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Abstract

A significant problem with most functional data analyses is that of misaligned curves. Without
adjustment, even an analysis as simple as estimation of the mean will fail. A common “synchronization”
approach involves equating “landmarks” such as peaks or troughs. The landmarks method can work well
but will fail if marker events can not be identified or are missing from some curves. It may also involve a
manual identification of marker events. We develop automated alignment methods based on equating the
“moments” of a given set of curves. These moments do not depend on the identification of markers. For
example, the first moment is a measure of the average value of a curve in the x, or time, axis while the
second moment measures its spread. We explore both linear and non-linear synchronization procedures.
Finally, we discuss the advantages of utilizing, not only the “amplitude” information, which measures the
general shape of the curves, but also the “warping” information, which measures the way the curves have
been distorted in time. Illustrations are provided on functional analyses involving principal components,
clustering, classification and regression.

Key Words : Moments, Curve Alignment, Procrustes, Landmark Registration.

1 Introduction

Over the last decade functional data analysis (FDA), which involves treating the entire curve or function
as the unit of observation (Ramsay and Silverman, 1997), has become an increasingly important statistical
approach in many different fields. Significant advances have been made in the analysis of functional data.
However, one of the most commonly encountered problems, namely that of misaligned curves or functions,
still possess significant difficulties. Figure 1a) provides a simple example. We have plotted ten curves
produced using a mixture of two Gaussian densities with random, non-linear, shifting and stretching in the
x-axis. The solid line through the curves represents the cross-sectional mean and illustrates how even such
a simple misalignment can severely distort any analysis of the data. Figure 1b) shows that a high level of
synchronization can be achieved using the approaches we discuss in this paper. The time transformations,
or “synchronization functions”, that were used to align the curves are plotted in Figure 1c). Some real world
examples of this type of problem include growth curves where individuals experience changes at different
ages and rates, microarrays observed over time where gene expression levels may have similar shapes but
over different time periods and clinical trial data where patients are at different stages of disease progression
upon enrollment in the study.

The problem of realigning such curves has been studied under different names in several fields. In the
statistics literature it is referred to as curve registration (Silverman, 1995; Ramsay and Li, 1998) or, in the
context of computing an average curve, structural averaging (Kneip and Gasser, 1988, 1992). It is also called
curve alignment in biology and time warping in engineering (Sakoe and Chiba, 1978; Wang and Gasser,
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Figure 1: a) Ten curves derived from a mixture of two Gaussian densities with random transformations of the x-axis,
b) the synchronized curves and c) the transformations that were used to align each curve. The wider line in c) is the
identity and corresponds to no transformation of Y .

a) b) c)

1997). Any set of curves can be decomposed into “amplitude” functions, which measure differences in
the y-axis, and “warping” functions, which measure differences in location on the x-axis. Synchronization
requires estimation of the warping functions. A number of approaches have been proposed. Marker, or
landmark, registration (Kneip and Gasser, 1992) involves selecting common features in the data, such as
peaks or troughs, and transforming time so that these features occur together. This method can work well
when such features can be easily identified but tends to perform poorly if there are no landmarks or if
marker events are missing from some curves. An alternative approach involves aligning curves using a target
function. Silverman (1995) proposed registering curves using a simple shift in time such that the average
squared distance between each curve and a target function is minimized. This idea was extended in Ramsay
and Li (1998) using a Procrustes fitting procedure on a general nonlinear class of time transformations to
provide maximal alignment to the target function subject to suitable smoothness of the transformations.
The Procrustes approach is often very effective but depends heavily on the target function. Generally the
cross-sectional mean is used which, as illustrated by Figure 1b), can provide misleading results if the curves
are significantly misaligned. Other recent work in this area includes Wang and Gasser (1999), Kneip et al.
(2000), Rønn (2001), and Gervini and Gasser (2004).

This paper has two goals. The first, is to develop a more robust synchronization method that incorporates
the advantages of both the landmark and Procrustes approaches. Our method works to align the functions by
equating the “moments” among all the curves. Recently James (2007) proposed definitions for the moments
of a curve which are intended to measure the center, variance, skewness etc. of a function. Using these
definitions one can calculate the first K moments for any set of curves. We develop theory that allows us to
compute “average” moments for a population of curves and then align the curves by transforming time so as
to approximately equate their moments. The fundamental idea is that, just as one can define the distribution
of a random variable through its moments and equate two different distributions by transforming to equate
the moments, we can also define the shape of a function through its moments and synchronize two curves by
equating their moments. Our approach has the advantage over landmark registration that it does not rely on
identifiable features. It can also outperform the Procrustes approach because it does not rely on a potentially
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inaccurate target function so can be used on even very poorly synchronized curves.
The second goal is to illustrate the importance of incorporating both the synchronized curves and the

warping functions into any functional data analysis. Numerous statistical analysis techniques have been
adapted to the FDA paradigm. For example principal components analysis (PCA) (Rice and Silverman,
1991; James et al., 2000; Rice and Wu, 2001), regression with both functional responses (Zeger and Diggle,
1994; Lin and Ying, 2001) and functional predictors (Ferraty and Vieu, 2002; Marx and Eilers, 1999; James,
2002; James and Silverman, 2005), linear discriminant analysis (James and Hastie, 2001; Ferraty and Vieu,
2003) and clustering (James and Sugar, 2003; Bar-Joseph et al., 2003). However, throughout the majority
of the FDA literature the curve synchronization problem is either ignored or else the warping functions are
considered nuisance parameters that need to be estimated to align the curves but are then discarded from
any further analysis. In practice, these functions often contain as much, or more, information about the
underlying process that produces the data than the synchronized curves themselves. We provide specific
examples, on growth curve, temperature and simulated data sets, of several methods of analysis that benefit
from incorporating both sets of curves.

