SUPPLEMENTARY MATERIAL FOR: FUNCTIONAL ADDITIVE REGRESSION

By Yingying Fan and Gareth M. James and Peter Radchenko University of Southern California

1. Proofs of Theorems 1 and 2. Let $\boldsymbol{\eta}=\left(\boldsymbol{\eta}_{1}^{T}, \cdots, \boldsymbol{\eta}_{p}^{T}\right)^{T}$ be a $\left(p q_{n}\right)$ vector and $\Theta=\left(\Theta_{1}, \cdots, \Theta_{p}\right)$ be an $n \times\left(p q_{n}\right)$ matrix. With matrix notation, the linear FAR criterion minimizes the following objective function

$$
\begin{equation*}
Q(\boldsymbol{\eta})=\frac{1}{2 n}\|\mathbf{Y}-\Theta \boldsymbol{\eta}\|^{2}+\sum_{j=1}^{p} \rho_{\lambda_{n}}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{j} \boldsymbol{\eta}_{j}\right\|\right) . \tag{1}
\end{equation*}
$$

Define the $\left(q_{n} s_{n}\right)$-dimensional hypercube

$$
\begin{equation*}
\mathcal{N}=\left\{\boldsymbol{\eta} \in R^{p q_{n}}: \boldsymbol{\eta}_{\mathfrak{M}_{0}^{c}}=\mathbf{0},\left\|\boldsymbol{\eta}-\boldsymbol{\eta}_{0}\right\|_{\infty} \leq \sqrt{c_{0}} q_{n}^{-1 / 2} n^{-\alpha}\right\}, \tag{2}
\end{equation*}
$$

where $\|\cdot\|_{\infty}$ stands for the infinity norm of a vector.
Lemma 1.1. Define the event $\mathcal{E}_{1}=\left\{\left\|\Theta_{\mathfrak{M}_{0}}^{T} \varepsilon^{*}\right\|_{\infty} \leq n \lambda_{n} / 2\right\}$. Assume that $\lambda_{n} n^{\alpha} q_{n} \sqrt{s_{n}} \rightarrow 0$ with α defined in Condition 2(B), then under Condition 2 and conditional on event \mathcal{E}_{1}, there exits a vector $\boldsymbol{\eta} \in \mathcal{N}$ such that $\boldsymbol{\eta}_{\mathfrak{M}_{0}}$ is a solution to the following nonlinear equations

$$
\begin{equation*}
-\frac{1}{n} \Theta_{\mathfrak{M}_{0}}^{T}\left(\mathbf{Y}-\Theta_{\mathfrak{M}_{0}} \boldsymbol{\eta}_{\mathfrak{M}_{0}}\right)+\mathbf{v}_{\mathfrak{M}_{0}}(\boldsymbol{\eta})=0 \tag{3}
\end{equation*}
$$

where $\mathbf{v}_{\mathfrak{M}_{0}}(\boldsymbol{\eta})$ is a vector obtained by stacking $\mathbf{v}_{k}(\boldsymbol{\eta})=\rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \eta_{k}\right\|\right) \frac{1}{\sqrt{n}} \frac{\Theta_{k}^{T} \Theta_{k} \boldsymbol{\eta}_{k}}{\left\|\Theta_{k} \boldsymbol{\eta}_{k}\right\|}$, $k \in \mathfrak{M}_{0}$ one underneath another.

Proof. For any $\tilde{\boldsymbol{\eta}}=\left(\tilde{\boldsymbol{\eta}}_{1}^{T}, \tilde{\boldsymbol{\eta}}_{2}^{T}, \cdots, \tilde{\boldsymbol{\eta}}_{p}^{T}\right)^{T} \in \mathcal{N}$, by Condition 2(D) we have

$$
\begin{align*}
& \frac{1}{\sqrt{n}} \max _{k \in \mathfrak{M}_{0}}\left\|\Theta_{k}\left(\tilde{\boldsymbol{\eta}}_{k}-\boldsymbol{\eta}_{0, k}\right)\right\| \leq c_{0}^{-1 / 2} \max _{k \in \mathfrak{M}_{0}}\left\|\tilde{\boldsymbol{\eta}}_{k}-\boldsymbol{\eta}_{0, k}\right\| \\
& \leq c_{0}^{-1 / 2} \sqrt{q_{n}} \max _{k \in \mathfrak{M}_{0}}\left\|\tilde{\boldsymbol{\eta}}_{k}-\boldsymbol{\eta}_{0, k}\right\|_{\infty} \leq n^{-\alpha} . \tag{4}
\end{align*}
$$

