´a for some positive
constant a ă 1{2. Lemma 4 also results in L2 and uniform convergence rates of n´1{2h´1 and
plog nq1{2n´1{2h´1, respectively for pCjjpu, vq to rCjjpu, vq,which are consistent with results for265

the sparse case in Zhang & Wang (2016). Under dense measurement designs, we have proved in
Lemma 5 in the Supplementary Material that Condition 2 holds with γ “ 1{2^ p1{3´ ε{2`
b{6´ 2a{3q ą 0 for fixed small constant ε ą 0 as long as h — n´a and T — nb for some positive
constants a, b. Provided that T grows fast enough, the resultingL2 and uniform convergence rates
become n´1{2 and plog nq1{2n´1{2, respectively, belonging to the ultra-dense class in Zhang &270

Wang (2016). We also have proved that, for fully observed functional data with rCjjpu, vq “
Cjjpu, vq, Condition 2 holds with γ “ 1{2 and c3 “ 1. See Lemmas 1–2 in the Supplementary
Material for details.

Condition 3. (i) The truncated dimension of the functional data, M , satisfies M — nα for
some constant α ą 0; (ii) The principal component functions are continuous on the compact275
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set U and satisfy maxjPV supuPU suplě1|φjlpuq| “ Op1q; (iii) The eigenvalues satisfy ωj1 ą
ωj2 ą ¨ ¨ ¨ ą ωjM ą ωjpM`1q ě ¨ ¨ ¨ and there exists some constant β ą 2 with αp2β ` 1q ă

1{2, such that, for each l “ 1, . . . ,M, ωjl — l´β, djlωjl “ Oplq uniformly in j P V, where
djl “ max

 

pωjpl´1q ´ ωjlq
´1, pωjl ´ ωjpl`1qq

´1
(

if l ě 2 and dj1 “ pωj1 ´ ωj2q´1; (iv) There
exists some constant ν ą 0 such that maxjPV

ř8
l“M`1 ωjl ď OpM´νq. 280

The parameter α in Condition 3 (i) determines the number of leading principal components
used to approximate the infinite dimensional process, with larger values providing better ap-
proximations. Condition 3 (iii) provides decay rates for the strictly decreasing sequence of
ωj1, . . . , ωjM and gaps between adjacent eigenvalues, d´1

jl ’s, both of which are used to derive the
convergence rates of estimated eigenpairs (Qiao et al., 2019). Condition 3 (iv) guarantees that, 285

for each j P V, Cjjpu, vq has finite trace, with ν controlling the rate at which the approximation
error decreases with M .

Now we are ready to establish the uniform convergence rate and graph recovery consistency
of the proposed estimator as stated in Theorems 1 and 2, respectively. Define rΣpuq with its
pj, kqth entry given by rΣjkpuq “

ř8
l“1

ř8
m“1 covprξijl, rξikmqφjlpuqφkmpuq. We can prove that 290

pΣpuq is a consistent estimator for rΣpuq, but rΣpuq fails to converge to Σpuq unless T diverges
to 8. Therefore, for the sparse design, we denote the population functional precision matrix
by rΘpuq “ rΣpuq´1 and the corresponding edge set by rEpuq “

 

pj, kq : rΘjkpuq ‰ 0, pj, kq P

V 2, j ‰ k
(

, both of which are conditional on the random locations tUijt : i “ 1, . . . , n, j P
V, t “ 1, . . . , Tiju. For the dense design, we use Θpuq and Epuq as the true functional preci- 295

sion matrix and edge set, respectively.

THEOREM 1. Suppose that Conditions 1–3 and 5–6 in the Supplementary Material hold.
(i) For the sparse design, suppose that trΘpuq, u P Uu belongs to Cpq, s0ppq,K;Uq. If λnpuq “

cK 1puq
 

plog p{n2γ´3αβ´4αqq1{2 ` plog p{nανq1{2
(

with c sufficiently large, K 1puq satisfying
supuPUK

1puq ď K, log p{n2γ´3αβ´4α Ñ 0, log p{nαν Ñ 0 and h2nγ Ñ 0, then we have 300

sup
uPU

›

›pΘpuq ´ rΘpuq
›

› “ Op

«

K2p1´qqs0ppq

"

´ log p

n2γ´3αβ´4α

¯1{2
`

´ log p

nαν

¯1{2
*1´q

ff

. (14)

(ii) For the dense design, suppose that tΘpuq, u P Uu belongs to Cpq, s0ppq,K;Uq and let
κn,T — nγ´αp3β{2`2q ^ T´3nγ ^ T 1{2n´α. Furthermore, if the pXij , eijq’s are jointly Gaus-
sian and λnpuq “ cK 1puq

 

plog p{κ2
n,T q

1{2 ` plog p{nανq1{2
(

with c sufficiently large, K 1puq

satisfying supuPUK
1puq ď K, log p{κ2

n,T Ñ 0, log p{nαν Ñ 0 and h2nγ Ñ 0, then we have

sup
uPU

›

›pΘpuq ´Θpuq
›

› “ Op

»

–K2p1´qqs0ppq

#

´ log p

κ2
n,T

¯1{2
`

´ log p

nαν

¯1{2
+1´q

fi

fl . (15)

We observe that the uniform convergence rates in (14) and (15) are governed by two sets of 305

parameters: (i) dimensionality parameters: n, p and T (ii) internal parameters: α, β, γ, ν, q, K
and s0ppq. When T is bounded, the rate in (15) reduces to that in (14). We provide two remarks
for the sparse case. First, the rate in (14) consists of two terms, which reflect our familiar bias-
variance tradeoff as commonly considered in the nonparametric setting. Under the functional
graphical model setting with q “ 0, the bias term is bounded by O

 

K2s0ppqplog p{nανq1{2
(

310

and the variance is of the order Op
 

K2s0ppqplog p{n2γ´3αβ´4αq1{2
(

. It is easy to see that
larger values of α or β or smaller values of γ yield a larger variance, while enlarging
α or ν results in a smaller bias. To balance both terms, we choose α “ 2γ{p3β ` ν ` 4q,
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which provides a truncated dimension of M — n2γ{p3β`ν`4q and the optimal rate in (14)
becomes Op

 

K2p1´qqs0ppq
`

log p{n2γν{p3β`ν`4q
˘p1´qq{2(

. When ν diverges to infinity with315

n´γ “ n´1{2h´1 implied from Lemma 4, M approaches a fixed dimension and the optimal
rate goes to Op

“

K2p1´qqs0ppqtlog p{pnh2qup1´qq{2
‰

. In functional data analysis, one often only
needs to consider the first several principal components as it is usually the case that the trunca-
tion errors decay to zero fast, so assuming a very small α and a large ν is generally appropriate.
Second, we can relax Conditions 2 and 3 by allowing parameters γ, α, β, ν to depend on j P V.320

Then, for example, the variance term in (14) will be determined by the least smooth component
with the tightest eigen-gaps, that is the smallest hj and the largest Mj , βj .

We provide two remarks for the dense case. First, in comparison with (14), the variance in
(15) is additionally determined by the second and third terms of κn,T , which are due to the
convergence of n´1

řn
i“1

pξijlpξikm and n´1
řn
i“1

rξijlrξikm (j, k P V, l,m “ 1, . . . ,M ), respec-325

tively. See Lemmas 14–15 in the Supplementary Material for details. Second, to discuss how
the convergence rate depends on T, we focus on a practical scenario where q “ 0 and M ap-
proaches a fixed dimension. (i) When T grows at a relatively slow speed with T “ opn2γ{7q,
then κn,T — T 1{2 so the variance becomes Op

 

K2s0ppqplog p{T q1{2
(

; (ii) When T grows
moderately fast with T´1 “ opn´2γ{7q, then κn,T — T´3nγ so the variance is of the order330

Op
 

K2s0ppqpT
6 log p{n2γq1{2

(

. In this sense, our proposed method can not effectively handle
very dense measurement schedules. This is because (5) requires multiplying a T -dimensional
vector by the inverse of a T by T matrix, which provides a poor estimate of the conditional ex-
pectation, rξijl, when T is large. However, the dense setting is actually relatively easy to handle
because in this setting we can calculate a direct estimate of ξijl via approximate numerical inte-335

gration, resulting in improved convergence rates and empirical performance. In all other respects
our basic methodology follows through. See Section C in the Supplementary Material for further
details.

Next we introduce Condition 4, which is crucial to develop the graph selection consistency
result in Theorem 2.340

Condition 4. (i) For the sparse design, let rSpuq “
 

rEpuq Y p1, 1q, . . . , pp, pq
(

be the aug-
mented set for u P U , then min

pj,kqPrSpuq
|rΘjkpuq| ą 2τnpuq. (ii) For the dense design, let Spuq “

 

Epuq Y p1, 1q, . . . , pp, pq
(

for u P U , then minpj,kqPSpuq|Θjkpuq| ą 2τnpuq.

Condition 4 requires the minimum signal strength on the augmented set be large enough to
ensure that non-zero components are correctly retained. We can understand this condition as345

bounding the minimum strength of the strong signal when Θpuq varies smoothly. See Chen &
Leng (2016) and Qiu et al. (2016) for analogous functional minimum signal strength conditions.

THEOREM 2. Suppose that Conditions 1–6 hold.
(i) For the sparse design, if it is further assumed that trΘpuq, u P Uu belongs to

Cp0, s0ppq,K;Uq and τnpuq “ 4K 1puqλnpuq, then the event
 

pEpuq “ rEpuq
(

holds with proba-350

bility tending to 1 uniformly for u P U ;
(ii) For the dense design, if it is further assumed that tΘpuq, u P Uu belongs to

Cp0, s0ppq,K;Uq and τnpuq “ 4K 1puqλnpuq, then the event
 

pEpuq “ Epuq
(

holds with proba-
bility tending to 1 uniformly for u P U .
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4. SIMULATIONS 355

4¨1. Setup
We assess the finite-sample performance of the doubly functional graphical model, using both

the constrained `1-minimization and graphical lasso approaches. Sections 4¨2 and 4¨3 respec-
tively consider scenarios where functions are observed at common, or irregular, sets of points.

In each simulated scenario, we generate functional variables using Xijp¨q “ sp¨qTδij (j “ 360

1, . . . , p), where sp¨q is a 5-dimensional Fourier basis function and δi “ pδTi1, . . . , δ
T
ipq

T P R5p

follows a multivariate Gaussian distribution with mean zero and covariance matrix Ω P R5pˆ5p,
whose pj, kqth block is Ωjk (j, k “ 1, . . . , p). The observed values, Yijt, are then generated, with
error, from

Yijt “ spuijtq
Tδij ` εijt pi “ 1, . . . , 200; j “ 1, . . . , p; t “ 1, . . . , Tijq, (16)

where p “ 50 or 100, and the uijt’s and εijt’s are randomly sampled from Uniformr0, 1s and 365

Np0, 0.5q, respectively.
Since functional conditional dependence relationships are fully characterized by the corre-

sponding functional sparsity pattern in Θpuq “ Σpuq´1 we consider a setting, generalized from
Zhou et al. (2010), to simulate a Θpuq corresponding to a slow graph evolution over r0, 1s.
When u “ 0, the initial diagonal elements in Θp0q are set to 0.25. For p “ 50, we randomly 370

select ninitial “ 40 out of 50ˆ p50´ 1q{2 potential edges, with edge strengths generated from
Uniformr´0.3,´0.1s. To create dynamic graphs, we choose u “ 0, 0.1, . . . , 0.9 as change points
and at each point randomly choose ngrow “ ndecay “ 10 edges, which will simultaneously appear
and vanish, respectively, over ru, u` 0.5q. For ngrow edges, we set the strengths to be 0 at u
and the underlying components grow linearly to values generated from Uniformr´0.3,´0.1s at 375

u` 0.5. Analogously, among the non-zero entries at u, each decaying edge linearly decays to 0
in ru, u` 0.5q. Over the evolution where edges emerge and disappear, when we subtract a value
from Θjkpuq and Θkjpuq for j ‰ k, we can always add the same value on Θjjpuq and Θkkpuq to
guarantee positive definiteness of Θpuq. For p “ 100, we set ninitial “ 160, ngrow “ ndecay “ 40
and functional precision matrices are generated in the same manor. 380

We develop an approach using ideas from linear models of coregionalization (Genton &
Kleiber, 2015) to generate our data from Σpuq “ Θpuq´1. See the appendix for details.

4¨2. Common set of time points
When curves are measured at a common set of points u1, . . . , uT , that is, uijt “ ut with

Tij “ T for all i, j, t in (16), we compare two versions of our method by computing the pre- 385

cision matrix using either constrained `1-minimization or the graphical lasso with three other
types of competitors. The first type, dynamic graphical models, is based on applying the con-
strained `1-minimization or the graphical lasso on the smoothed estimate of the sample co-
variance matrix Sputq of pYi1t, . . . , YiptqT (i “ 1, . . . , n), that is, Shpuq “

 
řT
t“1Khput ´

uqSputq
( 

řT
t“1Khput ´ uq

(´1
, u P r0, 1s. We use a Gaussian kernel with the optimal band- 390

width proportional to tlog p{pnT qu1{3 _ T´4{5 (Qiu et al., 2016), so for the empirical work in
this paper we choose the proportionality constant in the range p0, 3s, which gives good results in
all the settings we considered. The second joint type of method, can simultaneously estimate T
precision matrices that share similar sparsity patterns or edge values. The group graphical lasso
(Danaher et al., 2014) is implemented in our numerical comparison. We also attempted to fit the 395

fused graphical lasso (Danaher et al., 2014) and joint constrained `1-minimization (Cai et al.,
2016). However, neither approach is scalable especially when T is large, so we do not report
their results here. The third type is the naive approach which simply applies the constrained `1
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Table 2: Average (standard error) means of operator, Frobenius losses and areas under the re-
ceiver operating characteristic curves (AUROC) at u1, . . . , uT over 100 simulation runs. All
entries have been multiplied by 10 for formatting reasons.