In Section 2 we outline our model for the unsynchronized curves and provide general definitions for the
moments of an arbitrary function. Section 3 explores several moments based alignment approaches using
both linear and nonlinear synchronization functions on real world and simulated data sets. In particular
we detail the “Curve Alignment using Moments and Procrustes” (CAMP) method which utilizes the best
of both the moments and Procrustes procedures. The results from four simulation studies, comparing the
performance of CAMP with other synchronization methods, are reported in Section 4. Section 5 highlights
the importance of utilizing both the synchronized curves and the warping functions in functional analyses
ranging from PCA to supervised and unsupervised learning problems. Finally, a discussion is given in
Section 6.

2 Curve Synchronization by Equating Moments

In this section we present a model for unsynchronized curves and provide definitions for the moments of an
arbitrary function.

2.1 The Synchronization Model

Let Y1(t),Y2(t), . . . ,YN(t) be the unsynchronized functions or curves with Yi observed at ti1, . . . , tini where
ti j ∈ [0,T ]. We model these curves as an “amplitude function”, Zi(t), which is, stretched on the time axis
according to a “warping function”, Wi(t), plus iid measurement errors. The model can be expressed as

Yi(ti j) = Zi(Wi(ti j))+ εi j, i = 1, . . . ,N. (1)

Synchronization is only a meaningful procedure if the curves have some common underlying shape which
means that the Zi’s must somehow be related to each other. We model the relationship as being of the form

Zi(t) = γi +θiz(t), θi > 0 (2)

where z(t) is a function common to all curves and γi and θi are considered random. Notice that, if we let
Y S

i (t) = Zi(Wi(t)) denote the smooth version of Yi(t), then using (2) we can re-express (1) in the form,

z(ti j) =
Y S

i (Xi(ti j))− γi

θi
, i = 1, . . . ,N (3)
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where Xi =W−1
i is the ith “synchronization function”. We model Eεi j = 0,Eγi = 0,Eθi = 1 and EXi(t) = t

for all t so that z can be taken as the “average” of the synchronized curves. Our aim is to recover estimates
of the unobserved components, γi,θi,Xi and z from the observed curves, Yi. These estimates can then be
used in standard functional analyses such as principal components, clustering, classification or regression.
The key to recovering the unobserved components is to obtain reliable estimates of the Xi’s. Once this is
achieved the other components can be estimated with relative ease.

The landmark and Procrustes curve alignment approaches can both be viewed as methods for computing
z and synchronizing the curves to minimize distortion between the Yi’s and z. With landmark registration z
is taken to be, for example, one of the Yi’s, and distortion between z and the Yi’s is measured via differences
in certain marker events. With Procrustes, the cross-sectional average is used to estimate z and distortion
is measured as the mean squared difference between z and the Yi’s. Both methods will suffer if z is poorly
estimated. For landmark registration this will happen if marker events are missing or inconsistent among
curves. Alternatively, for Procrustes, problems will occur if the cross-sectional average does not represent
the typical shape of the synchronized curves. In this paper, rather than attempting to estimate z directly,
we instead estimate its moments. We then measure distortion via differences between the moments of z
and those of the synchronized curves. This approach has the advantage that the moments can be accurately
estimated even in situations where there are no marker events or where the Yi’s are poorly synchronized.

2.2 Defining the Moments of a Function

In this section we outline the definitions for the moments of an arbitrary function, g, proposed in James
(2007). They first introduce the concept of a “feature function”, Ig(t), for g and impose the constraints

Ig(t)≥ 0 and
∫

Ig(t)dt = 1.

Ig can be thought of as a weighting function with high weight placed on time points related to a particular
feature. Depending on the properties of our data we may wish to concentrate on characteristics correspond-
ing to local features, such as maximums or minimums, or alternatively ones that correspond to more global
characteristics such as the slope at a given time. For a given choice of Ig, the first moment of g is defined as

µ(1)g =

∫
tIg(t)dt (4)

and the kth moment by

µ(k)g =
∫ (

t −µ(1)g

)k
Ig(t)dt, k ≥ 2. (5)

Equation (4) provides a measure of the center of g on the time axis. Alternatively, µ(2)g measures variability
in g. Note that the variability is measured in relation to the time axis and not the y, or amplitude, axis. A
curve could vary significantly in the y-axis, but still have a low value for µ(2)g .

To better understand the properties of µ(k) one may examine the relationship between the moments of a
function h(s) and those of the shape invariant function h( s−a

b ). In this formulation, h(s) is stretched, about
s = 0, by a factor b and shifted to the right by a. Hence, since µ(1) is a measure of the center of a function
and µ(k) is a measure of variability about the center, stretching by a factor b should multiply the first moment
by b and the kth moment by bk. For example, one would expect that µ(2)h( s−a

b )
, which measures the variability

of the transformed function, would equal b2µ(k)h(s). Similarly a shift of a should add a to the first moment
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and leave the higher order moments, which are centered around the first moment, unchanged. This can be
expressed mathematically as

µ(1)h( s−a
b )

= bµ(1)h(s)+a and µ(k)h( s−a
b )

= bkµ(k)h(s), k ≥ 2. (6)

Theorem 1 shows that, provided one utilizes a certain family of feature functions, these properties will hold.

Theorem 1. Suppose that Ig(t) is chosen such that

Ig( s−a
b )(t) ∝ Ig(s)

(
t −a

b

)
(7)

for all a,g and b > 0. Then (6) will hold for any function h(s).

Condition (7) holds for many large classes of feature functions. We explore several of them here. The
first involves weighting according to the absolute mth derivative of the curve i.e.