This together with triangular inequality and Condition 2(B) entails that for n large enough,

$$
\begin{equation*}
\left\|\Theta_{k} \tilde{\boldsymbol{\eta}}_{k}\right\| \geq\left\|\Theta_{k} \boldsymbol{\eta}_{0, k}\right\|-\left\|\Theta_{k}\left(\tilde{\boldsymbol{\eta}}_{k}-\boldsymbol{\eta}_{0, k}\right)\right\| \geq\left\|\Theta_{k} \boldsymbol{\eta}_{0, k}\right\|-n^{\frac{1}{2}-\alpha}>\sqrt{n} a_{n} / 2 \tag{5}
\end{equation*}
$$

Thus, by Condition 2(A), for any $k \in \mathfrak{M}_{0}, \rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \tilde{\boldsymbol{\eta}}_{k}\right\|\right) \leq \rho_{\lambda_{n}}^{\prime}\left(a_{n} / 2\right)$. Hence, by the definition of \mathbf{v} and Condition 2(D) we obtain that for any $\tilde{\boldsymbol{\eta}} \in \mathcal{N}$,

$$
\begin{equation*}
\left\|\mathbf{v}_{\mathfrak{M}_{0}}\left(\tilde{\boldsymbol{\eta}}_{k}\right)\right\|_{\infty} \leq \max _{k \in \mathfrak{M}_{0}} \rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \tilde{\boldsymbol{\eta}}_{k}\right\|\right) \max _{k \in \mathfrak{M}_{0}} \frac{1}{\sqrt{n}} \frac{\left\|\Theta_{k}^{T} \Theta_{k} \tilde{\boldsymbol{\eta}}_{k}\right\|}{\left\|\Theta_{k} \tilde{\boldsymbol{\eta}}_{k}\right\|} \leq \frac{\rho_{\lambda_{n}}^{\prime}\left(a_{n} / 2\right)}{\sqrt{c_{0}}} . \tag{6}
\end{equation*}
$$

Since $\frac{1}{n} \Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}$ has bounded eigenvalues, it follows from matrix norm calculations that

$$
\left\|\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1}\right\|_{\infty} \leq \sqrt{s_{n} q_{n}} \Lambda_{\max }\left(\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1}\right) \leq c_{0}^{-1} n^{-1} \sqrt{s_{n} q_{n}} .
$$

Combining the above inequality with Cauchy-Schwartz inequality, Condition 2(C) and (6) yields

$$
\begin{aligned}
& n\left\|\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1} \mathbf{v}_{\mathfrak{M}_{0}}\left(\tilde{\boldsymbol{\eta}}_{k}\right)\right\|_{\infty} \\
& \leq n\left\|\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1}\right\|_{\infty}\left\|\mathbf{v}_{\mathfrak{M}_{0}}\left(\tilde{\boldsymbol{\eta}}_{k}\right)\right\|_{\infty} \leq o\left(n^{-\alpha} q_{n}^{-1 / 2}\right) .
\end{aligned}
$$

Similarly, since $\lambda_{n} n^{\alpha} q_{n} \sqrt{s_{n}} \rightarrow 0$, conditional on the event \mathcal{E}_{1} we have

$$
\left\|\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1} \Theta_{\mathfrak{M}_{0}}^{T} \varepsilon^{*}\right\|_{\infty} \leq\left\|\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1}\right\|_{\infty}\left\|\Theta_{\mathfrak{M}_{0}}^{T} \varepsilon^{*}\right\|_{\infty} \leq o\left(n^{-\alpha} q_{n}^{-1 / 2}\right) .
$$

Combing the above two inequalities and by Cauchy-Schwartz inequality we obtain for large enough n,

$$
\begin{equation*}
\left\|\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1}\left(n \mathbf{v}_{\mathfrak{M}_{0}}\left(\tilde{\boldsymbol{\eta}}_{k}\right)-\Theta_{\mathfrak{M}_{0}}^{T} \varepsilon^{*}\right)\right\|_{\infty} \leq o\left(q_{n}^{-1 / 2} n^{-\alpha}\right) \tag{7}
\end{equation*}
$$