Operator norm Frobenius norm AUROC
T Method p “ 50 p “ 100 p “ 50 p “ 100 p “ 50 p “ 100

10

DFGM-C 14.1(0.02) 17.6(0.02) 65.9(0.09) 107.5(0.11) 8.2(0.02) 7.0(0.01)
DFGM-G 14.2(0.03) 18.0(0.01) 68.1(0.09) 114.6(0.11) 8.1(0.02) 6.9(0.02)
DGM-C 18.2(0.03) 21.9(0.03) 86.7(0.14) 141.0(0.21) 8.1(0.02) 6.5(0.01)
DGM-G 18.4(0.03) 22.7(0.02) 90.9(0.17) 153.6(0.26) 8.1(0.02) 6.4(0.02)

GGL 19.0(0.14) 28.3(0.27) 95.6(0.14) 148.7(0.27) 7.9(0.03) 6.3(0.01)
Naive-C 18.9(0.04) 35.0(0.05) 88.5(0.10) 187.9(0.77) 7.9(0.02) 6.0(0.01)
Naive-G 19.1(0.08) 34.8(0.08) 95.6(0.21) 194.7(0.85) 7.5(0.02) 6.3(0.01)

25

DFGM-C 14.0(0.03) 17.3(0.02) 64.0(0.12) 105.7(0.12) 8.4(0.02) 7.5(0.01)
DFGM-G 14.1(0.03) 17.3(0.02) 64.2(0.12) 106.5(0.12) 8.4(0.02) 7.3(0.01)
DGM-C 17.8(0.04) 21.5(0.03) 83.4(0.17) 138.9(0.20) 8.1(0.02) 6.8(0.01)
DGM-G 17.8(0.04) 21.7(0.03) 83.9(0.17) 141.1(0.20) 8.2(0.02) 6.7(0.01)

GGL 18.3(0.16) 27.3(0.21) 94.7(0.16) 142.4(0.89) 8.0(0.02) 6.7(0.01)
Naive-C 22.4(0.13) 36.5(0.21) 93.1(0.42) 180.8(0.96) 7.8(0.02) 6.2(0.01)
Naive-G 23.6(0.33) 37.5(0.50) 103.1(0.85) 184.8(0.98) 8.0(0.02) 6.2(0.01)

50

DFGM-C 13.3(0.03) 16.5(0.02) 60.8(0.11) 98.2(0.16) 8.8(0.02) 7.7(0.01)
DFGM-G 13.4(0.03) 16.7(0.02) 62.4(0.12) 102.6(0.17) 8.8(0.02) 7.6(0.01)
DGM-C 16.9(0.04) 20.1(0.03) 78.9(0.15) 127.0(0.27) 8.5(0.02) 7.2(0.01)
DGM-G 17.1(0.04) 20.7(0.03) 80.2(0.17) 135.4(0.30) 8.7(0.02) 7.1(0.01)

GGL 18.2(0.16) 24.9(0.28) 93.7(0.14) 137.0(0.65) 8.4(0.03) 7.1(0.01)
Naive-C 22.8(0.15) 31.8(0.21) 97.8(0.41) 186.0(1.00) 8.1(0.02) 6.7(0.01)
Naive-G 26.1(0.49) 40.0(0.57) 105.7(1.06) 189.4(1.19) 8.3(0.02) 6.5(0.01)

DFGM, doubly functional graphical model; DGM, dynamic graphical model; GGL, group graphical lasso; Naive,
naive approach; C, constrained `1-minimization; G, graphical lasso.

minimization or graphical lasso on Sputq for t “ 1, . . . , T. To ensure these competitors work for
sparse designs we split r0, 1s into five equal subintervals, with rT {5s points randomly sampled400

from each interval.
We examine the performance of seven approaches based on estimation accuracy and

graph recovery consistency. In terms of the estimation accuracy, we calculate the mean
of the operator and Frobenius losses for the estimated precision matrices, respectively de-
fined as ||pΘpuq ´Θpuq|| and ||pΘpuq ´Θpuq||F , at u1, . . . , uT . In terms of the model405

selection consistency, we plot the true positive rates against false positive rates, re-
spectively defined as #tpj, kq : pΘ

pλnq
jk puq ‰ 0 and Θjkpuq ‰ 0u{#tpj, kq : Θjkpuq ‰ 0u and

#tpj, kq : pΘ
pλnq
jk puq ‰ 0 and Θjkpuq “ 0u{#tpj, kq : Θjkpuq “ 0u, over a grid of λnpuq values

to produce the receiver operating characteristic curve at each ut. For each comparison approach,
we compute the average area under the curve at u1, . . . , uT , with values closer to one indicating410

better performance in recovering the graph support.
Table 2 reports numerical summaries to compare different approaches over six simulation set-

tings, corresponding to p “ 50, 100 and T “ 10, 25, 50. Several conclusions can be drawn from
Table 2. First, in all scenarios, our proposed approach is superior to the competing methods
in both estimation accuracy and model selection consistency, and in many cases the improve-415

ments are highly statistically significant. Among the others, dynamic-graphical-model-based ap-
proaches perform better than the remaining methods and the naive methods, which do not borrow
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Table 3: Average (standard error) means of operator, Frobenius losses and AUROCs at
v1, . . . , v21 over 100 simulation runs. All entries have been multiplied by 10 for formatting rea-
sons.

Operator norm Frobenius norm AUROC
Tij Method p “ 50 p “ 100 p “ 50 p “ 100 p “ 50 p “ 100

6-9 DFGM-C 25.9(0.15) 38.8(0.11) 122.4(0.59) 192.3(0.73) 7.6(0.02) 6.3(0.01)
DFGM-G 26.0(0.16) 39.5(0.10) 128.5(0.49) 199.4(0.61) 7.6(0.02) 6.2(0.01)

20-30 DFGM-C 20.1(0.11) 22.6(0.03) 94.0(0.21) 152.8(0.29) 8.0(0.02) 6.6(0.01)
DFGM-G 21.1(0.21) 22.1(0.08) 95.9(0.35) 152.9(0.25) 8.0(0.02) 6.5(0.01)

50 DFGM-C 17.0(0.05) 21.3(0.06) 74.3(0.13) 137.2(0.20) 8.3(0.02) 6.9(0.01)
DFGM-G 16.9(0.08) 21.9(0.10) 74.8(0.21) 138.6(0.32) 8.2(0.02) 6.8(0.01)

strength across adjacent points, provide the worst performance. Second, we observe that imple-
menting the constrained `1-minimization and the graphical lasso give comparable results in many
scenarios with the former type providing large improvements in a couple of cases. Third, the best 420

results are obtained for the more densely sampled case, with a smaller number of functional vari-
ables.

4¨3. Irregular set of time points
When functions are observed at irregular sets of points, none of the three types of competitors

described in Section 4¨2 are applicable. Hence, in this section we compare the sample perfor- 425

mance of our doubly-functional-graphical-model based constrained `1 minimization and graph-
ical lasso methods to each other. We consider six scenarios, corresponding to p “ 50, 100 and
different Tij’s generated from the discrete uniform distribution with sets t6, . . . , 9u, t20, . . . , 30u
and t50u. The measurement times are randomly sampled from Uniformr0, 1s for each pair of
pi, jq. We average the operator, Frobenius losses and the areas under the curves at 21 evenly- 430

spaced time points, 0 “ v1, . . . , v21 “ 1. Table 3 presents numerical results for all six simu-
lations. We observe similar trends to those in Table 2 with results deteriorating somewhat for
smaller values of Tij and larger values of p. In general the constrained `1 minimization approach
outperforms the graphical lasso on the estimation accuracy, but the methods are comparable in
terms of graph selection consistency. 435

5. REAL DATA

In this section, we apply our proposed approach to the EEG data set, available at https:
//archive.ics.uci.edu/ml/datasets/EEG+Database, from an alcoholism study
(Zhang et al., 1995). The data consists of measurements on 77 alcoholic and 45 control subjects.
Each subject, exposed to either a single stimulus or two stimuli, completed 120 trials. EEG 440

signals were measured at 256 time points over a one second time interval at 64 electrodes/nodes,
placed at standard locations. Following the approach taken in Zhu et al. (2016) and Qiao et al.
(2019), we averaged EEG signals, filtered at α-band (Hayden et al., 2006), across all trials under
the single stimulus. The α-band filtering was performed using the eegfilt function in MATLAB.
Existing research has shown that the networks embedded in EEG data evolve over time, where 445

edges are bound to emerge and disappear (Cabral et al., 2014). In this study, our target is to
estimate functional networks involving p “ 64 nodes based on na “ 77 and nc “ 45 functional
observations for alcoholic and control groups respectively and to explore the differences in their
brain connectivity patterns.
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Since the graphical structures for alcoholic and non-alcoholic groups share some common450

edges, it is advantageous to jointly estimate two networks. Hence, we used the joint constrained
`1-minimization approach (Cai et al., 2016) to simultaneously estimate two functional preci-
sion matrices. In addition, to stabilize the functional graph selection, at each time point, we
bootstrapped each group by randomly selecting na and nc samples with replacement from the
alcoholic and control groups respectively, performed functional principal components analysis,455

implemented joint constrained `1-minimization to obtain two estimated networks and repeated
the above procedure 100 times. Those edges, which were chosen more than 50 times out of 100
bootstrap samples, were finally selected as important edges. See Cai et al. (2016) for details on
the selection of relevant regularization parameters.

Figure 2 plots the estimated graphs for the alcoholic and control groups at approximately460

u “ 0.2, u “ 0.5 and u “ 0.8 seconds respectively. To visualize and interpret the functional
network we set the functional sparsity to 5% and only displayed the top 101 most important edges
in Figure 2, where three anatomical landmarked electrodes, X, Y and nd, were removed. The
node names are provided in Table 4 in the Supplementary Material. We observe a few interesting
patterns. First, the alcoholic and control groups share very similar block patterns, which reveals465

the existence of some regional effects for brain connectivity. Second, our estimated networks
indicate clear dynamic structure. The edge values within each block gradually change with edges
emerging and vanishing over the evolution, for example in Figure 2, electrodes FC6 and T8 in the
control group are connected at u “ 0.2 and 0.8, but disconnected at u “ 0.5. Third, the dynamic
networks differ between the two groups especially in certain regions, for example in Figure 2,470

electrodes from the left part of the brain are more connected in the alcoholic group.
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A. APPENDIX

A¨1. Procedure to generate simulated functional data480

By the definition of Cjkpu, vq “ cov
 

Xijpuq, Xikpvq
(

“ spuqTΩjkspvq and orthonormality of spuq,
we can easily show that

Ωjk “

ż

pu,vqPU2

spuqCjkpu, vqspvq
Tdudv. (A1)

To generate multivariate functional observations, we first need to construct a valid matrix of cross-
covariance operators

 

Cjkpu, vq
(

1ďj,kďp
(Guhaniyogi et al., 2013) and then obtain Ωjk from (A1), by

approximating the integral using the discretized sums, We take the idea of linear models of coregion-485

alization (Genton & Kleiber, 2015) to represent the p-dimensional multivariate random field as a linear
combination of p independent univariate random fields by

Cjkpu, vq “
p
ÿ

l“1

ρpu´ vqAjlpuqAklpvq, (A2)
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Fig. 2: Left and right graphs plot the estimated dynamic networks at approximately u “ 0.2,
u “ 0.5 and u “ 0.8, for the alcoholic and control groups, respectively.

where the correlation function ρpu´ vq is independent of l P V. Specially, for u “ v, Σpuq “ Cpu, uq “
ρp0qApuqApuqT, where we can set Apuq “

 

Ajkpuq
(

1ďj,kďp
to be the Cholesky factor of Σpuq{ρp0q and
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hence
 

Cjkpu, vq
(

can be generated from (A2) by letting ρpu´ vq “ expt´pu´ vq2{2σ2
ρu, a univariate490

Gaussian kernel with σρ “ 1.
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Supplementary Material to “Doubly Functional Graphical Models in High
Dimensions” 550

Xinghao Qiao, Cheng Qian, Gareth M. James and Shaojun Guo

This supplementary material contains some standard regularity conditions and the technical proofs
supporting Section 3 in Appendix B, discussion of the approximate numerical integration approach under
very dense measurement schedules in Appendix C and additional empirical results in Appendix D.

B. TECHNICAL PROOFS 555

We present several regularity conditions in Section B¨1. In Sections B¨2, B¨3 and B¨4, we prove that
the concentration bounds in (12)–(13) of Condition 2 hold for fully observed functional data, sparsely
observed functional data and densely observed functional data, respectively. In Sections B¨5 and B¨6, we
provide proofs of Theorems 1 and 2, respectively. For convenient presentation in our proofs, we will use
c1, c2, . . . as positive constants. 560

B¨1. Regularity conditions
To investigate the theoretical properties of the proposed method in Theorems 1 and 2, we also need

Conditions 5 and 6 below. They are standard in functional data analysis literature.

Condition 5. (i) Let
 

Uijt : i “ 1, . . . , n, j P V, t “ 1, . . . , Tij
(

be independent and identically dis-
tributed copies of a random variable U with density fU p¨q defined on the compact set U , with the Tij’s 565

fixed. There exist some constants mf ,Mf , such that 0 ă mf ď infUfU puq ď supUfU puq ďMf ă 8;
(ii) X, e and U are independent.

Condition 6. For each j P V, B2Cjjpu, vq{Bu
2, B2Cjjpu, vq{BuBv and B2Cjjpu, vq{Bv

2 are bounded
on U2.

To prove Condition 2, we need Conditions 8–9 below. We first assume the one-dimensional kernel K 570

to satisfy the following condition.

Condition 7. (i) Kp¨q is symmetric probability density function on r´1, 1s with
ş

u2Kpuq ă 8 and
ş

Kpuq2du ă 8. (ii) Kp¨q is Lipschitz continuous: there exists some positive constant L such that

|Kpuq ´Kpvq| ď L|u´ v|, for any u, v P r0, 1s.

Condition 8. For each j P V, Cjjpu, vq is in the trace class with maxjPV
ř8

l“1 ωjl ă 8.