I(m)
g (t) =

|g(m)(t)|∫
|g(m)(s)|ds

, m = 0,1,2, . . . (8)

where g(m) is the mth derivative of g. With m = 0 this function puts highest weight on large absolute values
of g. With m = 1 most weight is placed on time points where g has a large slope and would be used when
we are most interested in regions where a curve is changing rapidly. Setting m = 2 searches for points with
greatest curvature etc. Equation (8) can be considered to be searching for global characteristics of a curve
because I(m)

g is likely to spread its mass over all time points. Alternatively, one could adopt a more local
approach where most of the weight is concentrated around the time points corresponding to a specific feature
in the data. For example, as r → ∞, (9) and (10) will increasingly concentrate their weight on the global
maximum,

Imax
g (t) ∝ (g(t)−min{g(t)})r , (9)

and the global minimum,
Imin
g (t) ∝ (max{g(t)}−g(t))r , (10)

of g(t). We may wish to search for local, as well as global, maximums and minimums. In this case one
could utilize

Ilocal
g (t) ∝

exp
(
−r |g(1)(t)|√

|g(2)(t)|

)
g(2)(t) ̸= 0

0 g(2)(t) = 0.
(11)

This function places maximum weight on points where the first derivative is zero. However, Ilocal
g (t) is

also high for points with a low first derivative but a high second derivative. Thus, the function effectively
searches for local maximums or minimums where g is changing most rapidly. As r → ∞, Ilocal

g (t) will place
all its weight on the regions around local turning points.

The feature functions given by (8) through (11) all satisfy (7) and hence the moments corresponding to
them all possess the desirable properties given by (6).

Corollary 1. When utilizing I(m)
g , Imax

g , Imin
g or Ilocal

g condition (7) is satisfied, and hence (6) holds. In addition

(7) is satisfied for any Iϕ
g (t) ∝ ϕ(g(t)) where ϕ(t) is an arbitrary function.
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Proofs of both Theorem 1 and Corollary 1 are given in James (2007). These classes of feature functions
represent only a fraction of the possible choices one could utilize. In fact one of the strengths of our approach
is the ability to design functions which best suit ones particular data. While our theoretical results are general
to many feature functions, to maintain consistency, we have opted to use I(1)g for all the data sets that we
illustrate.

3 Curve Alignment Procedures

In this section we outline three different moments based procedures for synchronizing functional or curve
data. While the methods differ somewhat in their implementation they all have the same four basic steps.

1. Produce a smoothed version of each curve, Ỹi, using, for example, a smoothing spline.

2. Choose a feature function and calculate the first K moments of the Ỹi’s i.e. µ(1)Ỹi
, . . . ,µ(K)

Ỹi
, i = 1, . . . ,N.

3. Use the kth moment of the Ỹi’s to estimate the corresponding moment of Zi.

4. Choose Xi so as to equate µ(k)Ỹi(Xi)
with µ(k)Zi

, either exactly or approximately, for all i and 1 ≤ k ≤ K.

There is no restriction on the upper bound of K but in general we have found values of K between one and
four provide the best results. Equating the first moment ensures that the curves all have the same center while
equating the next two moments forces equal spread and skewness. By setting µ(k)Ỹi(Xi)

to µ(k)Zi
we guarantee

that the synchronized curves maintain the same “average” shape as the original observed curves. Figure 2
provides an example of this approach on a set of ten simulated curves. Figure 2a) illustrates the original
data while Figures 2b) through d) respectively show the synchronized curves after equating the first, first
two, and first three moments. At each step the synchronization improves. The high level of alignment in
Figure 2d) suggests the curves only differ in shape in their first three moments.

The fundamental idea behind our approach is that we wish to change the shape of the observed curves
as little as possible, and hence to incorporate most of the shape information into the Zi’s, leaving in the
Xi’s only that which differs among the curves. Implicitly, this means that there is little shape information
contained in the Xi’s so they can be accurately estimated using the differences among the first few moments
of the curves. Our approach can be successful in situations where, for example, the Procrustes method fails
because our method only trys to estimate these moments rather than an entire target function.

In practice there are several issues that must be resolved to implement our moment equating strategy.
The first problem involves the estimation of the µ(k)Zi

’s since Zi is unobserved. However, this calculation is
greatly simplified if the feature function is chosen such that,

Ia+bg(t) = Ig(t) (12)

for all a,b and g. Provided (12) holds then, under the model given by (3), it is easily seen that µ(k)Zi
= µ(k)z for

all i and k. Condition (12) can be shown to hold for many feature functions including Imax, Imin and I(m) for
m ≥ 1. Hence, in general, we can restrict our selves to estimating µ(1)z , . . . ,µ(k)z . We show how to estimate
these moments in Section 3.1. A second, related problem, involves identifiability issues. All synchronization
approaches, such as the landmark or Procrustes methods, suffer from a fundamental identifiability problem
between X and Z. Namely, for any observed curve Y (t) there exist an infinite number of pairs {X(t),Z(t)}
such that Y (X(t)) = Z(t). Theorem 2 formally summarizes this idea.
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Figure 2: a) Unsynchronized data, b) equating the first moment, c) equating the first two moments and d) equating
the first three moments.

a) b) c) d)

Theorem 2. Suppose that Y (t) is a continuous function defined on [t0, tn] with local minimums and max-
imums at t1, t2, . . . , tn−1. Let Z(s) be any continuous function defined on [s0,sn] with local minimums and
maximums at s1,s2, . . . ,sn−1 and

Y (ti) = Z(si) i = 0,1, . . . ,n. (13)

Then for any such Y and Z there exists a continuous strictly increasing function X(s) such that Y (X(s)) =
Z(s) for s0 ≤ s ≤ sn.

See James (2007) for a proof of this result. One important consequence of Theorem 2 is that, without
constraints on Xi and Zi, the shape of Yi is an unidentifiable combination of the synchronization function,
and the amplitude curve. We address the identifiability problem by placing constraints on the Xi’s and/or the
Zi’s via equation (2). The final problem relates to the best way to estimate the Xi’s such that the moments of
the curves are equated.

We discuss several approaches to these problems in the following three sections. The first approach,
which we outline in Section 3.1, involves restricting the parametric form of X(t) to the class of linear
functions. Under this restriction we develop a number of useful theoretical results. In particular we show
that one can guarantee identifiability and produce consistent estimates of the µ(k)z ’s. In Section 3.2 we discuss
a second approach which utilizes a general non-parametric class of monotone increasing synchronization
functions. In this case we place additional constraints on the variability of the Xi’s to ensure identifiability.
Finally, in Section 3.3, we outline an alignment method which utilizes a mixture of both the moments and
Procrustes approaches.