Define the vector-valued continuous function $\mathbf{g}: R^{s_{n} q_{n}} \rightarrow R^{s_{n} q_{n}}$ by $\mathbf{g}(\mathbf{x})=$ $\boldsymbol{\eta}_{0, \mathfrak{M}_{0}}-\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1}\left(n \mathbf{v}_{\mathfrak{M}_{0}}(\mathbf{x})-\Theta_{\mathfrak{M}_{0}}^{T} \varepsilon^{*}\right)$, where $\mathbf{x}=\left(\mathbf{x}_{1}^{T}, \cdots, \mathbf{x}_{s_{n}}^{T}\right)^{T}$ with $\mathbf{x}_{k} \in R^{q_{n}}$ for $k=1, \cdots, s_{n}$, and $\mathbf{v}_{\mathfrak{M}_{0}}(\mathbf{x})$ is a vector obtained by stacking the vectors $\mathbf{v}_{k}\left(\mathbf{x}_{k}\right)=\rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \mathbf{x}_{k}\right\|\right) \frac{1}{\sqrt{n}} \frac{\Theta_{k}^{T} \Theta_{k} \mathbf{x}_{k}}{\left\|\Theta_{k} \mathbf{x}_{k}\right\|}, k=1, \cdots, s_{n}$ one underneath another. Then for any $\mathbf{x} \in \mathcal{N}$, by (7) we have

$$
\left\|\mathbf{g}(\mathbf{x})-\boldsymbol{\eta}_{0, \mathfrak{M}_{0}}\right\|_{\infty} \leq \sqrt{c_{0}} q_{n}^{-1 / 2} n^{-\alpha}
$$

for large enough n. The above inequality indicates that $\mathbf{g}(\mathcal{N}) \subset \mathcal{N}$. Since $\mathbf{g}(\mathbf{x})$ is a continuous function on the convex, compact hypercube \mathcal{N}, applying Brouwer's fixed point theorem shows that (3) indeed has a solution in \mathcal{N}.

Lemma 1.2. Define $\mathcal{E}_{2}=\left\{\left\|\Theta_{\mathfrak{M}_{0}^{c}}^{T} \varepsilon^{*}\right\|_{\infty} \leq n \lambda_{n} / 2\right\}$. Assume $q_{n}^{-2} s_{n}=$ $o\left(\lambda_{n}\right), q_{n}+\log p=O\left(n \lambda_{n}^{2}\right)$, and $\lambda_{n} n^{\alpha} q_{n} \sqrt{s_{n}} \rightarrow 0$ with α defined in Condition 2(B). Then under Condition 2 and conditional on the event $\mathcal{E}_{1} \cap \mathcal{E}_{2}$, there exists a local minimizer $\widehat{\boldsymbol{\eta}}$ of $Q(\boldsymbol{\eta})$ (1) such that $\widehat{\boldsymbol{\eta}} \in \mathcal{N}$.

Proof. Since λ_{n} satisfying conditions in Lemma 1.2 also satisfies conditions in Lemma 1.1, by Lemma 1.1, we know that there exists a vector $\widehat{\boldsymbol{\eta}} \in \mathcal{N}$ such that $\widehat{\boldsymbol{\eta}}_{\mathfrak{M}_{0}}$ is a solution to (2). We next show that under some additional conditions, $\widehat{\boldsymbol{\eta}}$ is a local minimizer of $Q(\boldsymbol{\eta})$ in the original $R^{p q_{n}}$ space.

We first constraint the objective function $Q(\boldsymbol{\eta})$ to the $\left(q_{n} s_{n}\right)$-dimensional subspace \mathcal{N} defined in (2). We will show that under Condition 2 and conditional on $\mathcal{E}_{1} \cap \mathcal{E}_{2}, Q(\boldsymbol{\eta})$ is strictly convex around $\widehat{\boldsymbol{\eta}}$. Then this together with Lemma 1.1 entails that the critical value $\widehat{\boldsymbol{\eta}}_{\mathfrak{M}_{0}}$ minimizes $Q(\boldsymbol{\eta})$ in the subspace \mathcal{N}.

We proceed to prove the strict convexity of $Q(\boldsymbol{\eta})$ in \mathcal{N}. Define $h(\boldsymbol{\eta})=$ $\sum_{j=1}^{p} \rho_{\lambda_{n}}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{j} \boldsymbol{\eta}_{j}\right\|\right)$, which is a function in $\mathbf{R}^{p q_{n}}$. Note that for each $k \in$ \mathfrak{M}_{0},

$$
\text { (8) } \begin{aligned}
\frac{\partial^{2}}{\partial \boldsymbol{\eta}_{k}^{2}} h(\widehat{\boldsymbol{\eta}}) & =\Theta_{k}^{T} \Theta_{k} \frac{\rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|\right)}{\sqrt{n}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|} \\
& +\Theta_{k}^{T} \Theta_{k} \widehat{\boldsymbol{\eta}}_{k} \widehat{\boldsymbol{\eta}}_{k}^{T} \Theta_{k}^{T} \Theta_{k}\left(\frac{\rho_{\lambda_{n}}^{\prime \prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|\right)}{n\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|^{2}}-\frac{\rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|\right)}{\sqrt{n}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|^{3}}\right) .
\end{aligned}
$$