Condition 9. For each j P V, the eigenfunctions, φj1p¨q, φj2p¨q, . . . are Lipschitz-continuous, that is,
there exists some positive constant L such that

|φjlpuq ´ φjlpvq| ď L|u´ v|, for any pu, vq P U2 and l “ 1, 2, . . . .

B¨2. Concentration bounds for fully observed functional data
LEMMA 1. Suppose that Conditions 3 (ii) and 8 hold, then there exists some positive constants c1 and

c2 such that for any 0 ă δ ď 1 and each j P V, we have

pr
´

›

› pCjj ´ Cjj
›

›

S ě δ
¯

ď c2 expp´c1nδ
2q,

Proof. This lemma can be found in Lemma 6 in the supplementary material of Qiao et al. (2018) and
hence the proof is omitted. ˝ 575
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LEMMA 2. Suppose Conditions 3 (ii), 8 and 9 hold, then there exists some positive constants c1 and c2
such that for any 0 ă δ ď 1 and each j P V, we have

pr

#

sup
pu,vqPU2

ˇ

ˇ pCjjpu, vq ´ Cjjpu, vq
ˇ

ˇ ě δ

+

ď c2n expp´c1nδ
2q.

Proof. Without loss of generality, let U “ r0, 1s. We first reduce the problem from supremum over product
of interval r0, 1s2 to the maximum over a grid of pairs on the product interval. We partition the interval
r0, 1s into N subintervals Bk (k “ 1, . . . , N ) of equal length. Let uk, vk1 be the centers of Bk and Bk1 ,
respectively. For each pu, vq P Bk ˆBk1 , by the Lipschitz-continuity of φjlp¨q’s and the expansion of
Xijpuq “

ř8

l“1 ξijlφjlpuq, we have580

| pCjjpu, vq ´ pCjjpuk, vk1q|

“ |n´1
n
ÿ

i“1

 

XijpuqXijpvq ´XijpukqXijpvk1q
(

|

ď

ˇ

ˇ

ˇ
n´1

n
ÿ

i“1

“

tXijpuq ´XijpukquXijpvq `XijpukqtXijpvq ´Xijpvk1qu
‰

ˇ

ˇ

ˇ

ď n´1
n
ÿ

i“1

 

|

8
ÿ

l“1

ξijlXijpvq|max
l
|φjlpuq ´ φjlpukq| ` |

8
ÿ

l“1

ξijlXijpukq|max
l
|φjlpvq ´ φjlpvkq|

(

ď n´1
n
ÿ

i“1

 

|

8
ÿ

l“1

ξijlXijpvq|c1|u´ uk| ` |
8
ÿ

l“1

ξijlXijpukq|c1|v ´ vk1 |
(

ď c2
`

E
 

|

8
ÿ

l“1

ξijlXijpuq|
(

` 1
˘

N´1

on the event Ω “
!

n´1
řn
i“1 |

ř8

l“1 ξijlXijpuq| ď E
 

|
ř8

l“1 ξijlXijpuq|
(

` 1
)

. By the

Cauchy–Schwarz inequality, Conditions 3(ii) and 8, we have
“

Et|
ř8

l“1 ξijlXijpuq|u
‰2
ď

E
 

p
ř8

l“1 ξijlq
2
(

E
 

Xijpuq
2
(

ď p
ř8

l“1 ωjlqp
ř8

l“1 ωjlqOp1q ă 8. Combing the above results and
some specific calculations yields

ˇ

ˇ

ˇ

ˇ

ˇ pCjjpu, vq ´ Cjjpu, vq
ˇ

ˇ´
ˇ

ˇ pCjjpuk, vk1q ´ Cjjpuk, vk1q
ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

 

pCjjpu, vq ´ pCjjpuk, vk1q
(

´
 

Cjjpu, vq ´ Cjjpuk, vk1q
(

ˇ

ˇ

ˇ

ď 2c2pE
 

|

8
ÿ

l“1

ξijlXijpuq|
(

` 1qN´1 ă c3N
´1,

which implies that

sup
pu,vqPBkˆBk1

| pCjjpu, vq ´ Cjjpu, vq| ď max
1ďkďN

| pCjjpuk, vk1q ´ Cjjpuk, vk1q| ` C3N
´1.

Let N “ c3δ
´1. Under the Gaussian assumption for Xijpuq and

ř8

l“1 ξijl with finite variance by Con-
dition 8, it follows from the Bernstein inequality (Boucheron et al., 2014) that there exist positive con-
stants c4 and c5 such that for any 0 ă δ ď 1, pr

!

| pCjjpuk, vk1q ´ Cjjpuk, vk1q| ě δ
)

ď c5 expp´c4nδ
2q

and prpΩCq ď c5 expp´c4nq. Combing the above results and applying the union bound of probability,
we obtain that

pr
!

sup
pu,vqPr1,1s2

| pCjjpu, vq ´ Cjjpu, vq| ě δ
)

ď c6δ
´1 expp´c4nδ

2q.
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If δ ě n´1, the right hand side of the above inequality is reduced to c6n expp´c4nδ
2q. If δ ă n´1, we 585

can choose c6 and n ą c7, such that c6 expp´c4c
´1
7 q ě 1 and hence the bound c6n expp´c4nδ

2q can still
be used. We complete the proof for this lemma. ˝.

B¨3. Concentration bounds for sparsely observed functional data
In Lemma 4, we prove the concentration bounds for sparsely observed functional data. The proof of

Lemma 4 replies on the concentration result for the second-order U-statistics in Lemma 3. 590

LEMMA 3. Let Zij “ pXij , Yijq
T (i “ 1, . . . , n, j “ 1, . . . ,m). Suppose that tZiju are independent

and identically distributed random vectors. Consider the U-statistics Sn “ 1
nmpm´1q

řn
i“1

řm
j‰kXijYik.

If there exist two positive constants v and c such that for each q “ 2, 3, . . . ,

sup
1ďiďn

sup
1ďj‰kďm

E
ˇ

ˇ

ˇ
XijYik ´ E

`

XijYik
˘

ˇ

ˇ

ˇ

q

ď
q!

2
vcq´2, (B.1)

then for any δ ą 0, we have

pr
´ˇ

ˇ

ˇ
Sn ´ ESn

ˇ

ˇ

ˇ
ě δ

¯

ď 2 exp

"

´
npm´ 1qδ2

4pv ` cδq

*

. (B.2)

Proof. Let J “ rm{2s, the largest integer smaller than or equal to m{2 and define

W pZi1, . . . , Zimq “
1

J

!

Xi1Yi2 ` ¨ ¨ ¨ `Xip2J´1qYip2Jq

)

.

Let
ř

ppq denote the sum of all m! permutations pj1, . . . , jmq of p1, . . . ,mq. We can show that Sn can be
expressed as

Sn “
1

m!

ÿ

ppq

1

n

n
ÿ

i“1

W pZij1 , . . . , Zijmq “
1

m!

ÿ

ppq

1

nJ

n
ÿ

i“1

J
ÿ

k“1

X˚ijp2k´1qj2k
,

where X˚ij1j2 “ Xij1Yij2 for 1 ď i ď n and 1 ď j1 ‰ j2 ď m. The above expression represents Sn as an 595

average of m! terms, each of which itself is an average of nJ independent random variables.
Let φpxq “ exppxq ´ x´ 1. Hence, for λ ą 0, by monotone convergence theorem and (B.1), we have

that

sup
i,j1,j2

E
!

φ
`

λX˚ij1j2 ´ λEX
˚
ij1j2

˘

)

ď

8
ÿ

q“2

λqE
 

|X˚ij1j2 ´ EX
˚
ij1j2

q|q
(

q!
ď
v

2

8
ÿ

q“2

λqcq´2 ď
vλ2

2p1´ cλq

for 0 ă λ ă c´1. Using the above result and the fact that logpxq ď x´ 1 for x ą 0, we have that for
λ ą 0,

log
”

E exp
!

λpSn ´ ESnq
)ı

ď

n
ÿ

i“1

log

¨

˝

1

m!

ÿ

ppq

exp

«

J
ÿ

k“1

logE exp

"

λ

nJ
pX˚ij2k´1j2k

´ EX˚ij2k´1j2k
q

*

ff

˛

‚

ď

n
ÿ

i“1

log

¨

˝

1

m!

ÿ

ppq

exp

«

J
ÿ

k“1

log

"

1`
n´2J´2vλ2

2p1´ cn´1J´1λq

*

ff

˛

‚

“
n´1J´1vλ2

2p1´ cn´1J´1λq
, 0 ă λ ă nJc´1.

Applying Bernstein inequality in Corollary 2.11 of Boucheron et al. (2014), we obtain that for any δ ą 0,

pr
´
ˇ

ˇ

ˇ
Sn ´ ESn

ˇ

ˇ

ˇ
ě δ

¯

ď 2 exp

"

´
nJδ2

2pv ` cδq

*

.
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Note that J ě pm´ 1q{2 and hence the concentration inequality in (B.2) follows. ˝600

LEMMA 4. Suppose that Conditions 3(ii), 5, 7 and 8 hold, hj “ h and Tij ď T0 ă 8 for all i “
1, . . . , n and j P V. Then there exist a deterministic covariance function rCjjpu, vq defined in (B.9) and
some positive constants c1, c2 such that for any δ P p0, 1s and each j P V, we have

pr
!

›

› pCjj ´ rCjj
›

›

S ě δ
)

ď c2 exp
`

´c1nh
2δ2

˘

(B.3)

and

pr

#

sup
pu,vqPU2

ˇ

ˇ

ˇ

pCjjpu, vq ´ rCjjpu, vq
ˇ

ˇ

ˇ
ě δ

+

ď c2nh
´2 exp

`

´c1nh
2δ2

˘

. (B.4)

If h — n´a for some positive constant a ă 1{2, there exist some positive constants c3 and c4 such that605

(B.3) and (B.4) reduce to

pr
!

›

› pCjj ´ rCjj
›

›

S ě δ
)

ď c2 exp
`

´c3n
1´2aδ2

˘

(B.5)

and

pr

#

sup
pu,vqPU2

ˇ

ˇ

ˇ

pCjjpu, vq ´ rCjjpu, vq
ˇ

ˇ

ˇ
ě δ

+

ď c4n
1`2a exp

`

´c3n
1´2aδ2

˘

, (B.6)

respectively.

Proof. Denote rUijtt1pu, vq “
 

1, pUijt ´ uq{h, pUijt1 ´ vq{h
(T
, e0 “ p1, 0, 0q

T,

pΞjpu, vq “ n´1
n
ÿ

i“1

wij
ÿ

1ďt‰t1ďTij

rUijtt1pu, vqrU
T

ijtt1pu, vqKhpUijt ´ uqKhpUijt1 ´ vq,

pZjpu, vq “ n´1
n
ÿ

i“1

wij
ÿ

1ďt‰t1ďTij

rUijtt1pu, vqYijtYijt1KhpUijt ´ uqKhpUijt1 ´ vq.

(B.7)

Then we express pCjjpu, vq as610

pCjjpu, vq “ eT0
 

pΞjpu, vq
(´1

pZjpu, vq. (B.8)

For k, ` “ 1, 2, 3, denote pΞjk`pu, vq and pZjkpu, vq be the pk, `qth entry of pΞjpu, vq and the kth element
of pZjpu, vq, respectively. We define a deterministic covariance function by

rCjjpu, vq “ eT0

”

E
 

pΞjpu, vq
(

ı´1 ”

E
 

pZjpu, vq
(

ı

. (B.9)

We next prove that there exists two positive constants c1 and c2 such that for any δ ą 0 and each j P V,
m, ` “ 1, 2, 3 and pu, vq P U2,

pr
!
ˇ

ˇ

ˇ

pΞjm`pu, vq ´ EtpΞjm`pu, vqu
ˇ

ˇ

ˇ
ě δ

)

ď 2 exp

ˆ

´
c1nh

2δ2

1` δ

˙

(B.10)

and615

pr
!
ˇ

ˇ

ˇ

pZjmpu, vq ´ Et pZjmpu, vqu
ˇ

ˇ

ˇ
ě δ

)

ď c2 exp

ˆ

´
c1nh

2δ2

1` δ

˙

. (B.11)
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It follows from Conditions 5 and 7 that for integer q “ 2, 3, . . . and s, s1 “ 0, 1, 2, we have

E
ˇ

ˇ

ˇ
KhpUijt ´ uqKhpUijt1 ´ vq

´Uijt ´ u

h

¯s´Uijt ´ u

h

¯s1 ˇ
ˇ

ˇ

q

ď

ż ż

1

h2q
Kq

´ t´ u

h

¯

Kq
´ t1 ´ v

h

¯
ˇ

ˇ

ˇ

t´ u

h

ˇ

ˇ

ˇ

sqˇ
ˇ

ˇ

t1 ´ v

h

ˇ

ˇ

ˇ

s1q

fU ptqfU pt
1qdtdt1

ď
1

h2q´2

ż 1

´1

ż 1

´1

KqpxqKqpx1q|x|sq|x|s
1qfU phx` uqfU phx

1 ` vqdxdx1

ď c3pc4h
´2qpc4h

´2qq´2. (B.12)

By (B.12), the concentration result for the U-statistics in Lemma 3, Tij ď T0 ă 8 and the first line of
(B.7), we can prove that the concentration bound in (B.10) holds for m, ` “ 1, 2, 3.

Then we turn to prove (B.11). Consider m “ 1 first. Define

χij1pu, vq “
ÿ

1“t‰t1ďTij

YijtYijt1KhpUijt ´ uqKhpUijt1 ´ vq.

Then pZj1pu, vq “ n´1
řn
i“1 wijχij1pu, vq. If follows from the fact

ř8

l“1 ξijl and eijt are Gaussian with 620

finite variance, Yijt “
ř8

l“1 ξijlφjlpUijtq ` eijt, Conditions 3 (ii) and 8 that for q “ 2, 3, . . . ,

Ep|Yijt|
2qq ď 22q´1

$

&

%

E

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

l“1

ξijlφjlpUijtq

ˇ

ˇ

ˇ

ˇ

ˇ

2q

` E|eijt|
2q

,

.