3.1 Linear Synchronization Functions

Restricting to linear synchronization functions i.e. X(t) = α+ βt has a number of advantages. First, it
becomes possible to express the moments of z as functions of µ(k)

Y S
i

. Theorem 3 summarizes the relationship.
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Theorem 3. Suppose X(t) = α+βt. Then using the model given by (3) and a feature function satisfying (7)
and (12),

µ(k)z =

(
E k

√
µ(k)

Y S
i

)k

, k ≥ 1,

where the expectation is taken over Y S
i .

Theorem 3 shows that for feature functions such as Imax, Imin and I(m) the moments of z can be recovered
from the moments of the Y S

i ’s. In particular, it suggests the form of an estimator for µ(k)z , namely,

µ̂(k)z =

(
1
N

N

∑
i=1

k

√
µ(k)Ỹi

)k

, (14)

where Ỹi is a smoothed version of Yi. Since µ(k)Ỹi
can always be computed using (4) and (5), equation (14)

provides a simple method for estimating µ(k)z , for any value of k. Consider the following mild assumptions
on the convergence of Ỹi:

A-1 Ỹi,n and Y S
i are both uniformly continuous functions, sampled at n time points, such that Ỹi,n(t)→Y S

i (t)
a.s. for all i and t as n → ∞.

A-2 Ig(t) is a uniformly continuous feature function such that, whenever A-1 holds, IỸi,n
(t)→ IY S

i
(t) a.s. for

all i and t as n → ∞.

Then, under A-1 and A-2, Theorem 4 shows that µ̂(k)z is a consistent estimator.

Theorem 4. Provided A-1 and A-2 hold, then, under the conditions given in Theorem 3, µ̂(k)z → µ(k)z a.s. as
n and N approach infinity.

A-2 will hold for most feature functions, including Imax, Imin and I(m). A-1 will also hold for both kernel
and spline smoothers provided the smoothing parameter is appropriately adjusted as a function of n and that
Y S

i is a smooth function (Priestley and Chao, 1972; Silverman, 1984, 1985).
The second advantage of using a linear synchronization function is that one can ensure identifiability in

the sense that there is one and only one Xi that satisfies

µ(k)
Y S

i (Xi)
= µ(k)z , k = 1, . . . ,K (15)

for K = 2. In fact, for data generated from a linear warping function, equating the first two moments will
automatically equate all the moments. Theorem 5 summarizes this result.

Theorem 5. Under the assumptions of Theorem 3, the linear synchronization function, Xi(t) = αi+βit, that
satisfies (15) for K = 2 is unique and is given by

αi = µ(1)
Y S

i
−βiµ

(1)
z , βi =

√√√√µ(2)
Y S

i

µ(2)z

. (16)
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Figure 3: a) Unsynchronized data, b) synchronized data using a linear warping function.

a) b)

Theorem 5 guarantees that, given µ(1)z and µ(2)z , Xi(t) will be unique and also suggests that an obvious

strategy for estimating Xi(t) would be to replace µ(k)
Y S

i
by µ(k)Ỹi

and to replace µ(k)z by µ̂(k)z in (16). This provides a
computationally efficient, simple closed form solution. We call this synchronization approach “Linear Curve
Alignment by Moments (Linear CAM)”. Figure 3 provides an example of the Linear CAM approach on a
simulated data set. The raw curves are plotted in Figure 3a). These curves were generated from a common
shape function. They were then randomly shifted vertically by a constant amount and linearly shifted and
stretched horizontally by random amounts. Figure 3b) illustrates that a high level of synchronization can
be achieved using Linear CAM. The wider line through the center represents the cross-sectional mean and
is an accurate representation of the true Z(t) from which the original data was generated. In addition to
the computational advantages that Linear CAM possess, Theorem 6 shows that it can be used to produce
consistent estimators for z(t), as well as the Xi(t)’s, γi’s and the θi’s.

Theorem 6. Suppose the Yi’s are observed at t1, . . . tn. Let α̂i = µ(1)Ỹi
− β̂iµ̂

(1)
z , β̂i =

√
µ(2)Ỹi

µ̂(2)z

and X̂i(t) = α̂i+ β̂it.

Also let

Z(t) =
1
N

N

∑
i=1

Ỹi,n(X̂i(t)), γ̂i =
2

n(n−1)

n−1

∑
j=1

n

∑
l= j+1

Z j
i Ỹi,n(tl)−Zl

iỸi,n(t j)

Z j
i −Zl

i

, θ̂i =
1
n

n

∑
j=1

Ỹi,n(t j)− γ̂i

Z j
i

where Z j
i = Z

(
t j−α̂i

β̂i

)
. Then, provided A-1, A-2 and the assumptions of Theorem 3 hold, X̂i(t), Z(t), γ̂i and

θ̂i respectively converge to Xi(t),z(t),γi and θi a.s. as N,n → ∞.

3.2 Nonlinear Synchronization Functions

Linear CAM provides an extremely computationally simple and theoretically rigorous alignment procedure.
The plots in Figure 3 illustrate that it can also produce accurate synchronizations provided that the warping
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functions are close to linear. The curves in Figure 2c) provide another example of a Linear CAM synchro-
nization. While there is a reasonable level of alignment it is clear from Figure 2d) that one can achieve better
synchronization. The data in Figure 2 was generated using non-linear warping functions which accounts for
the reduced performance of Linear CAM. As one might expect, in general, the accuracy of Linear CAM
deteriorates as the warping functions become more non-linear because one can only equate the first two
moments. Potentially, improved alignment can be achieved using a non-linear synchronization function and
equating additional moments. Figure 2d) provides an example using the first three moments.