Since $\widehat{\boldsymbol{\eta}} \in \mathcal{N}$, similar to (5) we can show that $\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\| \geq\left\|\Theta_{k} \boldsymbol{\eta}_{k, 0}\right\|-\| \Theta_{k}\left(\widehat{\boldsymbol{\eta}}_{k}-\right.$ $\left.\boldsymbol{\eta}_{k, 0}\right) \|>\sqrt{n} a_{n} / 2$ for any $k \in \mathfrak{M}_{0}$ and large enough n. Thus it follows from Condition 2 (A), (B) and (C) that

$$
\begin{aligned}
& 0<\frac{\rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|\right)}{\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\| / \sqrt{n}} \leq \frac{\rho_{\lambda_{n}}^{\prime}\left(a_{n} / 2\right)}{a_{n} / 2}=o(1), \\
& \left.\rho_{\lambda_{n}}^{\prime \prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|\right)\right)=o(1),
\end{aligned}
$$

where the $o(\cdot)$ terms are uniformly over all $k \in \mathfrak{M}_{0}$. By linear algebra, for any matrices A, B and C satisfying $A=B+C$, we have $\Lambda_{\min }(A) \geq \Lambda_{\min }(B)+$ $\Lambda_{\text {min }}(C)$. By Condition 2(A), $\rho_{\lambda_{n}}^{\prime \prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|\right)<0$ and $\rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|\right)>0$. These together with (8) and Condition 2(D) entail that uniformly over all $k \in \mathfrak{M}_{0}$,

$$
\begin{aligned}
\Lambda_{\min }\left(\frac{\partial^{2}}{\partial \boldsymbol{\eta}_{k}^{2}} h(\widehat{\boldsymbol{\eta}})\right) & \geq \Lambda_{\min }\left(\Theta_{k}^{T} \Theta_{k}\right) \frac{\rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|\right)}{\sqrt{n}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|} \\
& +\Lambda_{\max }\left(\Theta_{k}^{T} \Theta_{k} \widehat{\boldsymbol{\eta}}_{k} \widehat{\boldsymbol{\eta}}_{k}^{T} \Theta_{k}^{T} \Theta_{k}\right)\left(\frac{\rho_{\lambda_{n}}^{\prime \prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|\right)}{n\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|^{2}}-\frac{\rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|\right)}{\sqrt{n}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|^{3}}\right) \\
(9) \quad & \geq \Lambda_{\max }\left(\frac{1}{n} \Theta_{k}^{T} \Theta_{k}\right)\left(\rho_{\lambda_{n}}^{\prime \prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|\right)-\frac{\rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|\right)}{\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\| / \sqrt{n}}\right)=o(1),
\end{aligned}
$$

where for the second inequality we used the fact that
$\Lambda_{\max }\left(\Theta_{k}^{T} \Theta_{k} \widehat{\boldsymbol{\eta}}_{k} \widehat{\boldsymbol{\eta}}_{k}^{T} \Theta_{k}^{T} \Theta_{k}\right)=\Lambda_{\max }\left(\widehat{\boldsymbol{\eta}}_{k}^{T} \Theta_{k}^{T} \Theta_{k} \Theta_{k}^{T} \Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right) \leq \Lambda_{\max }\left(\Theta_{k}^{T} \Theta_{k}\right)\left\|\Theta_{k} \widehat{\boldsymbol{\eta}}_{k}\right\|^{2}$.
Let H be a block diagonal matrix with block matrices $\frac{\partial^{2}}{\partial \boldsymbol{\eta}_{k}^{2}} h(\widehat{\boldsymbol{\eta}}), k \in \mathfrak{M}_{0}$. Then it is easy to see that the Hessian matrix $\frac{\partial^{2}}{\partial \boldsymbol{\eta}_{\mathfrak{M}_{0}}} Q(\widehat{\boldsymbol{\eta}})=n^{-1} \Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}+H$. Thus, it follows from the above inequality (9) that
$\Lambda_{\text {min }}\left(\frac{\partial^{2}}{\partial \boldsymbol{\eta}_{\mathfrak{M}_{0}}^{2}} Q(\widehat{\boldsymbol{\eta}})\right) \geq \frac{1}{n} \Lambda_{\min }\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)+\min _{k \in \mathfrak{M}_{0}} \Lambda_{\min }\left(\frac{\partial^{2}}{\partial \boldsymbol{\eta}_{k}^{2}} h(\widehat{\boldsymbol{\eta}})\right) \geq c_{0}-o(1)$.
Therefore, for large enough n, restricted on the space \mathcal{N}, the function $Q(\boldsymbol{\eta})$ is strictly convex around $\widehat{\boldsymbol{\eta}}$ and thus has a unique minimizer in a ball $\mathcal{N}_{1} \subset \mathcal{N}$ centered at $\widehat{\boldsymbol{\eta}}$. Since by Lemma $1.1 \widehat{\boldsymbol{\eta}}$ is a critical point, $\widehat{\boldsymbol{\eta}}$ is indeed this strict local minimizer in \mathcal{N}_{1}.