-

ď 22q´1

$

&

%

E

˜

8
ÿ

l“1

ξijl

¸2q

sup
i,j,t

E|φjlpUijtq|
2q ` E|eijt|

2q

,

.

-

ď
1

2
q!cq5.

Combing the above results implies that for q “ 2, 3, . . . ,

E|χij1pu, vq|
q ď c6h

´2q`2
ÿ

1ďt‰t1ďTij

E|YijtYijt1 |
q ď

1

2
q!cq7h

´2q`2. (B.13)

It then follows from the Bernstein inequality that (B.11) holds. Similar techniques used in proving (B.12)
and (B.13) can be directly applied to other terms, pZjmpu, vq for m “ 2, 3 and hence (B.11) holds.

We next decompose pCjjpu, vq ´ rCjjpu, vq as 625

pCjjpu, vq ´ rCjjpu, vq “e
T

0

ˆ

tpΞjpu, vq
(´1

´

”

E
 

pΞjpu, vq
(

ı´1
˙

pZjpu, vq

` eT0

”

E
 

pΞjpu, vq
(

ı´1 ”
pZjpu, vq ´ E

 

pZjpu, vq
(

ı

.

(B.14)

By Conditions 3(ii), 5 and 7, some calculations and similar developments used in Zhang & Wang (2016)
that EtpΞjpu, vqu is positive definite and Et pZjpu, vqu is bounded. These results together with (B.14),
concentration inequalities in (B.10)–(B.11) and some calculations imply that there exist some positive
constants c8 and c9 such that for any δ ą 0 and each j P V, pu, vq P U2,

pr
!

ˇ

ˇ pCjjpu, vq ´ rCjjpu, vq
ˇ

ˇ ě δ
)

ď c9 exp

ˆ

´
c8nh

2δ2

1` δ

˙

. (B.15)

We then derive the concentration bound for
›

› pCjj ´ rCjj
›

›

S . It follows from (B.15) and the first part of
Lemma 2 in Guo & Qiao (2018) that for any pu, vq P U2 and integer q ě 1,

E
ˇ

ˇ pCjjpu, vq ´ rCjjpu, vq
ˇ

ˇ

2q
ď q!cq10pn

´1h´2qq ` p2qq!cq10pn
´1h´2q2q.
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This result together with the fact E
›

› pCjj ´ rCjj
›

›

2q

S ď |U |
2qE

ˇ

ˇ pCjjpu, vq ´ rCjjpu, vq
ˇ

ˇ

2q
implies that

E
›

› pCjj ´ rCjj
›

›

2q

S ď |U |
2qcq10

!

pn´1h´2qq ` p2qq!pn´1h´2q2q
)

.

Applying the second part of Lemma 2 in Guo & Qiao (2018), we can show that, for each δ P p0, 1q, the630

L2 concentration bound for
›

› pCjj ´ rCjj
›

›

S in (B.3) holds.
We finally derive the uniform concentration bound for suppu,vqPU2 | pCjjpu, vq ´ rCjjpu, vq|. Let U “

r0, 1s. We partition the interval U into N subintervals Bk of equal length. Let uk, vk1 be the centers of Bk
and Bk1 , respectively. Then we have

sup
pu,vqPBkˆBk1

| pCjjpu, vq ´ rCjjpu, vq| ď max
1ďkďN

| pCjjpuk, vk1q ´ rCjjpuk, vk1q|

`

ˇ

ˇ

ˇ

 

pCjjpu, vq ´ pCjjpuk, vk1q
(

´
 

rCjjpu, vq ´ rCjjpuk, vk1q
(

ˇ

ˇ

ˇ
.

We then need to bound
ˇ

ˇ

ˇ

 

pCjjpu, vq ´ pCjjpuk, vk1q
(

´
 

rCjjpu, vq ´ rCjjpuk, vk1q
(

ˇ

ˇ

ˇ
. By (B.8), (B.9)635

(B.14) and some calculations, it suffices to bound
ˇ

ˇ

ˇ

 

pZjmpu, vq ´ pZjmpuk, vk1q
(

´
“

Et pZjmpu, vqu ´

E
 

pZjmpuk, vk1q
(‰

ˇ

ˇ

ˇ
and

ˇ

ˇ

ˇ

 

pΞjm`pu, vq ´ pΞjm`puk, vk1q
(

´
“

EtpΞjm`pu, vqu ´ E
 

pΞjm`puk, vk1q
(‰

ˇ

ˇ

ˇ
for

m, ` “ 1, 2, 3, which means we need to bound |
 

pZjmpu, vq ´ pZjmpuk, vk1q
(

| and |
 

pΞjm`pu, vq ´
pΞjm`puk, vk1q

(

| for m, ` “ 1, 2, 3.
Let pu, vq P Bk ˆBk1 . Consider m “ 1 first, it follows from Condition 7 that640

|
 

pZj1pu, vq ´ pZj1puk, vk1q
(

|

ď |n´1
n
ÿ

i“1

wij
ÿ

1ďt‰t1ďTij

YijtYijt1
”

 

KhpUijt ´ uq ´KhpUijt ´ ukq
(

KhpUijt1 ´ vq `

`KhpUijt ´ ukq
 

KhpUijt1 ´ vq ´KhpUijt1 ´ vk1q
(

ı

ď n´1
n
ÿ

i“1

wij |
ÿ

1ďt‰t1ďTij

YijtYijt1 |c11h
´2

!

KhpUijt1 ´ vq|u´ uk| `KhpUijt ´ ukq|v ´ vk1 |
)

ď c12

»

–E
´

wij |
ÿ

1ďt‰t1ďTij

YijtYijt1
 

KhpUijt1 ´ vq `KhpUijt ´ ukq|
(

¯

` 1

fi

flh´2N´1

“ c12tEprχij1q ` 1upNh2q´1 ď c13pNh
3q´1, (B.16)

on the event ΩZ,j1 “
 

n´1
řn
i“1 rχij1 ď Eprχij1q ` 1

(

. The last inequality follows from the
Cauchy–Schwartz inequality and EtY 2

ijtK
2
hpUijt ´ ukqu “

ř8

l“1Etξ
2
ijlφ

2
jlpUijtqK

2
hpUijt ´ ukqu `

Ete2
ijtK

2
hpUijt ´ ukqu ď C9h

´1, implied from Conditions 3(ii), 5, 7, 8 and some calculations similar
to the proof of (B.12). Applying similar techniques to obtain (B.16), we can define events ΩZ,jm, ΩΞ,jm`

for m, ` “ 1, 2, 3, respectively, and show that, on the above events, |
 

pZj1pu, vq ´ pZj1puk, vk1q
(

| ď

c14pNh
3q´1 for m “ 2, 3 and |

 

pΞjm`pu, vq ´ pΞjm`puk, vk1q
(

| ď c14pNh
3q´1 for m, ` “ 1, 2, 3. Comb-

ing the above results, we have

sup
pu,vqPBkˆBk1

| pCjjpu, vq ´ rCjjpu, vq| ď max
1ďkďN

| pCjjpuk, vk1q ´ rCjjpuk, vk1q| ` C13pNh
3q´1.

Let N “ c15ph
3δq´1. It follows from (B.15), techniques used in the proof of (B.12), moment inequal-

ities similar to (B.13) and the Bernstein inequality that there exists positive constants c16 and c17 such
that for any δ P p0, 1s, pr

!

| pCjjpuk, vk1q ´ rCjjpuk, vk1q| ě δ
)

ď c17 expp´c16nh
2δ2q, prpΩCZ,jmq ď

c17 expp´c16nh
2q and prpΩCΞ,jm`q ď c17 expp´c16nh

2q for m, ` “ 1, 2, 3. Combing the above results
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and by the union bound of probability, we have that for each δ P p0, 1s,

pr
!

sup
pu,vqPr1,1s2

| pCjjpu, vq ´ rCjjpu, vq| ě δ
)

ď c19ph
3δq´1 exp

´

´ c18nh
2δ2

¯

.

If δ ě pnhq´1, the right side of the above inequality is reduced to c19nh
´2 exp

`

´ c18nh
2δ2

˘

. If
δ ă pnhq´1, we can choose c19 and n ą c20 such that c19 expp´c18c

´1
20 q ě 1 and hence the bound

c19nh
´2 exp

`

´ c18nh
2δ2

˘

can still be used. We complete our proof for concentration inequalities in
(B.3) and (B.4). ˝

B¨4. Concentration bounds for densely observed functional data 645

LEMMA 5. Suppose that Conditions 1, 3 (ii), 5, 7 and 8 hold. Let dj be dimensionality of Xjp¨q such
that ωjdj ą 0 and ωjpdj`1q “ 0. Suppose that dj “ d ă 8, hj “ h for j P V. Then there exist a deter-
ministic covariance function rCjjpu, vq defined in (B.9), some positive constants c1 and c2, a fixed small
constant ε ą 0 such that for any δ P p0, 1s and each j P V,

pr
!

›

› pCjj ´ rCjj
›

›

S ě δ
)

ď c2 exp
!

´ c1 minpn, n2{3´εT 1{3h4{3qδ2
)

(B.17)

and 650

pr
!

sup
pu,vqPU2

ˇ

ˇ pCjjpu, vq ´ rCjjpu, vq
ˇ

ˇ ě δ
)

ďc2 maxpn, n2{3´εT´1{3h´4{3q exp
!

´ c1 minpn, n2{3´εT 1{3h4{3qδ2
)

.

(B.18)

If h — n´a and T — nb for some positive constants a, b with 4a{3´ b{3 ă 2{3´ ε, there exist some
positive constants c3 and c4 such that (B.17) and (B.18) reduce to

pr
!

›

› pCjj ´ rCjj
›

›

S ě δ
)

ď c2 exp
!

´ c3n
mint1,p2{3´ε`b{3´4a{3quδ2

)

(B.19)

and

pr
!

sup
pu,vqPU2

ˇ

ˇ pCjjpu, vq ´ rCjjpu, vq
ˇ

ˇ ě δ
)

ďc4n
maxt1,p2{3´ε´b{3`4a{3qu exp

!

´ c3n
mint1,p2{3´ε`b{3´4a{3quδ2

)

,

(B.20)

respectively.

Proof. We will show that there exist two positive constants c1 and c2 such that for any 0 ă δ ď 1 and each 655

j P V,m, ` “ 1, 2, 3 and pu, vq P U2,

pr
!
ˇ

ˇ

ˇ

pΞjm`pu, vq ´ EtpΞjm`pu, vqu
ˇ

ˇ

ˇ
ě δ

)

ď c2 exp
`

´c1nTh
2δ2

˘

(B.21)

and

pr
!
ˇ

ˇ

ˇ

pZjmpu, vq ´ Et pZjmpu, vqu
ˇ

ˇ

ˇ
ě δ

)

ď c2 exp
!

´ c1 minpn, n2{3´εT 1{3h4{3qδ2
)

. (B.22)

Then combing results in (B.14), (B.21), (B.22) and following the same developments to prove (B.15), we
can obtain that there exist two positive constants c3 and c4 such that for any 0 ă δ ď 1, and each j P V
and pu, vq P U2, 660

pr
!
ˇ

ˇ

ˇ

pCjjpu, vq ´ rCjjpu, vq
ˇ

ˇ

ˇ
ě δ

)

ď c4 exp
!

´ c3 minpn, n2{3´εT 1{3h4{3qδ2
)

. (B.23)

It follows from (B.7), Condition 1, (B.12) and Lemma 3 that the concentration bound in (B.21) holds
for m, ` “ 1, 2, 3.
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Now we turn to prove (B.22). Similar to the proof of (B.11), it suffices to derive the concentration
bound for pZj1pu, vq. For each pair pi, jq (i “ 1, . . . , n, j “ 1, . . . , p), denote

χijpu, vq “
ÿ

1“t‰t1ďT

YijtYijt1KhpUijt ´ uqKhpUijt1 ´ vq,

which can be further decomposed as665

χijpu, vq “
ÿ

1ďt‰t1ďT

eijteijt1KhpUijt ´ uqKhpUijt1 ´ vq

`

d
ÿ

l“1

ξijl
ÿ

1ďt‰t1ďT

eijt1φjlpUijtqKhpUijt ´ uqKhpUijt1 ´ vq

`

d
ÿ

l“1

ξijl
ÿ

1ďt‰t1ďT

eijtφjlpUijt1qKhpUijt ´ uqKhpUijt1 ´ vq

`

d
ÿ

l,l1“1

ξijlξijl1
ÿ

1ďt‰t1ďT

φjlpUijtqφjl1pUijt1qKhpUijt ´ uqKhpUijt1 ´ vq

“χ
p1q
ij pu, vq ` χ

p2q
ij pu, vq ` χ

p3q
ij pu, vq ` χ

p4q
ij pu, vq.

Therefore, we have

pZj1pu, vq “
4
ÿ

k“1

n´1
n
ÿ

i“1

wijχ
pkq
ij pu, vq.

In the following, we will prove the concentration bound for each of the four terms.
(i). Consider the first term. Note that χp1qij pu, vq is a U-statistics. For each integer q “ 2, 3, . . . , by the

fact that eijt’s are Gaussian and similar techniques used to prove (B.12), we have

E
ˇ

ˇ

ˇ
eijteijt1KhpUijt ´ uqKhpUijt1 ´ vq

ˇ

ˇ

ˇ

q

ď
q!

2
pc5h

´2qpc5h
´2qq´2.

It then follows from Lemma 3 that for each δ ą 0,

pr

«

ˇ

ˇ

ˇ
n´1

n
ÿ

i“1

wij

!

χ
p1q
ij pu, vq ´ Eχ

p1q
ij pu, vq

)
ˇ

ˇ

ˇ
ě δ

ff

ď 2 exp
´

´
c6nTh

2δ2

1` δ

¯

. (B.24)

(ii). Consider the second term. To derive its concentration bound, we implement a truncation technique.
Let aijl “ ω

´1{2
jl ξijl „ Np0, 1q, a

p1q
ijl “ aijlIp|aijl| ď nθq and ap2qijl “ aijlIp|aijl| ą nθq for some θ ą 0.