When Xi(t) is modeled as a non-linear increasing function there will no longer be a unique solution to
(15). Hence, some form of regularization must be imposed on the synchronization functions. In general, one
would like to achieve as high a level of alignment as possible while minimizing the distortion to the shape
of the Yi’s. An obvious measure of distortion is given by

P(Xi) =
∫
(Xi(t)−Xi(0)− t)2dt. (17)

P(Xi) penalizes deviations of Xi from the 45 degree line Xi(0)+t. A synchronization function that conformed
exactly to Xi(0)+ t would involve only a constant shift of Yi and hence no alteration to its shape. Hence the
“Non-linear CAM” approach utilizes the synchronization function that minimizes

Qi =
K

∑
k=1

λk

(
µ(k)Ỹi(Xi)

− µ̂(k)z

)2

+P(Xi) (18)

where the λk’s determine the level of agreement between the moments. As the λk’s converge to infinity,
minimizing (18) produces the least variable Xi subject to (15) holding for the first K moments. Alternatively,
as the λk’s converge to zero minimizing (18) will only cause constant shifts in Yi and no alteration to its shape.

To minimize (18) we first reexpress Xi as

Xi(t) = αi +
∫ t

0
exp( fi(s))ds

which involves no loss of generality because a synchronization function must be monotone increasing. We
then model fi(s) as coming from a finite q-dimensional basis, b(s), i.e. fi(s) = bT (s)ηi where ηi are the
associated basis coefficients. We utilize a b-spline basis. For a given value of ηi one can then compute Xi

and hence the µ(k)Ỹi(Xi)
’s. Therefore, for any particular values of the µ̂(k)z ’s and choice of the λk’s, (18) can

be minimized over ηi using any standard non-linear optimization function. The optimization is relatively
efficient because one can calculate the analytic derivatives of Qi.

An additional difficulty when using non-linear synchronization functions involves the estimation of
µ(k)z . Theorem 3 only holds exactly for linear synchronization functions. For certain feature functions, it is
still possible to calculate general non-linear expressions for the moments of z. However, the equations are
difficult to evaluate on real data sets. In practice we have found the estimates produced by (14) to be accurate
enough to preserve the correct shape of the Zi’s provided the Xi’s do not exhibit extreme non-linearity.

A direct comparison of the Linear and Non-linear CAM approaches is given in Figures 2c) and d). The
Non-linear CAM, which in this case equated the first three moments, produces improved results because
the curves were generated using non-linear warping functions. We have plotted the corresponding estimated
linear and non-linear synchronization functions in Figure 4. Notice that, while the non-linear functions
exhibit more curvature, the penalty P(Xi) tends to force the Xi’s closer to a 45 degree line which reduces
distortion of the shape of the Yi’s.
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Figure 4: a) Linear and b) non-linear synchronization functions for the data from Figure 2.

a) b)

3.3 Curve Alignment by Moments and Procrustes (CAMP)

To date, one of the most effective curve registration approaches is the Procrustes fitting procedure of Ramsay
and Li (1998). This method involves defining a target function, T , and estimating curves Xi such that∫

(Ỹi(Xi(t))−T (t))2dt (19)

is minimized subject to smoothness constraints on the Xi’s. Ramsay and Li demonstrate that this approach
can produce impressive curve alignment provided a reasonable target function can be identified. In most
situations a predefined target is not given so the cross-sectional average of the unsynchronized curves is
generally utilized. Hence, the usefulness of this target function will depend on the degree of agreement
between the curves.

Conceptually, the Procrustes method and the moments approach of this paper are both attempting to esti-
mate z and then calculate the Xi’s to provide maximum alignment of the curves with z. The difference lies in
the method of estimation. The Procrustes procedure uses T , the cross-sectional average, while the moments
approach only attempts to compute the first few moments of z. Both methods have potential advantages.
The cross-sectional average works well when the alignment between curves is close enough to produce a
reasonable estimate of z but can break down if the data exhibits a significant lack of alignment. Alterna-
tively, since the moments approach does not attempt to directly estimate z it can still produce reasonable
estimates of the moments even in situations where the cross-sectional average performs poorly. However,
some of the finer detail in z may be lost by only estimating the first few moments. Hence, a natural pro-
cedure involves attempting to utilize the best of both methods to produce more accurate estimates of z and
hence better alignment of the curves. We call this approach “Curve Alignment by Moments and Procrustes
(CAMP)”. To implement CAMP we first estimate the target function. Since Linear CAM essentially in-
volves no computational burden we estimate T using the cross-sectional average of the linear synchronized
curves. We then calculate the estimated moments of z, in the same way as with CAM, and compute the Xi
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Figure 5: Acceleration curves from the Berkeley growth curve study. a) Unsynchronized curves, b) after alignment
using CAMP, c) the estimated warping functions, d) degree of misalignment for different values of the λk’s.

a) b) c) d)

which minimizes

Qi =
K

∑
k=1

λk

(
µ(k)Ỹi(Xi)

− µ̂(k)z

)2

+λP

∫
(Ỹi(Xi)−T (t))2dt +P(Xi). (20)

Equation 20 incorporates the Procrustes criterion, (19), with the CAM criterion given by (18). As λP ap-
proaches zero CAMP reduces to CAM and the estimation of z is performed purely in terms of its first K
moments. Alternatively, as the λk’s approach zero CAMP reduces to a version of the Procrustes algorithm
and z is estimated based solely on the cross-sectional average. However, when positive weight is placed on
both sets of penalty terms the estimation of z utilizes a mixture of the two, often producing improved levels
of synchronization over that from either approach used separately.

Figure 5 illustrates the CAMP fit applied to the acceleration curves of ten boys from the Berkeley growth
curve study (Tuddenham and Snyder, 1954). Figure 5a), which plots the unsynchronized curves, shows a
clear trend of positive and then negative acceleration during the teenage years. However, the onset times, and
spread, of these growth spurts can differ by several years. Figure 5b) gives the curves after synchronization
using CAMP. A significant degree of alignment, especially during the latter time periods, is achieved. In-
terestingly, Figure 5c), which plots the synchronization functions, shows that the alignment can be achieved
with relatively little warping of time. Finally, Figure 5d) plots a measure of curve synchronization as a
function of the λk’s. Here we measure synchronization using the root median squared deviation between the
aligned curves and their cross-sectional average. As the λk’s approach zero CAMP produces a Procrustes
fit and the level of alignment deteriorates. Similarly, as the λk’s approach infinity CAMP places all weight
on equating the moments and again the alignment deteriorates. A clear optimum is achieved using a mix of
both criterion.