We next show that $\widehat{\boldsymbol{\eta}}$ is also a local minimizer in the original $R^{p q_{n_{-}}}$ dimensional space. We will first show that for $\widehat{\boldsymbol{\eta}}_{\mathfrak{M}_{0}}$ defined in Lemma 1.1, conditional on $\mathcal{E}_{1} \cap \mathcal{E}_{2}$,
$\max _{j \in \mathfrak{M}_{0}^{c}}\left\{\hat{\mathbf{v}}_{j}^{T}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \hat{\mathbf{v}}_{j}\right\}^{1 / 2}=\max _{j \in \mathfrak{M}_{0}^{c}}\left\|\Theta_{j}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \hat{\mathbf{v}}_{j}\right\|<n^{-1 / 2} \rho_{\lambda_{n}}^{\prime}(0+), \forall j \in \mathfrak{M}_{0}^{c}$,
where

$$
\hat{\mathbf{v}}_{j}=n^{-1} \Theta_{j}^{T}\left(\mathbf{Y}-\Theta_{\mathfrak{M}_{0}} \widehat{\boldsymbol{\eta}}_{\mathfrak{M}_{0}}\right)=n^{-1} \Theta_{j}^{T} \Theta_{\mathfrak{M}_{0}}\left(\boldsymbol{\eta}_{0, \mathfrak{M}_{0}}-\widehat{\boldsymbol{\eta}}_{\mathfrak{M}_{0}}\right)+n^{-1} \Theta_{j}^{T} \varepsilon^{*} .
$$

By Lemma 1.1, we have $\boldsymbol{\eta}_{0, \mathfrak{M}_{0}}-\widehat{\boldsymbol{\eta}}_{\mathfrak{M}_{0}}=\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1}\left(n \mathbf{v}_{\mathfrak{M}_{0}}-\Theta_{\mathfrak{M}_{0}}^{T} \varepsilon^{*}\right)$. Plugging this into $\hat{\mathbf{v}}_{j}$, we obtain that for $j \in \mathfrak{M}_{0}^{c}, \hat{\mathbf{v}}_{j}=\Theta_{j}^{T} \Theta_{\mathfrak{M}_{0}}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1} \mathbf{v}_{\mathfrak{M}_{0}}+$ $n^{-1}\left[\Theta_{j}-\Theta_{j}^{T} \Theta_{\mathfrak{M}_{0}}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1} \Theta_{\mathfrak{M}_{0}}^{T}\right] \varepsilon^{*}$. Therefore,

$$
\begin{equation*}
\left\{\hat{\mathbf{v}}_{j}^{T}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \hat{\mathbf{v}}_{j}\right\}^{1 / 2}=\left\|\Theta_{j}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \hat{\mathbf{v}}_{j}\right\| \leq I_{1, j}+I_{2, j}, \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1, j}=\left\|\Theta_{j}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \Theta_{j}^{T} \Theta_{\mathfrak{M}_{0}}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1} \mathbf{v}_{\mathfrak{M}_{0}}\right\|, \\
& I_{2, j}=n^{-1}\left\|\Theta_{j}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \Theta_{j}^{T}\left(\mathbf{I}-\Theta_{\mathfrak{M}_{0}}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1} \Theta_{\mathfrak{M}_{0}}^{T}\right) \varepsilon^{*}\right\| .
\end{aligned}
$$