Then we have χp2qij pu, vq “ χ
p2,1q
ij pu, vq ` χ

p2,2q
ij pu, vq, where

χ
p2,mq
ij pu, vq “

d
ÿ

l“1

ω
1{2
jl a

pkq
ijl

ÿ

1ďt‰t1ďT

eijt1φjlpUijtqKhpUijt ´ uqKhpUijt1 ´ vq, m “ 1, 2.

Note that, similar to the proof for Lemma 3, wij
řT
t‰t1 eijt1φj`pUijtqKhpUijt ´ uqKhpUijt1 ´ vq can be

expressed as an average of T ! terms, each of which is itself an average of rT {2s independent random vari-
ables. For each integer q “ 2, 3, . . . , by the facts eijt’s are Gaussian, T ě 2

?
T for T ě 4, Condition 3(ii)

and techniques used to prove (B.12), we have

E

ˇ

ˇ

ˇ

ˇ

ˇ

wij
ÿ

1ďt‰t1ďT

eijt1φjlpUijtqKhpUijt ´ uqKhpUijt1 ´ vq

ˇ

ˇ

ˇ

ˇ

ˇ

q

ď q!cq7T
´q{2h´2pq´1q.
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Combing the above results and some specific calculations yield that

E
ˇ

ˇwijχ
p2,1q
ij pu, vq

ˇ

ˇ

q
ď

˜

d
ÿ

`“1

ω
1{2
jl

¸q

nθpq´2qcq8T
´q{2h´2pq´1q

ď
1

2
q!pc29h

´2T´1qpc9n
θh´2T´1{2qq´2. (B.25)

Applying the Bernstein inequality, we obtain that for each δ ą 0,

pr

#
ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

wijχ
p2,1q
ij pu, vq

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

+

ď 2 exp

ˆ

´
c10nh

2Tδ2

1` nθT 1{2δ

˙

. (B.26)

Note that
 

sup1ďiďn,1ďlďd |aijl| ď nθ
(

Ă tχ
p2,2q
ij pu, vq “ 0u. Applying the Bernstein inequality for 670

aijl’s and the union bound of probability, we obtain that for each δ ą 0,

pr

#
ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

wijχ
p2,2q
ij pu, vq

ˇ

ˇ

ˇ

ˇ

ˇ

‰ 0

+

ď 2nd exp
´

´ c11n
2θ
¯

. (B.27)

(iii) Consider the third term. Similar to the development in (ii), we can write χp3qij pu, vq “ χ
p3,1q
ij pu, vq `

χ
p3,2q
ij pu, vq, where

χ
p3,kq
ij pu, vq “

d
ÿ

l“1

ω
1{2
jl a

pkq
ijl

ÿ

1ďt‰t1ďT

eijt1φjlpUijtqKhpUijt ´ vqKhpUijt1 ´ uq, k “ 1, 2.

Following the same developments in proving (B.28) and (B.27), we can obtain that for each δ ą 0,

pr

#
ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

wijχ
p3,1q
ij pu, vq

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

+

ď 2 exp
´

´
c12nTh

2δ2

1` nθT 1{2δ

¯

. (B.28)

and

pr

#
ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

wijχ
p3,2q
ij pu, vq

ˇ

ˇ

ˇ

ˇ

ˇ

‰ 0

+

ď 2nd exp
´

´ c13n
2θ
¯

. (B.29)

(iv). Consider the fourth term. For any pi, j, l, l1q for i “ 1, . . . , n, j P V, l, l1 “ 1, . . . , d, denote

ψij,ll1pu, vq “
ÿ

1ďt‰t1ďT

φjlpUijtqφjl1pUijt1qKhpUijt ´ uqKhpUijt1 ´ vq.

We can further decompose χp4qij pu, vq as

χ
p4q
ij pu, vq “

d
ÿ

l,l1“1

ξijlξijl1Eψij,ll1pu, vq `
d
ÿ

l,l1“1

ξijlξijl1
 

ψij,ll1pu, vq ´ Eψij,ll1pu, vq
(

“ χ
p5q
ij pu, vq ` χ

p6q
ij pu, vq.

Applying the fact that
ř

l ξijl is Gaussian, Conditions 3(ii), 8, techniques used to prove (B.12) and some 675

specific calculations yields that for q “ 2, 3, . . . ,

ˇ

ˇ

ˇ
E
!

wijχ
p5q
ij pu, vq

)qˇ
ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

˜

ÿ

l

ξijl

¸2q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sup
i,j,l,l1

ˇ

ˇ

ˇ
E
!

wijψll1pu, vq
)
ˇ

ˇ

ˇ

q

ď cq14q!.
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Applying the Bernstein inequality, we obtain that for each δ ą 0,

pr

«
ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

wij

!

χ
p5q
ij pu, vq ´ Eχ

p5q
ij pu, vq

)

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

ff

ď 2 exp

ˆ

´
c15nδ

2

1` δ

˙

. (B.30)

Now we turn to the term
řn
i“1 n

´1wijχ
p6q
ij pu, vq. To derive its concentration bound, we use the trun-

cation technique again. Observe that aijlaijl1 “ a
p1q
ijl a

p1q
ijl1 ` a

p2q
ijl a

p1q
ijl1 ` a

p1q
ijl a

p2q
ijl1 . Similar to the procedure

in (ii), we can write χp6qij pu, vq “ χ
p6,1q
ij pu, vq ` χ

p6,2q
ij pu, vq, where

χ
p6,1q
ij pu, vq “

d
ÿ

l,l1“1

ω
1{2
jl ω

1{2
jl1 a

p1q
ijl1a

p1q
ijl1

!

ψij,ll1pu, vq ´ Eψij,ll1pu, vq
)

.

It follows from the proof of Lemma 3 thatwijψij,``1pu, vq can be expressed as an average of T ! terms, each
of which is itself an average of rT {2s independent random variables. Following the similar developments
to prove (B.25), we can show that680

E
ˇ

ˇ

ˇ
wija

p1q
ijl a

p1q
ijl1

!

ψij,ll1pu, vq ´ Eψij,ll1pu, vq
)
ˇ

ˇ

ˇ

q

ď
1

2
q!pc216T

´1h´2qpc16n
θT´1{2h´2qq´2.

Applying the Bernstein inequality again, we obtain that for each δ ą 0,

pr

«
ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

wijχ
p6,1q
ij pu, vq

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

ff

ď 2 exp
´

´
c17nTh

2δ2

1` nθT 1{2δ

¯

.

On the other hand, we can also show that

pr

#
ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

wijχ
p6,2q
ij pu, vq

ˇ

ˇ

ˇ

ˇ

ˇ

‰ 0

+

ď 2nd exp
´

´ c18n
2θ
¯

. (B.31)

Choosing nθ “ pnT 1{2h2q1{3 and combing the concentration inequalities in (B.24), (B.26)–(B.31), we
obtain that there exist two positive constants c19 and c20 such that for any δ P p0, 1s,

pr
!
ˇ

ˇ

ˇ

pZj1pu, vq ´ Et pZj1pu, vqu
ˇ

ˇ

ˇ
ě δ

)

ď c20 exp
!

´ c19 minpn, n2{3´εT 1{3h4{3qδ2
)

, (B.32)

where ε is obtained from logpnq ď nε for any small constant ε ą 0. We can apply the same procedure and685

prove that the concentration bound in (B.22) also holds for m “ 2, 3.
Next, given the pointwise concentration bound in (B.23), it follows from the same procedure to prove

(B.15) that we can derive the L2 concentration bound for } pCjj ´ rCjj}S in (B.17). Finally, applying the
partition technique and then following the similar developments to prove Lemma 2 and (B.4), we can
derive the uniform concentration bound for suppu,vqPU2

ˇ

ˇ pCjjpu, vq ´ rCjjpu, vq
ˇ

ˇ in (B.18). We complete690

the proof for this lemma. ˝

In Lemma 5, it is worthy noting that we assume that dj ă 8 for each j P V. We leave the development
of concentration results for pCjjpu, vq under the infinite dimensional setting as our future work.

B¨5. Proof of Theorem 1
To prove Theorem 1, we will use Lemmas 6-25 with proofs as follows.695

LEMMA 6. tpΘ1puqu be the solution to (6) and pBpuq “ tpβ1puq, . . . , pβppuqu with pβjpuq’s being solu-
tions to (7), then we have tpΘ1puqu “ t pBpuqu.

Proof. We can follow exactly the same steps in Lemma 1 of Cai et al. (2011), thus the proof here is
omitted.˝
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LEMMA 7. Suppose that Conditions 2 and 6 hold. Then there exists some positive constants c1, c2, c3 700

such that for any δ with h2 ! δ ď 1 and each j P V, we have

pr
´

›

› pCjj ´ Cjj
›

›

S ě δ
¯

ď c2 expp´c1n
2γδ2q, (B.33)

pr

#

sup
pu,vqPU2

ˇ

ˇ pCjjpu, vq ´ Cjjpu, vq
ˇ

ˇ ě δ

+

ď c2n
c3 expp´c1n

2γδ2q. (B.34)

Proof. It follows from the proofs for Theorems 3.2 and 4.2 of Zhang & Wang (2016) that, under Condi-
tion 6,

›

› rCjj ´ Cjj
›

›

S “ Oph2q. By the triangular inequality with
›

› pCjj ´ Cjj
›

›

S ď
›

› pCjj ´ rCjj
›

›

S `
›

› rCjj ´ Cjj
›

›

S ,

δ " h2 and (12) in Condition 2, we have P
´

›

› pCjj ´ Cjj
›

›

S ě δ
¯

ď P
´

›

› pCjj ´ rCjj
›

›

S ě δ{2
¯

ď

c2 expp´c4n
2γδ2{4q with c1 “ c4{4. Finally, it follows from (13), Condition 6, Theorem 5.2 of of Zhang

& Wang (2016) with suppu,vqPU2

ˇ

ˇ rCjjpu, vq ´ Cjjpu, vq
ˇ

ˇ “ Oph2q and similar developments that (B.34) 705

follows. ˝

LEMMA 8. Suppose that Lemma 7 holds, then we have

max
jPV

›

› pCjj ´ Cjj
›

›

S “ Op

´

c

log p

n2γ

¯

, (B.35)

max
jPV

sup
pu,vqPU2

ˇ

ˇ pCjjpu, vq ´ Cjjpu, vq
ˇ

ˇ “ Op

´

c

log p

n2γ

¯

, (B.36)

Proof. Applying the union bound of probability on (B.33),

max
jPV

pr
´

›

› pCjj ´ Cjj
›

›

S ě δ
¯

ď pc2 expp´c1n
2γδ2q,

then (B.35) follows. Similarly, applying the union bound of probability on (B.34) under p Á n, (B.36)
follows. ˝ 710

LEMMA 9. Suppose that Lemma 8 holds, then we have maxjPv |pωjl ´ ωjl| “ Op

´

b

log p
n2γ

¯

.

Proof. By (4.43) of Bosq (2000) and Lemma 8, we have maxjPV suplě1|pωjl ´ ωjl| ď maxj || pCjj ´

Cjj ||S “ Op

´

b

log p
n2γ

¯

, which completes the our proof. ˝

LEMMA 10. Denote qφjl “ signxpφjl, φjlyφjl. Then

}pφjl ´ qφjl} ď djl} pCjj ´ Cjj}S ,

where djl “ 2
?

2 max pωjpl´1q ´ ωjlq
´1, pωjl ´ ωjpl`1qq

´1 if l ě 2 and dj1 “ 2
?

2pωj1 ´ ωj2q
´1.

Moreover, suppose that Lemma 8 and Condition 3 hold, then for each l “ 1, 2, . . . , we have 715

maxjPV }pφjl ´ φjl} “ Op

´

lβ`1
b

log p
n2γ

¯

.

Proof. The first part can be found in Lemma 4.3 of Bosq (2000). By Condition 3, ωjl — l´β , djlωjl “ Oplq
and hence djl ď c1l

1`β , which completes our proof. ˝

To simplify notation, we will use φjl rather than qφ in our proofs.

LEMMA 11. Suppose that Condition 3 holds, then maxpj,kqPV 2suppu,vqPU2 |Cjkpu, vq| “ Op1q. 720
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Proof. Observe thatXjpuqXkpvq “
ř8

l“1

ř8

m“1 ξjlξkmφjlpuqφkmpvq. By the Cauchy-Schwartz inequal-
ity, Epξjlξjl1q “ 0 for l ‰ l1 and Condition 3, we have

max
pj,kqPV 2

sup
pu,vqPU2

|Cjkpu, vq|
2 ď max

pj,kqPV 2

 

8
ÿ

l“1

8
ÿ

m“1

Epξjlξkmq sup
U
φjlpuq sup

U
φkmpvq

(2

ď max
jPV

8
ÿ

l“1

 

Epξ2
jlq sup

U
φjlpuq

2
(

max
kPV

8
ÿ

m“1

 

Epξ2
kmq sup

U
φkmpvq

2
(

“ O
´

max
jPV

8
ÿ

l“1

ωjl max
kPV

8
ÿ

m“1

ωkm

¯

“ Op1q.

This completes our proof for this lemma. ˝

LEMMA 12. Suppose that Lemma 7 and Condition 3 hold, then for each l “ 1, 2, . . . ,

max
jPV

sup
uPU
|pφjlpuq ´ φjlpuq| “ Op

´

l2β`1

c

log p

n2γ

¯

.