4 Simulation Study

In this section we compare the performance of CAMP with several other approaches over four sets of
simulations. For each simulation 50 data sets of ten curves each were generated from a given distribution.
Five different synchronization methods were then applied to each data set. We compared CAMP to the
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Method Simulation
One Two Three Four

Fit Var Fit Var Fit Var Fit Var
Peak Alignment 58.6 0.00 80.6 0.00 24.4 0.00 50.9 0.00
Procrustes 12.5 0.72 36.7 2.95 16.2 0.18 34.1 1.31
Linear CAM 20.4 1.16 30.0 2.68 42.7 0.31 26.0 2.40
Non-Lin CAM 13.6 0.43 29.6 2.62 40.1 0.05 14.8 1.76
CAMP 6.9 0.45 18.7 2.56 9.8 0.17 7.8 0.70

Table 1: Results from four simulations on five different alignment methods. Standard errors on the fits
ranged from 0.5 to 1.9.

linear and non linear CAM methods as well as the Procrustes approach. We also used a simple landmark
alignment procedure where the curves were shifted to align the highest peak. For each set of simulations
the λ parameters were chosen by selecting the values that provided maximum alignment on a preliminary
data set. The quality of fit was measured by the root mean squared deviation of each synchronized curve
from the sample mean curve, Z(t). The results are summarized in Table 1. Two numbers are provided for
each simulation-method pair. The first gives the average root mean squared deviation on the synchronized
curves as a percentage of that for the unsynchronized curves. The second number is the square root of P(Xi)
given by (17). This term measures the variability in the warping functions and hence gives a measure of the
degree of warping that each method requires to synchronize the curves.

Simulation one used the distribution from Figure 2 and provided a simple test case. The curves were
generated using a standard Gaussian density with non-linear warping functions. Despite this non-linearity
the Linear CAM approach still produced a considerable level of synchronization and significant improve-
ments over the peak alignment method. The Non-linear CAM gave a further improvement as did Procrustes
which worked well because the sample mean on the original curves was fairly representative of the data.
However, CAMP clearly dominated the other methods. For Simulation two we generated data from a dis-
tribution similar to that illustrated in Figure 3 except that vertical shifts between curves were removed. This
data used a linear warping function so the Linear and Non-linear CAM’s produced similar results. Pro-
crustes did not perform as well because the sample mean curve was not representative of the general shape
of the individual curves. Again CAMP provided a considerable improvement over the other approaches.
Simulation three used curves equal to a sin function for values of x between 0 and 2π and equal to 0 for
other values of x. The functions were then shifted and stretched in time and the resulting curves were plot-
ted between 0 and 2π. The CAM methods had difficulty with this data because, as a result of the warping,
some of the functions only contained partial sin curves which affected the moment estimates. The Procrustes
method performed well but, despite the CAM problems, CAMP was still able to provide the best fit. Fi-
nally, Simulation four generated curves from the Gaussian mixture illustrated in Figure 1. The performance
of the Procrustes method was somewhat inferior to the other approaches because the cross-sectional mean
produced a poor representation of the data. The warping functions in this simulation were non-linear so the
Non-linear CAM produced improved results over the Linear CAM. As with the other simulations, CAMP
produced the highest levels of synchronization. Notice that, among the various methods, CAMP typically
has one of the lowest variances in the warping functions, suggesting that it is able to achieve high levels of
synchronization with less distortion of the shape.
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Figure 6: The first three principal components calculated on data similar to that in Figure 3. The solid lines represent
the mean curves while the dashed lines correspond to each principal component multiplied by its associated standard
deviation and added or subtracted from the mean. The percentage of variability associated with each component is
given in parentheses.

5 Applications of Synchronized Curves

Any observed curve, Yi, can be viewed as a composition of an amplitude and a warping function and using
a moments based approach we have derived the CAM and CAMP methods for performing a decomposition
of Yi into these two parts. Once a set of curves has been aligned, one often disregards the synchronization
functions. However, such an approach is inefficient because a significant proportion of the information
provided by Yi may be contained in the synchronization function. In this section we illustrate methods for
utilizing the moments and warping functions, as well as the corresponding amplitude functions, to produce
superior results in PCA, clustering, classification and regression settings.

5.1 Principal Components on Functional Data

Perhaps the simplest form of analysis on curve data is that of estimating the mean function using the cross-
sectional average. Unfortunately, even such a simple analysis has been shown to produce estimates that fail
to properly represent the underlying shape for unsynchronized curves (Kneip and Gasser, 1992; Gasser and
Kneip, 1995). The mean curve from Figure 3a) provides a particularly extreme example. Theorem 6 shows
that this problem can be solved by taking the average of the aligned curves, Z(t), which is a consistent
estimator of the mean curve.
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A related, but somewhat less well studied problem, is that of estimating principal component curves on
unsynchronized data. As with standard PCA, principal component curves provide the main modes of varia-
tion of a set of functions. Just as with the mean, estimating principal components using the unsynchronized
curves can provide misleading estimates of the type of variability. However, simply computing the principal
components on the aligned curves also makes little sense because such an approach ignores the variability
associated with warping over time. A method that simultaneously estimates the types of variation in the
amplitude and warping functions is needed. One simple solution involves sampling both the amplitude and
warping functions over a grid of m equally spaced time points, combining the two sets of observations to-
gether and performing principal components on the resulting N by 2m matrix. The first m components of
each eigenvector will give the variability in “amplitude space” while the remainder correspond to “warping
space”. Unfortunately, this approach may not produce reasonable answers because there is no reason that
the two spaces need be on comparable scales. Instead we decompose the variability in the unsynchronized
curves into that associated with warping of time and that associated with amplitude shifts. This decompo-
sition is achieved by calculating the mean variance over all time points for both the unsynchronized and
synchronized curves and taking the variability associated with warping as the difference between the two.
We then standardize the data so that the average variability over all time points in the warping space is
directly proportional to the amount of variability associated with warping. Finally, we apply PCA to the N
by 2m matrix produced from the standardized data. This standardization has the effect of placing both sets
of curves on a comparable scale. Furthermore, the warping curves are upweighted in situations where most
variability results from a lack of synchronization and vice versa when the curves are well synchronized.