By (6), Condition 2(B) and Condition 2(D), conditional on $\mathcal{E}_{1} \cap \mathcal{E}_{2}$, we have

$$
\begin{aligned}
I_{1, j} \leq & \left\|\mathbf{v}_{\mathfrak{M}_{0}}\right\|_{\infty}\left\|\Theta_{j}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \Theta_{j}^{T} \Theta_{\mathfrak{M}_{0}}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1}\right\|_{\infty, 2}<\frac{1}{2 \sqrt{n}} \rho_{\lambda_{n}}^{\prime}(0+), \\
I_{2, j} \leq & n^{-1}\left\|\Theta_{j}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \Theta_{j}^{T}\left(\mathbf{I}-\Theta_{\mathfrak{M}_{0}}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1} \Theta_{\mathfrak{M}_{0}}^{T}\right) \varepsilon\right\| \\
& +n^{-1}\left\|\Theta_{j}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \Theta_{j}^{T}\left(\mathbf{I}-\Theta_{\mathfrak{M}_{0}}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1} \Theta_{\mathfrak{M}_{0}}^{T}\right) \mathbf{e}\right\| \equiv I_{2,1, j}+I_{2,2, j},
\end{aligned}
$$

where the inequality for $I_{1, j}$ is uniformly over all $j \in \mathfrak{M}_{0}$. Since both $\Theta_{j}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \Theta_{j}^{T}$ and $\left(\mathbf{I}-\Theta_{\mathfrak{M}_{0}}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1} \Theta_{\mathfrak{M}_{0}}^{T}\right)$ are projection matrices and $\boldsymbol{\varepsilon}$ is a n-vector of Gaussian random variables, it follows that $n^{2} I_{2,1, j}^{2}$ is a Chi-square random variable with degrees of freedom at most q_{n}. Thus, by Chi-square tail probability inequality (see [1]),

$$
\begin{aligned}
& P\left(\max _{j \in \mathfrak{M}_{0}^{c}} I_{2,1, j}>n^{-1} \sqrt{q_{n}+C \log p}\right) \\
& =P\left(\max _{j \in \mathfrak{M}_{0}^{c}} n^{2} I_{2,1, j}^{2}>\left(q_{n}+C \log p\right)\right) \leq C\left(p-s_{n}\right) \exp (-C \log p) \rightarrow 0,
\end{aligned}
$$

where C is a large enough generic positive constant. Thus, $\max _{j \in \mathfrak{M}_{0}^{c}} I_{2,1, j}=$ $o_{p}\left(n^{-1}\left(q_{n}^{1 / 2}+\sqrt{\log p}\right)\right)$. Now by Condition 1 and assumption that $q_{n}^{-2} s_{n}=$ $o\left(\lambda_{n}\right)$, it is easy to derive that $\|\mathbf{e}\|_{\infty}=o\left(\lambda_{n}\right)$. Thus, $\|\mathbf{e}\|_{2}=o\left(n^{1 / 2} \lambda_{n}\right)$. This together with $\Theta_{j}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \Theta_{j}^{T}$ and $\left(\mathbf{I}-\Theta_{\mathfrak{M}_{0}}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1} \Theta_{\mathfrak{M}_{0}}^{T}\right)$ being projection matrix ensures that uniformly over all $j \in \mathfrak{M}_{0}^{c}$,

$$
I_{2,2, j} \leq n^{-1}\|\mathbf{e}\|_{2}=o\left(n^{-1 / 2} \lambda_{n}\right)
$$

Since it is assumed in the theorem that $q_{n}+\log p=O\left(n \lambda_{n}^{2}\right)$, combining the above results on $I_{2,1, j}$ and $I_{2,2, j}$ yields

$$
\max _{j \in \mathfrak{M}_{0}^{c}} I_{2, j}=o_{p}\left(n^{-1}\left(q_{n}^{1 / 2}+\sqrt{\log (p)}\right)\right)=o_{p}\left(\lambda_{n} / \sqrt{n}\right)<\rho_{\lambda_{n}}^{\prime}(0+) /(2 \sqrt{n}) .
$$

In summary, the results on I_{1} and I_{2} show that inequality (11) holds.
Let $\mathcal{B}=\left\{\boldsymbol{\eta} \in R^{q_{n} p}: \boldsymbol{\eta}_{\mathfrak{M}_{0}^{c}}=0\right\}$ be a subspace in $R^{p q_{n}}$. Take a sufficiently small ball \mathcal{N}_{2} in $R^{p q_{n}}$ centered at $\widehat{\boldsymbol{\eta}}$ such that $\mathcal{N}_{2} \cap \mathcal{B} \subset \mathcal{N}_{1}$. Since $\rho_{\lambda_{n}}^{\prime}(t)$ is a continuous decreasing function and (11) holds for $\widehat{\boldsymbol{\eta}} \in \mathcal{N}_{2}$, appropriately shrink the radius of the ball \mathcal{N}_{2} gives that there exists a $\delta \in(0, \infty)$ such that for any $\boldsymbol{\eta} \in \mathcal{N}_{2}$,

$$
\begin{equation*}
\max _{j \in \mathfrak{M}_{0}}\left\|\Theta_{j}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \Theta_{j}^{T}(\mathbf{Y}-\Theta \boldsymbol{\eta})\right\|<n^{1 / 2} \rho_{\lambda_{n}}^{\prime}(\delta) \tag{13}
\end{equation*}
$$