Proof. For each pj, lq, it follows from eigen-decompositions ωjlφjlpuq “
ş

U Cjjpu, vqφjlpvqdv and
pωjlpφjlpuq “

ş

U
pCjjpu, vqpφjlpvqdv that we can decompose pφjlpuq ´ φjlpuq as725

“ ´ω´1
jl

`

pωjl ´ ωjl
˘

φjlpuq ´ ω
´1
jl

`

pωjl ´ ωjl
˘`

pφjlpuq ´ φjlpuq
˘

`ω´1
jl

ż

 

pCjjpu, vq ´ Cjjpu, vq
(

φjlpvqdv ` ω
´1
jl

ż

 

pCjjpu, vq ´ Cjjpu, vq
(`

pφjlpvq ´ φjlpvq
˘

dv

`ω´1
jl

ż

Cjjpu, vq
 

pφjlpvq ´ φjlpvq
(

dv

“ S1puq ` S2puq ` S3puq ` S4puq ` S5puq.

(i) It follows from Condition 3 and Lemma 9 that

max
j

sup
u
|S1puq| ď max

j
ω´1
jl max

j
|pωjl ´ ωjl|sup

u
|φjlpuq| “ Op

´

lβ
c

log p

n2γ

¯

.

(ii) It follows from Condition 3 and Lemma 8 that

max
j

sup
u
|S3puq| ď max

j
ω´1
jl max

j
sup
u,v
| pCjjpu, vq ´ Cjjpu, vq|max

j

ż

|φjlpvq|dv “ Op

´

lβ
c

log p

n2γ

¯

.

(iii) It follows from Condition 3, the Cauchy–Schwartz inequality and Lemmas 10–11 that

max
j

sup
u
|S5puq| ď max

j
ω´1
jl max

j
sup
u
}Cjjpu, ¨q} ¨max

j
}pφjl ´ φjl} “ Op

´

lβlβ`1

c

log p

n2γ

¯

.

Since the above three terms can dominate the others, we combine convergence rates in (i), (ii), (iii) and
obtain the rate as stated in the lemma. ˝

LEMMA 13. Suppose that Lemma 8 and Condition 3 hold. Then for each i “ 1, . . . , n, we have

max
jPV

}pζijl ´ ζijl} “ Op

´

max
j
T

1{2
ij l

c

log p

n2γ

¯

, (B.37)

max
jPV

}pΣ´1
Yij
´ Σ´1

Yij
} “ Op

´

max
j
Tij

c

log p

n2γ

¯

. (B.38)
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Proof. We have maxj ||pζijl ´ ζijl|| ď maxj T
1{2
ij sup

t
|pζijlt ´ ζijlt| and 730

max
j

sup
t
|pζijlt ´ ζijlt|

“ max
j

sup
t
|

ż

pCjjpUijt, vqpφjlpvqdv ´

ż

CjjpUijt, vqφjlpvqdv|

“ max
j

sup
t
|pωjlpφjlpUijtq ´ ωjlφjlpUijtq|

ď max
j

sup
uPU
|

ż

`

pωjl ´ ωjl
˘

pφjlpuq| `max
j

sup
uPU
|

ż

ωjl
`

pφjlpuq ´ φjlpuq
˘

|

ď max
j
|pωjl ´ ωjl|max

j
sup
u
p|φjlpuq| ` |pφjlpuq ´ φjlpuq|q `max

j
ωjlsup

u
||pφjlpuq ´ φjlpuq||

“ Op

´

c

log p

n2γ
` l´βlβ`1

c

log p

n2γ

¯

,

where the last line follows from Condition 3 and Lemmas 9–10. This completes our proof for (B.37).
From the definition of ΣYij “ ΣXij ` σ

2ITij , where Xij “ tXijpUijT1q, . . . , XijpUijTij qu
T, we

have }Σ´1
Yij
} ď σ´2. Applying Lemma 1 of Dai et al. (2018), we have }pΣ´1

Yij
´ Σ´1

Yij
} ď c1σ

´4}pΣYij ´

ΣYij } ď c2σ
´4Tijsupt,t1 |ppΣYij qtt1 ´ pΣYij qtt1 |. Moreover, supt,t1 |ppΣYij qtt1 ´ pΣYij qtt1 | ď |pσ

2 ´ σ2| `

supu,v| pCjjpu, vq ´ Cjjpu, vq|, where the first term is dominated by the second term, see Corollary 1 735

of Yao et al. (2015) for details. We take maxjPV on both sides, apply (B.36) in Lemma 8 and hence can
obtain the convergence rate in (B.38). ˝

LEMMA 14. Suppose that Conditions 1, 3 and 5 hold. First consider the dense measurement design.
For each l,m “ 1, . . . ,M, we have

max
pj,kqPV 2

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

ppξijlpξikm ´ rξijlrξikmq
ˇ

ˇ

ˇ
“ Op

!

T 2plm´β ` l´βmq

c

log p

n2γ
` T 3l´βm´β

c

log p

n2γ

)

.

(B.39)
Furthermore, for sparse measurement design with time points Uijt’s possibly depending on i and T ď 740

T0 ă 8, we have

max
pj,kqPV 2

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

ppξijlpξikm ´ rξijlrξikmq
ˇ

ˇ

ˇ
“ Op

!

plm´β ` l´βmq

c

log p

n2γ

)

. (B.40)
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Proof. We write pξijlpξikm ´ rξijlrξikm “ pζT

ijl
pΣ´1
Yij
Yijpζ

T

ikm
pΣ´1
Yik
Yik ´ ζ

T

ijlΣ
´1
Yij
Yijζ

T

ikmΣ´1
Yik
Yik, which can

further be decomposed as

“ ppζijl ´ ζijlq
TΣ´1

Yij
YijY

T

ikΣ´1
Yik
ζikm ` ppζijl ´ ζijlq

TΣ´1
Yij
YijY

T

ikp
pΣ´1
Yik
´ Σ´1

Yik
qζikm

`ppζijl ´ ζijlq
TΣ´1

Yij
YijY

T

ikΣ´1
Yik
ppζikm ´ ζikmq

`ppζijl ´ ζijlq
TΣ´1

Yij
YijY

T

ikp
pΣ´1
Yik
´ Σ´1

Yik
qppζikm ´ ζikmq

`ppζijl ´ ζijlq
TppΣ´1

Yij
´ Σ´1

Yij
qYijY

T

ikΣ´1
Yik
ζikm

`ppζijl ´ ζijlq
TppΣ´1

Yij
´ Σ´1

Yij
qYijY

T

ikp
pΣ´1
Yik
´ Σ´1

Yik
qζikm

`ppζijl ´ ζijlq
TppΣ´1

Yij
´ Σ´1

Yij
qYijY

T

ikΣ´1
Yik
ppζikm ´ ζikmq

`ppζijl ´ ζijlq
TppΣ´1

Yij
´ Σ´1

Yij
qYijY

T

ikp
pΣ´1
Yik
´ Σ´1

Yik
qppζikm ´ ζikmq

`ζT

ijlp
pΣ´1
Yij
´ Σ´1

Yij
qYijY

T

ikΣ´1
Yik
ζikm ` ζ

T

ijlp
pΣ´1
Yij
´ Σ´1

Yij
qYijY

T

ikp
pΣ´1
Yik
´ Σ´1

Yik
qζikm

`ζT

ijlp
pΣ´1
Yij
´ Σ´1

Yij
qYijY

T

ikΣ´1
Yik
ppζikm ´ ζikmq

`ζT

ijlp
pΣ´1
Yij
´ Σ´1

Yij
qYijY

T

ikp
pΣ´1
Yik
´ Σ´1

Yik
qppζikm ´ ζikmq

`ζijlΣ
´1
Yij
YijY

T

ikΣ´1
Yik
ppζikm ´ ζikmq ` ζ

T

ijlΣ
´1
Yij
YijY

T

ikp
pΣ´1
Yik
´ Σ´1

Yik
qppζikm ´ ζikmq

`ζT

ijlΣ
´1
Yij
YijY

T

ikp
pΣ´1
Yik
´ Σ´1

Yik
qζikm

“ I1 ` I2 ` ¨ ¨ ¨ ` I15.

We first list several results that can be used in our proof. Note that the time points
Uijt’s do not depend on i and Tij “ T Ñ8. (i) maxj }ζijl} ď T 1{2 maxj supt|ζijlt| “745

T 1{2 maxj supt|
ş

CjjpUijt, vqφjlpvqdv| ď T 1{2 maxj supuPU |
ş

Cjjpu, vqφjlpvqdv| “
T 1{2 maxj supU |

ş

ωjlφjlpuq| “ OpT 1{2l´βq, where the last equality follows from Condition 3; (ii)
From the definition of ΣYij , we have }Σ´1

Yij
} ď σ´2; (iii) By Lemma 11, maxj,k }n

´1
řn
i“1 YijY

T

ik} ď

T maxj,k supt,t1 |pn
´1

řn
i“1 YijY

T

ikqtt1 | ď maxj,k T suppu,vqPU2 | pCjkpu, vq| “ OppT q.
Applying the above results in (i), (ii), (iii) and (B.37), (B.38) in Lemma 13, we have750

max
j,k

}n´1
ÿ

i

I1} ď max
j
}pζijl ´ ζijl} max

j
}Σ´1

Yij
} max

j,k
}n´1

ÿ

i

YijYik} max
k
}ζikm} max

k
}Σ´1

Yik
}

“ Op

´

T 2lm´β
c

log p

n2γ

¯

,

max
j,k

|n´1
ÿ

i

I9| ď max
j
}ζijl} max

j
}pΣ´1

Yij
´ Σ´1

Yij
} max

j,k
}n´1

ÿ

i

YijYik} max
k
}ζikm} max

k
}Σ´1

Yik
}

“ Op

´

T 3l´βm´β
c

log p

n2γ

¯

,

max
j,k

}n´1
ÿ

i

I13} ď max
j
}ζijl} max

j
}Σ´1

Yij
} max

j,k
}n´1

ÿ

i

YijYik} max
k
}pζikm ´ ζikm} max

k
}Σ´1

Yik
}

“ Op

´

T 2l´βm

c

log p

n2γ

¯

,

max
j,k

}n´1
ÿ

i

I15} ď max
j
}ζijl} max

j
}Σ´1

Yij
} max

j,k
}n´1

ÿ

i

YijYik} max
k
}ζikm} max

k
}pΣ´1

Yik
´ Σ´1

Yik
}

“ Op

´

T 3l´βm´β
c

log p

n2γ

¯

.
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Since these four terms can dominate the other maxj,k }n
´1

ř

i Il} terms, we combine the above conver-
gence rates and obtain (B.39). For the sparse case with Tij ď T0 ă 8, following the same developments 755

to derive (B.39) without requiring Uijt’s depending on i, we can obtain (B.40). We complete our proof
for this lemma. ˝

LEMMA 15. Suppose that conditions for the dense case in Lemma 14 hold, then for each l,m “

1, . . . ,M, we have

max
pj,kqPV 2

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

prξijlrξikm ´ ξijlξikmq
ˇ

ˇ

ˇ
“ Op

 

plog pq1{2T´1{2pl´β{2 `m´β{2q
(

.

Proof. We can write

rξijlrξikm ´ ξijlξikm “ tprξijl ´ ξijlqrξikmu ´ Etprξijl ´ ξijlqrξikmu ` Etprξijl ´ ξijlqrξikmu

`tξijlprξikm ´ ξikmqu ´ Etξijlprξikm ´ ξikmqu ` Etξijlprξikm ´ ξikmqu

“ I1 ` I2 ` I3 ` I4.

Consider I1 first. Under joint Gaussian assumption for ξijl and eijt, it follows from Section 2.4 of Yao
et al. (2005) that ξijl ´ rξijl „ N

`

0, varpξijlq ´ varprξijlq
˘

. For each integer q “ 2, 3, . . . , by Condition 3,
(33) of Dai et al. (2018) and the fact that both rξijl ´ ξijl and rξikm are Gaussian with variances OpT´1q

and Opm´βq, respectively, we have

E|prξijl ´ ξijlqrξikm|
q ď c1q!pc2T

´1m´βqpc2T
´1{2m´β{2qq´2.

Applying the Bernstein inequality, we can obtain that for each 0 ă δ ď c3T
´1{2m´β{2,

prp|I1| ě δq ď c5 exp
`

´ c4Tm
βδ2

˘

.

Similar developments are applied to I3, we have prp|I3| ě δq ď c7 exp
`

´ c6T l
βδ2

˘

. By the Cauchy-
Schwartz inequality, I2 and I4 are of the orderOpT´1{2m´β{2 ` T´1{2l´β{2q.Combing the above results
and the techniques used in the proof of Lemma 7 with δ " T´1{2m´β{2 ` T´1{2l´β{2, we have

pr

˜

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

prξijlrξikm ´ ξijlξikmq
ˇ

ˇ

ˇ
ě δ

¸

ď c9n exp
`

´ c8Tm
βδ2

˘

` c9n exp
`

´ c8T l
βδ2

˘

.

Taking maxpj,kqPV 2 on the left side above and again applying the union bound of probability under p Á n,
we then complete our proof for this lemma. ˝ 760

LEMMA 16. Suppose that Condition 3 holds, then for each l,m “ 1, . . . ,M, we have

max
pj,kqPV 2

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

ξijlξikm ´ Epξijlξikmq
ˇ

ˇ

ˇ
“ Op

´

l´β{2m´β{2
c

log p

n

¯

.

Proof. Let ξijl “ ω
1{2
jl aijl, where aijl „ Np0, 1q. Then n´1

řn
i“1 ξijlξikm ´ Epξijlξikmq “

ω
1{2
jl ω

1{2
kmtn

´1
řn
i“1 aijlaikm ´ Epaijlaikmqu. Again, applying the Bernstein inequality and taking the

union bound of probability, we obtain maxj,k |tn
´1

řn
i“1 aijlaikm ´ Epaijlaikmq| “ Optplog p{nq1{2u.

By Condition 3, we complete our proof for this lemma. ˝
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LEMMA 17. Suppose that conditions for the dense case in Lemma 14 hold, then for each l,m “765

1, . . . ,M, we have

max
pj,kqPV 2

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

pξijlpξikm ´ Epξijlξikmq
ˇ

ˇ

ˇ

“ Op

#

T 2lm´β
c

log p

n2γ
` T 2l´βm

c

log p

n2γ
` T 3l´βm´βplog nq1{2

c

log p

n2γ

`T´1{2l´β{2plog pq1{2 ` T´1{2m´β{2plog pq1{2 ` l´β{2m´β{2
c

log p

n

+

.