Figure 6 provides an example of this approach applied to data simulated from the same distribution as
that of Figure 3. Each row corresponds to a principal component. The first column illustrates variability
associated with changes in amplitude while the second column corresponds to warping over time. The data
was simulated by taking a generating function, applying a linear shift and stretching of time and then a
constant vertical shift in the y-axis. The principal components break down neatly into these three effects.
The first corresponds to linear stretching of each curve with no amplitude variation on the y-axis. The
second indicates constant shifts over time and the third a constant amplitude shift with no warping. Notice
that about 88% of the variability in these curves can be attributed to warping rather than differences in
amplitude. All of this warping variability would be missed if one simply performed principal components
on the synchronized curves. For comparison purposes, the final column provides the principal components
calculated directly from the unsynchronized data. Attempting to perform a principal components analysis
on the unsynchronized curves clearly produces nonsense.

5.2 Clustering and Classification with Functional Data

As was demonstrated in the previous section, it is often the case that a curve can be more meaningfully
represented using both its warping and amplitude functions. The Berkeley growth curve data provides a good
illustration in both clustering and classification contexts. Figure 7a) plots two dimensional summaries of the
acceleration curves for the 39 boys and 54 girls participating in the study. We have plotted the difference
between maximum and minimum acceleration, for each individual, on the x-axis and their average level of
acceleration on the y-axis. There is some evidence of differences between the genders but the distinction
is not clear. If we treat this as a two class classification problem the cross-validated error rate using 3-
nearest neighbors is 20.4%. Alternatively, if we use k-means to cluster the data without reference to gender
18.4% of individuals are assigned to the “incorrect” cluster. The range and average acceleration only utilize
amplitude information from the y-axis and fail to account for differences in the time courses of each curve.
Alternatively, Figure 7b) plots the first two moments for each acceleration curve. These moments indicate
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Figure 7: Summaries of acceleration rates of growth for 39 boys and 54 girls from the Berkeley growth curve data.
Girls are represented by triangles and boys by open circles. The closed circles and dashed line in c) represent the
cluster centers and resulting cluster boundaries using k-means.

a) b) c)

the mean and variance of each curve on the time or x-axis. Again, there is some evidence of differences
between genders. In the classification setting the cross-validated error rate is 17.2% and when clustering
the misassignment rate is between 12.9% and 47.3%, depending on initialization. Together, Figures 7a) and
b) represent the amplitude and warping components of each curve but individually both fail to adequately
separate the genders. Figure 7c) combines the two together by plotting the first moment versus the range.
Now the separation becomes considerably clearer. When using k-nearest neighbors the cross-validated error
rate drops to only 6.5% and using k-means 7.5% of individuals are misassigned.

Figure 8 provides another example of this effect. Here we have plotted summaries of the smoothed daily
temperatures, in Montreal, for every year from 1961 to 1994 (Ramsay and Silverman, 2002). Figures 8a)
and b) respectively plot the absolute first and second moments for each year versus the minimum yearly
temperature. Again, the plots provide information about both the amplitude and warping effects. Most
years appear to have relatively similar temperature patterns. However, this analysis reveals several outliers.
Figure 8a) shows that 1981 and 1989 both had unusually low minimum temperatures as well as significantly
shifted seasons. From Figure 8b) we see that 1963, 68, 70 and 81 all had low minimums and increased time
variability while 1964 had a very high minimum with low time variability. These outliers could potentially
be noted by examining the amplitude or warping effects individually but the effect becomes significantly
clearly when they are combined.

5.3 Regression with Functional Data

A similar application to the classification problem involves performing regression using functional predic-
tors to predict the value of a continuous scalar variable. A common approach is to model the scalar response
as a linear function of the observed predictor curve. However, in reality the response may more accurately
be modeled as a linear function of both the warping and amplitude curves. As an illustration we produced
200 “predictor” curves from the distribution given in Figure 3. These curves were all generated by shifting
and stretching a baseline function in the time axis and adding a random constant vertical shift. In addition
we computed 200 responses by taking a linear combination of the time shift and stretch terms as well as
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Figure 8: Summaries of the yearly temperature curves in Montreal from 1961 to 1994.
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the vertical shift. Hence, the responses were linear functions of the warping and amplitude curves but not
of the observed curves. We then compared the cross-validated predictions using only the observed curves
with those using both the estimated warping and amplitude functions. The predictions from the observed
curves were produced by computing the least squares fit of a b-spline basis to each curve and using the
resulting coefficients as predictors in a linear regression. The predictions from the warping and amplitude
curves were produced using the first two moments, as predictors for the warping function, and the b-spline
coefficients from the synchronized curves, as predictors for the amplitude function. In both cases, degrees of
freedom for the b-spine basis were chosen to provide the optimal fit. Using both the warping and amplitude
curves produced a significantly improved fit with the root mean squared error between the responses and
predictions only one fifth that from using the observed curves directly.

6 Discussion

In this article we develop a general moments based approach to the problem of synchronization of functional
or curve data. The key idea is that one can use the moments of the Yi’s to accurately estimate the first few
moments of the Zi’s, or equivalently of z, even in situations were the misalignment of the curves prevents one
from using the cross-sectional average to directly estimate z. Hence, our approach has the advantage over
target based methods that it can work well even when a target can not be accurately estimated. It also has
an advantage over landmark based methods in that it can synchronize data with no, or inconsistent, marker
events.