Fix an arbitrary $\boldsymbol{\eta}_{1}=\left(\boldsymbol{\eta}_{1,1}^{T}, \cdots, \boldsymbol{\eta}_{1 p}^{T}\right)^{T} \in \mathcal{N}_{2} \cap \mathcal{N}_{1}^{c}$, we next show that $Q\left(\boldsymbol{\eta}_{1}\right)>Q(\widehat{\boldsymbol{\eta}})$. Let $\boldsymbol{\eta}_{2}=\left(\boldsymbol{\eta}_{2,1}^{T}, \cdots, \boldsymbol{\eta}_{2 p}^{T}\right)^{T}$ be the projection of $\boldsymbol{\eta}_{1}$ onto \mathcal{B}. Then it follows from the definitions of $\mathcal{N}_{1}, \mathcal{N}_{2}, \mathcal{B}$ and $\widehat{\boldsymbol{\eta}}$ that $Q\left(\boldsymbol{\eta}_{2}\right)>Q(\widehat{\boldsymbol{\eta}})$. Thus we only need to show $Q\left(\boldsymbol{\eta}_{1}\right) \geq Q\left(\boldsymbol{\eta}_{2}\right)$.

Note that $Q\left(\boldsymbol{\eta}_{1}\right)-Q\left(\boldsymbol{\eta}_{2}\right)=\nabla Q\left(\boldsymbol{\eta}_{3}\right)\left(\boldsymbol{\eta}_{1}-\boldsymbol{\eta}_{2}\right)=\sum_{j \in \mathfrak{M}_{0}^{c}} \boldsymbol{\eta}_{1 j}^{T} \frac{\partial Q\left(\boldsymbol{\eta}_{3}\right)}{\partial \boldsymbol{\eta}_{j}}$, where $\boldsymbol{\eta}_{3}$ is a vector on the segment connecting $\boldsymbol{\eta}_{1}$ and $\boldsymbol{\eta}_{2}$. Since $\boldsymbol{\eta}_{2 k}=0$ for any $k \in \mathfrak{M}_{0}^{c}$, there exits a constant $0<\gamma<1$ such that $\boldsymbol{\eta}_{3 k}=\gamma \boldsymbol{\eta}_{1 k}, k \in \mathfrak{M}_{0}^{c}$. Then by the definitions of $\mathcal{B}, \mathcal{N}_{1}, \mathcal{N}_{2}$, we know that $\boldsymbol{\eta}_{3} \in \mathcal{N}_{2}$. Shrink the
ball \mathcal{N}_{2} such that for any $\boldsymbol{\eta} \in \mathcal{N}_{2},\left\|\Theta_{k} \boldsymbol{\eta}_{k}\right\|=\left\|\Theta_{k}\left(\boldsymbol{\eta}_{k}-\widehat{\boldsymbol{\eta}}_{k}\right)\right\| \leq \sqrt{n} \delta, k \in \mathfrak{M}_{0}^{c}$. Since $\boldsymbol{\eta}_{3} \in \mathcal{N}_{2}$, we have $\left\|\Theta_{k} \boldsymbol{\eta}_{3 k}\right\| \leq \sqrt{n} \delta$ and thus $\rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \boldsymbol{\eta}_{3 k}\right\|\right) \geq \rho_{\lambda_{n}}^{\prime}(\delta)$ for $k \in \mathfrak{M}_{0}^{c}$. Therefore,

$$
\begin{aligned}
Q\left(\boldsymbol{\eta}_{1}\right) & -Q\left(\boldsymbol{\eta}_{2}\right)=\nabla Q\left(\boldsymbol{\eta}_{3}\right)\left(\boldsymbol{\eta}_{1}-\boldsymbol{\eta}_{2}\right)=\sum_{j \in \mathfrak{M}_{0}^{c}} \boldsymbol{\eta}_{1 j}^{T} \frac{\partial Q\left(\boldsymbol{\eta}_{3}\right)}{\partial \boldsymbol{\eta}_{j}} \\
& =\sum_{j \in \mathfrak{M}_{0}^{c}} \boldsymbol{\eta}_{1 j}^{T}\left(-\frac{1}{n} \Theta_{j}^{T}\left(\mathbf{Y}-\Theta \boldsymbol{\eta}_{3}\right)+\frac{\rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{j} \boldsymbol{\eta}_{3 j}\right\|\right)}{\sqrt{n}\left\|\Theta_{j} \boldsymbol{\eta}_{3 j}\right\|} \Theta_{j}^{T} \Theta_{j} \boldsymbol{\eta}_{3 j}\right) \\
& \geq-\frac{1}{n} \sum_{j \in \mathfrak{M}_{0}^{c}} \boldsymbol{\eta}_{1 j}^{T} \Theta_{j}^{T}\left(\mathbf{Y}-\Theta \boldsymbol{\eta}_{3}\right)+\frac{1}{\sqrt{n} \gamma} \rho_{\lambda_{n}}^{\prime}(\delta) \sum_{j \in \mathfrak{M}_{0}^{c}}\left\|\Theta_{j} \boldsymbol{\eta}_{3 j}\right\| \equiv I_{3}+I_{4} .
\end{aligned}
$$