Proof. By the expansion of n´1
řn
i“1

pξijlpξikm ´ Epξijlξikmq “ n´1
 

ppξijlpξikm ´ rξijlrξikmq `

prξijlrξikm ´ ξijlξikmq ` pξijlξikm ´ Epξijlξikmq
(

and the results in Lemmas 14–16, we can im-
mediately obtain the convergence rate, which completes our proof for this lemma. ˝

Our next lemma presents the uniform bound for the bias term due to M -dimensional truncated approx-770

imation.

LEMMA 18. Suppose that the dense case in Condition 5 and Condition 3 hold, then for each j, k “
1, . . . , p, we have

sup
u
|Σjkpuq ´ Σjk,M puq| “ Opn´αν{2q.

Proof. By the Cauchy-Schwartz inequality, the uncorrelatedness between ξjl and ξjl1 for l ‰ l1 and Con-
dition 3, we have

sup
u
|Σjkpuq ´ Σjk,M puq|

2 “ O
”

 

M
ÿ

l“1

8
ÿ

m“M`1

Epξjlξkmq sup
U
φjlpuq sup

U
φkmpuq

(2
s

“ O
”

M
ÿ

l“1

 

Epξ2
jlq sup

U
φjlpuq

2
(

8
ÿ

m“M`1

 

Epξ2
kmq sup

U
φkmpuq

2
(

ı

“ O
´

M
ÿ

l“1

8
ÿ

m“M`1

l´βωkm

¯

ď OpM´νq — n´αν ,

where the last line comes from the fact that

M
ÿ

l“2

l´β ď
M
ÿ

l“2

ż l

l´1

x´βdx “

ż M

1

x´βdx “
1

β ´ 1

`

1´M´pβ´1q
˘

.

This completes our proof for this lemma. ˝775

Let σjlkm “ Epξjlξkmq, rσjlkm “ Eprξjlrξkmq and pσjlkm “ n´1
řn
i“1

pξijlpξikm.

LEMMA 19. Suppose that conditions for the dense case in Lemma 14 hold, then we have

max
pj,kqPV 2

sup
uPU
|pΣjkpuq ´ Σjk,M puq| “ Op

 

nαp3β{2`2q

c

log p

n2γ
` T 3

c

log p

n2γ
` nαT´1{2plog pq1{2

(

Proof. Observe that

pΣjkpuq ´ Σjk,M puq “
M
ÿ

l“1

M
ÿ

m“1

 

pφjlpuqpσjlkmpφkmpuq ´ φjlpuqσjlkmφkmpuq
(

. (B.41)
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We can express

pφjlpuqpσjlkmpφkmpuq ´ φjlpuqσjlkmφkmpuq

“ pφjlpuqpσjlkm
 

pφkmpuq ´ φkmpuq
(

` pφjlpuqppσjlkm ´ σjlkmqφkmpuq

`
 

pφjlpuq ´ φjlpuq
(

σjlkmφkmpuq

“ I1puq ` I2puq ` I3puq.

We first bound I1puq. It follows from Cauchy-Schwartz the inequality on |σjlkm|, Condition 3 and
Lemma 12 that 780

max
j,k

sup
u
|I1puq| ď max

j

 

sup
u
|φjlpuq| ` sup

u
|pφjlpuq ´ φjlpuq|

(

¨max
j,k

 

|σjlkm| ` |pσjlkm ´ σjlkm|
(

max
k

sup
u
|pφkmpuq ´ φkmpuq|

“ Op

˜

l´β{2m´β{2m2β`1

c

log p

n2γ

¸

“ Op

˜

l´β{2m3β{2`1

c

log p

n2γ

¸

.

We next bound I2puq. It follows from Condition 3 and Lemma 16 that

max
j,k

sup
u
|I2puq| ď max

j

 

sup
u
|φjlpuq| ` sup

u
|pφjlpuq ´ φjlpuq|

(

max
j,k

|pσjlkm ´ σjlkm|max
k

sup
u
|φkmpuq|

“ Op

#

T 2lm´β
c

log p

n2γ
` T 2l´βm

c

log p

n2γ
` T 3l´βm´β

c

log p

n2γ

`T´1{2l´β{2plog pq1{2 ` T´1{2m´β{2plog pq1{2 ` l´β{2m´β{2
c

log p

n

+

.

Applying the similar technique used to bound I1puq, we obtain

max
j,k

sup
u
|I3puq| “ Op

˜

l3β{2`1m´β{2
c

log p

n2γ

¸

.

Combing bound results for I1puq, I2puq and I3puq, we have

max
j,k

sup
u
|pΣjkpuq ´ Σjk,M puq|

ď

M
ÿ

l“1

M
ÿ

m“1

max
j,k

sup
u
|pφjlpuqpσjlkmpφkmpuq ´ φjlpuqσjlkmφkmpuq|

ď Op

!

M
ÿ

l“1

M
ÿ

m“1

`

l´β{2m3β{2`1

c

log p

n2γ
` T 2l´βm

c

log p

n2γ

` T 3l´βm´β
c

log p

n2γ
` l´β{2T´1{2plog pq1{2 ` l´β{2m´β{2

c

log p

n

˘

)

“ Op
 

M3β{2`2

c

log p

n2γ
` T 2M2

c

log p

n2γ
` T 3

c

log p

n2γ
`MT´1{2plog pq1{2

(

. (B.42)

where the last line comes from
M
ÿ

l“2

M
ÿ

m“1

l´β{2m3β{2`1 ď

ż M

1

x´β{2dx

ż M`1

1

y3β{2`1dy “ OpM3β{2`2q
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and other similar inequalities. It is worth noting that actually there are terms tlogpMpqu1{2 instead of the
current terms plog pq1{2 in (B.42) due to the union bound of probability and the equipped sub-Gaussian
type of concentration bounds from Lemma 7 for each pj, k, l,mq, however provided that M — nα and785

p Á n, OrtlogpMpqu1{2s reduces to Otplog pq1{2u. Moreover, since T 2M2

nγ “ T 3

nγ pMT´1{2q2, the second
term in (B.42) is dominated by the third and fourth terms. With M — nα, we complete our proof for this
lemma. ˝

LEMMA 20. Suppose that the conditions for the dense case in Lemma 14 hold. Let κn,T “
nγ´αp3β{2`2q ^ T´3nγ ^ T 1{2n´α. If log p{κ2

n,T Ñ 0, log p{nαν Ñ 0 and h2nγ Ñ 0, then under high790

dimensional setting with p Á n, we have

max
pj,kqPV 2

sup
uPU
|pΣjkpuq ´ Σjkpuq| “ Op

$

&

%

˜

log p

κ2
n,T

¸1{2

`

ˆ

log p

nαν

˙1{2
,

.

-

. (B.43)

Proof. It follows from the triangular inequality, supuPU |pΣjkpuq ´ Σjkpuq| ď supuPU |pΣjkpuq ´
Σjk,M puq| ` supuPU |Σjk,M puq ´ Σjkpuq|, Lemmas 18 and 19 that (B.43) can be obtained. ˝

We next turn to the sparse situation with Tij ď T0 ă 8 uniformly in i “ 1, . . . , n, j P V, and prove
Lemmas 21–23 as follows.795

LEMMA 21. Suppose the sparse case in Condition 1 and Condition 3 hold, then for each j, k “
1, . . . , p, we have

sup
u
|rΣjkpuq ´ rΣjk,M puq| “ Opn´αν{2q.

Proof. By the joint Gaussian property of ξijl ´ rξijl with varianceEpξ2
ijlq ´ Ep

rξ2
ijlq, the Cauchy-Schwartz

inequality, Eprξjlrξjl1q “ Epξjlξjl1q ´ EtEpξjlξjl1q|Yiju “ 0 for l ‰ l1, Condition 3, and the same devel-
opments in the proof of Lemma 18, we can bound the truncation error by

sup
u
|rΣjkpuq ´ rΣjk,M puq|

2 “ O
”

 

M
ÿ

l“1

8
ÿ

m“M`1

Eprξjlrξkmq sup
U
φjlpuq sup

U
φkmpuq

(2
s

“ O
”

M
ÿ

l“1

 

Eprξ2
jlq sup

U
φjlpuq

2
(

8
ÿ

m“M`1

 

Eprξ2
kmq sup

U
φkmpuq

2
(

ı

“ O
´

M
ÿ

l“1

8
ÿ

m“M`1

l´βωkm

¯

ď OpM´νq — n´αν ,

which completes our proof. ˝

LEMMA 22. Suppose the sparse case in Condition 1 and Conditions 2–3 hold. Then for each l,m “800

1, . . . ,M,

max
pj,vqPV 2

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

pξijlpξikm ´ Eprξijlrξikmq
ˇ

ˇ

ˇ
“ Op

´

lm´β
c

log p

n2γ
` l´βm

c

log p

n2γ
` l´β{2m´β{2

c

log p

n

¯

.

Proof. Observe that rξijl is Gaussian with varprξijlq ă varpξijlq “ ωjl. Following the same techniques used
in the proofs of Lemmas 15–16 and applying the Bernstein inequality again, we have

max
j,k

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

rξijlrξikm ´ Eprξijlrξikmq
ˇ

ˇ

ˇ
“ rOppl

´β{2m´β{2
c

log p

n
q. (B.44)

By the expansion of n´1
řn
i“1t

pξijlpξikm ´ Eprξijlrξikmqu “ n´1
řn
i“1

 

ppξijlpξikm ´ rξijlrξikmq `

prξijlrξikm ´ Eprξijlrξikmqq
(

, (B.40) in Lemma 14 and (B.44), we can obtain the convergence rate as stated805

in the lemma. ˝
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LEMMA 23. Suppose that the sparse case in Condition 1 and Conditions 2–3 hold. Then we have

max
pj,kqPV 2

sup
uPU
|pΣjkpuq ´ rΣjk,M puq| “ Op

!

nαp3β{2`2q

c

log p

n2γ

)

Proof. Observe that

pΣjkpuq ´ rΣjk,M puq “
M
ÿ

l“1

M
ÿ

m“1

 

pφjlpuqpσjlkmpφkmpuq ´ φjlpuqrσjlkmφkmpuq
(

.

We can write

pφjlpuqpσjlkmpφkmpuq ´ φjlpuqrσjlkmφkmpuq

“ pφjlpuqpσjlkm
 

pφkmpuq ´ φkmpuq
(

` pφjlpuqppσjlkm ´ rσjlkmqφkmpuq

`
 

pφjlpuq ´ φjlpuq
(

rσjlkmφkmpuq

“ J1puq ` J2puq ` J3puq.

We first bound J1puq. It follows from the Cauchy-Schwartz inequality on |rσjlkm|, varprξijlq ď varpξijlq,
Condition 3 and Lemma 12 that

max
j,k

sup
u
|J1puq| ď max

j

 

sup
u
|φjlpuq| ` sup

u
|pφjlpuq ´ φjlpuq|

(

¨max
j,k

 

|rσjlkm| ` |pσjlkm ´ rσjlkm|
(

max
k

sup
u
|pφkmpuq ´ φkmpuq|

“ Op

˜

l´β{2m´β{2m2β`1

c

log p

n2γ

¸

“ Op

˜

l´β{2m3β{2`1

c

log p

n2γ

¸

We next bound J2puq. It follows from Condition 3 and Lemma 22 that 810

max
j,k

sup
u
|I2puq| ď max

j

 

sup
u
|φjlpuq| ` sup

u
|pφjlpuq ´ φjlpuq|

(

max
j,k

|pσjlkm ´ rσjlkm|max
k

sup
u
|φkmpuq|

“ Op

´

lm´β
c

log p

n2γ
` l´βm

c

log p

n2γ
` l´β{2m´β{2

c

log p

n

¯

.

Applying the similar technique used to bound J1puq, we obtain

max
j,k

sup
u
|J3puq| “ Op

˜

l3β{2`1m´β{2
c

log p

n2γ

¸

.

Combing bound results for J1puq, J2puq and J3puq, we have

sup
u
|pΣjkpuq ´ rΣjk,M puq|

ď

M
ÿ

l“1

M
ÿ

m“1

sup
u
|pφjlpuqpσjlkmpφkmpuq ´ φjlpuqrσjlkmφkmpuq|

ď Op

#

M
ÿ

l“1

M
ÿ

m“1

´

l´β{2m3β{2`1

c

log p

n2γ
` lm´β

c

log p

n2γ
` l´β{2m´β{2

c

log p

n

¯

+

“ Op
 

M3β{2`2

c

log p

n2γ

(

,

where the last line is due to the similar developments in the proof of Lemma 19. ByM — nα,we complete
our proof for this lemma. ˝
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LEMMA 24. Suppose that the sparse case in Condition 1 and Conditions 2–3 hold. If
log p{n2γ´αp3β`4q Ñ 0, log p{nαν Ñ 0 and h2nγ Ñ 0, then under high dimensional setting with p Á n,815

we have

sup
uPU

max
j,k
|pΣjkpuq ´ rΣjkpuq| “ Op

#

ˆ

log p

n2γ´3αβ´4α

˙1{2

`

ˆ

log p

nαν

˙1{2
+

. (B.45)

Proof. It follows from the triangular inequality with supuPU |pΣjkpuq ´ rΣjkpuq| ď supuPU |pΣjkpuq ´
rΣjk,M puq| ` supuPU |rΣjk,M puq ´ rΣjkpuq|, Lemmas 21 and 23 that (B.45) can be obtained. ˝

LEMMA 25. If λnpuq ě }Θpuq}1|pΣpuq ´ Σpuq|8 for each u P U , then we have

|pΘ1puq ´Θpuq|8 ď 4}Θpuq}1λnpuq.