These methods could be extended in several directions. One obvious possibility would be to utilize
more than one feature function. Let I1

g , . . . , I
L
g represent L different feature functions and let µ(1,k)g , . . . ,µ(L,k)g

represent the corresponding kth moments. Then we could replace (20) by

Qi =
L

∑
l=1

Kl

∑
k=1

λl,k

(
µ(l,k)Ỹi(Xi)

− µ̂(l,k)z

)2

+λP

∫
(Ỹi(Xi)−T (t))2dt +P(Xi). (21)

This approach would allow one to take advantage of both local features in the curves, such as minimums and
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maximums, as well as more global features, such as the absolute first derivative. When utilizing (21), CAMP
can take full advantage of any landmarks that are present in the data while still maintaining the ability to
synchronize the functions towards a common target function. In this sense CAMP possesses all the strengths
of the landmark and Procrustes methods but eliminates most of their weaknesses. Another possible extension
would be to higher dimensional functions. Although, in this article, we have only discussed one-dimensional
curves, the moments approach could potentially be extended to multidimensional data. The definition of the
feature function, Ig, could easily be expanded to such data and hence the moments also. Equating the lower
order moments could then be achieved in a similar fashion to the one-dimensional case. The most significant
challenge would seem to be dealing with higher order moments on high dimensional data were the number
of cross product terms could become unmanageable.

A Appendix

A.1 Proof of Theorem 3

First note that if Xi(t) = αi +βit then Wi(t) = t−αi
βi

. Hence, by (7) and (12),

µ(1)
Y S

i (s)
= µ(1)γi+θiz(Wi(s))

= µ(1)
z
(

s−αi
βi

) = βiµ
(1)
z +αi

and
µ(k)

Y S
i (s)

= µ(k)γi+θiz(Wi(s))
= µ(k)

z
(

s−αi
βi

) = βk
i µ(k)z , k ≥ 2.

However, if EXi(t) = t for all t then Eαi = 0 and Eβi = 1. Hence,

Eµ(1)
Y S

i (s)
= µ(1)z Eβi +Eαi = µ(1)z

and (
E k

√
µ(k)

Y S
i (s)

)k

=

(
k
√

µ(k)z Eβi

)k

= µ(k)z

A.2 Proof of Theorem 4

First note that, under A-1 and A-2, for large enough n, supt

∣∣∣IỸi,n
(t)− IY S

i
(t)
∣∣∣ < δ a.s. where δ > 0 can be

made arbitrarily small. Hence, for large enough n,∣∣∣µ(1)Ỹi,n
−µ(1)

Y S
i

∣∣∣= ∣∣∣∣∫ T

0
t(IỸi

(t)− IY S
i
(t))dt

∣∣∣∣≤ ∫ T

0
t
∣∣∣IỸi

(t)− IY S
i
(t)
∣∣∣dt ≤ δ

∫ T

0
tdt a.s.

Hence µ(1)Ỹi,n
→ µ(1)

Y S
i

a.s. and we can prove in a similar manner the same result for µ(k)Ỹi,n
,k ≥ 2. Therefore

lim
N,n→∞

µ̂(k)z = lim
N→∞

lim
n→∞

(
1
N

N

∑
i=1

k

√
µ(k)Ỹi

)k

= lim
N→∞

(
1
N

N

∑
i=1

k

√
µ(k)

Y S
i

)k

= µ(k)z a.s.

The last step follows from Theorem 3, the law of large numbers and Slutsky’s Theorem.
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A.3 Proof of Theorem 5

Equation (15) implies µ(1)
Y S

i (Xi)
= µ(1)z and µ(2)

Y S
i (Xi)

= µ(2)z . Hence, by (6)

1
βi

µ(1)
Y S

i
− αi

βi
= µ(1)z and

1
β2

i
µ(2)

Y S
i
= µ(2)z .

Solving these two equations for αi and βi gives the unique solution characterized by (16).

A.4 Proof of Theorem 6

By Theorem 4 and Slutsky’s theorem α̂i and β̂i respectively converge to αi and βi a.s. Hence X̂i(t)→ Xi(t)
a.s. To prove convergence of Z(t) first note that as n → ∞, Ỹi,n converges to Y S

i a.s. so we only need show
convergence for 1

N ∑iY S
i (X̂i(t)) = 1

N ∑i γi +
1
N ∑i θiz(Wi(X̂i(t))). But

Wi(X̂i(t)) =
α̂i + β̂it −αi

βi
= µ(1)z +

(
t − µ̂(1)z

)√√√√µ(2)z

µ̂(2)z

so z(Wi(X̂i(t))) is constant as a function of i and converges to z(t). Therefore

Z(t)→ 1
N ∑

i
γi + z

µ(1)z −
(

µ̂(1)z − t
)√√√√µ(2)z

µ̂(2)z

 1
N ∑

i
θi → 0+ z(t) ·1 = z(t) a.s.

by the law of large numbers. Finally, note that for linear synchronization functions

γi = Y S
i (t)−θiz

(
t −αi

βi

)
and θi =

Y S
i (t)− γi

z
(

t−αi
βi

)
for all t. Therefore we can set up two simultaneous equations by setting t equal to t j and then tl with j < l.
Solving these equations gives

γi =
z
(

t j−αi
βi

)
Y S

i (tl)− z
(

tl−αi
βi

)
Y S

i (t j)

z
(

t j−αi
βi

)
− z
(

tl−αi
βi

) .

But this holds for any t j and tl so we can reexpress γi and θi as

γi =
2

n(n−1)

n−1

∑
j=1

n

∑
l= j+1

z
(

t j−αi
βi

)
Y S

i (tl)− z
(

tl−αi
βi

)
Y S

i (t j)

z
(

t j−αi
βi

)
− z
(

tl−αi
βi

) , θi =
1
n

n

∑
j=1

Y S
i (t j)− γi

z
(

t j−αi
βi

)
Noting that Z j

i converges to z
(

t j−αi
βi

)
a.s and Ỹi,n converges to Y S

i a.s. shows that γ̂i and θ̂i also converge a.s.
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