Proof. We will use the following property that, for two matrices A and B

|AB|8 ď |A|8}B}1 (B.46)

in our proofs. For each u P U , by (B.46) and bound condition for λnpuq we have820

|I ´ pΣpuqΘpuq|8 “ |
 

Σpuq ´ pΣpuq
(

Θpuq|8 ď |Σpuq ´ Σpuq|8}Θpuq}1 ď λnpuq. (B.47)

By (B.47) and the optimization problem considered in (7), we obtain

|pΣpuq
 

pΘ1puq ´Θpuq
(

|8 ď |pΣpuqpΘ1puq ´ I|8 ` |I ´ pΣpuqΘpuq|8 ď 2λnpuq. (B.48)

By (B.47) and the definition of pβjpuq, j P V, we have |pβjpuq|1 ď ||Θpuq||1. By Lemma 6 we have
}pΘ1puq}1 ď }Θpuq}1. This result together with (B.46), (B.48) and the lower bound condition for λnpuq
yield

|pΘ1puq ´Θpuq|8 ď }Θpuq}1|Σpuq
`

pΘ1puq ´Θpuq
˘

|8

ď }Θpuq}1

”

|pΣpuq
 

pΘ1puq ´Θpuq
(

|8 ` |
 

Σpuq ´ pΣpuq
( 

pΘ1puq ´Θpuq
(

|8

ı

ď }Θpuq}1

!

2λnpuq ` |Σpuq ´ pΣpuq|8}pΘ1puq ´Θpuq}1

)

ď }Θpuq}1
 

2λnpuq ` |Σpuq ´ pΣpuq|82}Θpuq}1
(

“ 4}Θpuq}1λnpuq,

which completes our proof for this lemma. ˝825

Proof of Theorem 1: In our following proof, we will use the following property that, for any symmetric
matrix A P Rpˆp

||A|| ď ||A||1 “ max
j

p
ÿ

k“1

|Ajk|. (B.49)

Let max1ďj,kďp|pΘjkpuq ´Θjkpuq| “ τnpuq. From (6) and (8), we have |pΘjkpuq| ď |pΘ1jkpuq| ď
|Θjkpuq|. This together with the fact that

|pΘjkpuq| ě |Θjkpuq| ´ |pΘjkpuqI
 

|pΘjkpuq| ě 2τnpuq
(

´Θjkpuq| ` |pΘjkpuqI
 

|pΘjkpuq| ă 2τnpuq
(

|.
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leads to |pΘjkI
 

|pΘjkpuq| ă 2τnpuq
(

| ď |pΘjkpuqI
 

|pΘjkpuq| ě 2τnpuq
(

´Θjkpuq|. Using this result and 830

(B.49), we can bound

sup
u
||pΘpuq ´Θpuq||

ď sup
u

max
j

p
ÿ

k“1

|pΘjkpuq ´Θjkpuq|

ď sup
u

max
j

p
ÿ

k“1

|pΘjkpuqI
 

|pΘjkpuq| ě 2τnpuq
(

´Θjkpuq|

`sup
u

max
j

p
ÿ

k“1

|pΘjkpuqI
 

|pΘjkpuq| ă 2τnpuq
(

|

ď 2sup
u

max
j

p
ÿ

k“1

|pΘjkpuqI
 

|pΘjkpuq| ě 2τnpuq
(

´Θjkpuq|

ď 2sup
u

max
j

p
ÿ

k“1

|ΘjkpuqIt|Θjkpuq| ă 2τnpuqu|

`2sup
u

max
j

p
ÿ

k“1

|pΘjkpuqI
 

|pΘjkpuq| ě 2τnpuq
(

´ΘjkpuqI
 

|Θjkpuq| ě 2τnpuq
(

|

ď 2
 

2sup
u
τnpuq

(1´q
sup
u

max
j

p
ÿ

k“1

|Θjkpuq|
q ` 2sup

u
τnpuqsup

u
max
j

p
ÿ

k“1

I
 

|pΘjkpuq| ě 2τnpuq
(

`2sup
u

max
j

p
ÿ

k“1

|Θjkpuq| ¨
ˇ

ˇI
 

|pΘjkpuq| ě 2τnpuq
(

´ I
 

|Θjkpuq| ě 2τnpuq
(
ˇ

ˇ

It follows from the assumption tΘpuq, u P Uu P Cpq, s0ppq,K;Uq that the expression above can be further
bounded by

ď 2
 

2sup
u
τnpuq

(1´q
s0ppq ` 2sup

u
τnpuqsup

u
max
j

p
ÿ

k“1

I
 

|Θjkpuq| ě 2τnpuq
(

`2sup
u

max
j

p
ÿ

k“1

|Θjkpuq|I
 
ˇ

ˇ|Θjkpuq| ´ 2τnpuq
ˇ

ˇ ď |pΘjkpuq ´Θjkpuq|
(

ď 2
 

2sup
u
τnpuq

(1´q
s0ppq ` 2

 

sup
u
τnpuq

(1´q
sup
u

max
j

p
ÿ

k“1

|Θjkpuq|
q

`2sup
u

max
j

p
ÿ

k“1

|Θjkpuq|I
 

|Θjkpuq| ď 3τnpuq
(

ď 2p1` 21´q ` 31´qq
 

sup
u
τnpuq

(1´q
s0ppq.

Then we can use (B.43) in Lemma 19, K 1puq “ }Θpuq}1 and Lemma 25 with the choice of λnpuq “
cK 1puq

!

`

log p{κ2
n,T

˘1{2
`
`

log p{nαν
˘1{2

)

to obtain the uniform convergence rate in (15), which com- 835

pletes the proof for the dense design.
For the sparse case, we substitute Θpuq and Σpuq by rΘpuq and rΣpuq, respectively, and simi-

larly can use (B.45) in Lemma 23, K 1puq “ }rΘpuq}1 and Lemma 25 with the choice of λnpuq “
cK 1puq

!

`

log p{n2γ´αp2β`4q
˘1{2

`
`

log p{n4αν
˘1{2

)

to obtain the uniform convergence rate in (14),
which completes the proof for the sparse design. ˝ 840
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B¨6. Proof of Theorem 2
For each u P U , by (9), we have

 

pj, kq : pj, kq P pEpuq,Θjkpuq “ 0
(

“
 

pj, kq : |pΘjkpuq| ą τnpuq,Θjkpuq “ 0
(

Ď
 

pj, kq : |pΘjkpuq ´Θjkpuq| ě τnpuq
(

.

Hence

pr
”

ÿ

j,k

I
 

|pΘjkpuq| ě τnpuq,Θjkpuq “ 0
(

ı

ď pr
”

max
j,k

sup
u
|pΘjkpuq ´Θjkpuq| ě inf

u
τnpuq

ı

, (B.50)

We can set τnpuq “ 4K 1puqλnpuq. This together with Lemmas 20, 25 and the choice of λnpuq “
cK 1puq

!

`

log p{κ2
n,T

˘1{2
`
`

log p{nαν
˘1{2

)

imply that the probability in (B.50) is bounded by845

c2 expt2 log p´ c1κ
2
n,T infuτnpuq

2u “ c2 expt2 log p´ c1infuK
1puq2 log pu. Hence we can choose

infuK
1puq sufficiently large such that the probability bound goes to zero and hence pEpuq is a subset

of the true edge set Epuq with probability tending to 1.
Moreover, it follows from Condition 4 (ii) and (9) that for each u P U , the event

 

pj, kq : pΘjkpuq ď τnpuq,Θjkpuq ą 0 or pΘjkpuq ě ´τnpuq,Θjkpuq ă 0
(

Ď
 

pj, kq : |pΘjkpuq ´Θjkpuq| ě 2τnpuq ´ τnpuq
(

.

Then using the above argument again, we obtain the same probability bound tending to zero, which850

implies that tEpuq Ď pEpuqu holds with probability tending to 1 . We can see that the thresholded estimator
pΘjkpuqI

 

|pΘjkpuq| ě τnpuq
(

recovers not only the true sparsity pattern, but also the signs of nonzero
elements (sign consistency). Hence for each u P U we have that P

`

Epuq “ pEpuq
˘

“ 1´ op1q, which
completes our proof for the dense design.

For the sparse case, we organize our proof in a similar way to the dense case. We first re-855

place Θpuq by rΘpuq in (B.50). This fact together with Lemmas 24, 25 and the choice of λnpuq “
cK 1puq

!

`

log p{n2γ´αp3β`4q
˘1{2

`
`

log p{nαν
˘1{2

)

imply that the probability in (B.50) is bounded by

c2 expt2 log p´ c1n
2γ´αp3β`4qinfuτnpuq

2u “ c2 expt2 log p´ c1infuK
1puq2 log pu. Then by the sim-

ilar argument to the dense case using Condition 4 (i), we can show that both t pEpuq Ď rEpuqu and
t rEpuq Ď pEpuqu hold with probability tending to 1, which completes our proof for the sparse design.860

C. ESTIMATION OF ξijl UNDER VERY DENSE MEASUREMENT DESIGNS

In Step 1 of the estimation, for each i “ 1, . . . , n, and j P V, a natural estimate for ξijl is
ş

U
pXijpuqpφjlpuqdu. This approach requires the estimated trajectories pXijp¨q, which are unavailable for

the sparse case with Tij ď T0 ă 8. As discussed previously, in this setting we estimate conditional ex-
pectations, rξijl, by pξ

p1q
ijl “

pζT

ijl
pΣ´1
Yij
Yij . However, for the dense case with Tij Ñ8,

ş

U
pXijpuqpφjlpuqdu865

can be well approximated via numerical integration based on observations tUijt, YijtpφjlpUijtqu1ďtďTij .
Specifically, we implement a Trapezoid rule-based numerical integration with the non-uniform grid as
follows.

pξ
p2q
ijl “

Tij
ÿ

t“2

Yijpt´1q
pφjlpUijpt´1qq ` YijtpφjlpUijtq

2
|Uijt ´ Uijpt´1q|. (C.1)

This numerical integration approach is also used to estimate functional principal component scores under
dense measurement schedules in the R package fdapace (Dai et al., 2019).870

Let pΘp1qpuq and pΘp2qpuq be the estimators for Θpuq formed by pξ
p1q
ijl and pξ

p2q
ijl , respectively. Intuitively,

both pξ
p2q
ijl ´ ξijl and pΘp2qpuq ´Θpuq converge in probability to 0 under certain norms as Tij Ñ8. For

the very dense case with the Tij’s growing fast enough, pΘp2qpuq converges to Θpuq at a faster rate than
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pΘp1qpuq, so we can rely on (C.1) to calculate pξ
p2q
ijl and pΘp2qpuq. For the sparse case or the slightly dense

case with the Tij’s growing slowly, the numerical integration approach does not work well, so we imple- 875

ment the conditional-expectation-based approach to obtain pξ
p1q
ijl and pΘp1qpuq, the theoretical properties of

which are presented in Theorem 1 (ii). We leave the theoretical investigations of pΘp2qpuq and the phase
transition phenomena from sparse to dense functional data in pΘp1qpuq and pΘp2qpuq under high dimensional
scaling for future work.

D. ADDITIONAL EMPIRICAL RESULTS 880

D¨1. Simulations
In Section 4¨1, the animated heat map of absolute off-diagonal elements in Θpuq at, for example 50

equally spaced points, is available from http://personal.lse.ac.uk/qiaox/sim.eg.gif,
where the darker color corresponds to the stronger conditional dependence relationship.

D¨2. Real data 885

We provide electrode/node names for j “ 1, . . . , 64 in Table 4. The animated adjacency matrices for
pΘpuq at 16 evenly spaced time points is available from http://personal.lse.ac.uk/qiaox/
eeg_net.gif.

Table 4: Electrode/node names for j “ 1, 2, . . . , 64.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13
Name FP1 FP2 F7 F8 AF1 AF2 FZ F4 F3 FC6 FC5 FC2 FC1
Index 14 15 16 17 18 19 20 21 22 23 24 25 26
Name T8 T7 CZ C3 C4 CP5 CP6 CP1 CP2 P3 P4 PZ P8
Index 27 28 29 30 31 32 33 34 35 36 37 38 39
Name P7 PO2 PO1 O2 O1 X AF7 AF8 F5 F6 FT7 FT8 FPZ
Index 40 41 42 43 44 45 46 47 48 49 50 51 52
Name FC4 FC3 C6 C4 F2 F1 TP8 TP7 AFZ CP3 CP4 P5 P6
Index 53 54 55 56 57 58 59 60 61 62 63 64
Name C1 C2 PO7 PO8 FCZ POZ OZ P2 P1 CPZ nd Y

REFERENCES

Bosq, D. (2000). Linear Process in Function Spaces. New York: Springer. 890

Boucheron, S., Lugosi, G. & Massart, P. (2014). Concentration Inequalities: A Nonasymptotic Theory of
Independence. Oxford University Press.

Cai, T., Liu, W. & Luo, X. (2011). A constrained l1 minimization approach to sparse precision matrix
estimation. Journal of the American Statistical Association, 106, 594-607.

Dai, X., Hadjipantelis, P. Z., Han, K., Ji, H., Lin, S. C., Muller, H. G. & Wang, J. L. (2019). fdapace: 895

Functional data analysis and empirical dynamics. URL https://cran.r-project.org/
web/packages/fdapace/index.html. R package version 0.4.1.

Dai, X., Muller, H. G. & Tao, W. (2018). Derivative principal component analysis for representing the
time dynamics of longitudinal and functional data. Statistical Sinica, , 28, 1583-1609.

Guo, S. & Qiao, X. (2018). A general theory for large-scale curve time series via functional stability 900

measure. Preprint.
Qiao, X., Guo, S. & James, G. M. (2018). Functional graphical models. Journal of the American Statis-

tical Association, 114, 211-222.



24 X. QIAO, C. QIAN, G. M. JAMES AND S. GUO

Yao, F., Muller, H. G. & Wang, J. L. (2005). Functional data analysis for sparse longitudinal data. Journal
of the American Statistical Association, 100, 577-590.905

Zhang, X. & Wang, J. L. (2016). From sparse to dense functional data and beyond. The Annals of Statis-
tics, 5, 2281-2321.