Next note that by Cauchy-Schwartz inequality and (13),

$$
\begin{aligned}
\left|I_{3}\right| & \leq \frac{1}{n} \sum_{j \in \mathfrak{M}_{0}^{c}}\left\|\Theta_{j} \boldsymbol{\eta}_{1 j}\right\|\left\|\Theta_{j}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \Theta_{j}^{T}\left(\mathbf{Y}-\Theta \boldsymbol{\eta}_{3}\right)\right\| \\
& =\frac{1}{n \gamma} \sum_{j \in \mathfrak{M}_{0}^{c}}\left\|\Theta_{j} \boldsymbol{\eta}_{3 j}\right\|\left\|\Theta_{j}\left(\Theta_{j}^{T} \Theta_{j}\right)^{-1} \Theta_{j}^{T}\left(\mathbf{Y}-\Theta \boldsymbol{\eta}_{3}\right)\right\| \leq I_{4} .
\end{aligned}
$$

Thus, $Q\left(\boldsymbol{\eta}_{1}\right) \geq Q\left(\boldsymbol{\eta}_{2}\right)$, which together with $Q\left(\boldsymbol{\eta}_{2}\right)>Q(\widehat{\boldsymbol{\eta}})$ ensures that $\widehat{\boldsymbol{\eta}}$ is also a strict local minimizer in the original $R^{p q_{n}}$ dimensional space. The proof is completed.

Proof of Theorem 1

Proof. We only need to show that $P\left(\mathcal{E}_{1} \cap \mathcal{E}_{2}\right) \rightarrow 1$. Then Theorem 1 follows easily from Lemmas 1.1 and 1.2. To this end, note that

$$
\begin{aligned}
P\left(\mathcal{E}_{1} \cap \mathcal{E}_{2}\right) & =1-P\left(\left\|\Theta^{T} \varepsilon^{*}\right\|_{\infty} \geq n \lambda_{n} / 2\right) \\
& \geq 1-P\left(\left\|\Theta^{T} \varepsilon\right\|_{\infty} \geq n \lambda_{n} / 2-\left\|\Theta^{T} \mathbf{e}\right\|_{\infty}\right) .
\end{aligned}
$$

By the assumption that $s_{n} q_{n}^{-2}=o\left(\lambda_{n}\right)$, it is easy to derive that $\|\mathbf{e}\|_{\infty}=$ $o\left(\lambda_{n}\right)$. Since each column of Θ has ℓ_{2} norm \sqrt{n}, it follows that $\|\Theta\|_{1} \leq n$. Thus, by Cauchy-Schwartz inequality, $\left\|\Theta^{T} \mathbf{e}\right\|_{\infty} \leq\|\Theta\|_{1}\|\mathbf{e}\|_{\infty} \leq o\left(n \lambda_{n}\right)$. This follows that

$$
\left\|\Theta^{T} \mathbf{e}\right\|_{\infty} \leq n \lambda_{n} / 4
$$

for large enough n.
Now we consider $\left\|\Theta^{T} \boldsymbol{\varepsilon}\right\|_{\infty}$. Let $\boldsymbol{\xi}=\left(\xi_{1}, \cdots, \xi_{p q}\right)^{T}=\Theta^{T} \varepsilon$, then $\xi_{i} \sim$ $N\left(0, n \sigma^{2} d_{i}^{2}\right)$ with d_{i}^{2} the i-th diagonal of matrix $n^{-1} \Theta^{T} \Theta$. Since each column
of Θ has ℓ_{2} norm \sqrt{n}, we have $d_{i}^{2}=1$ for $1 \leq i \leq q_{n} p$. Hence, by Bonferroni's inequality and the assumption $n \lambda_{n}^{2}\left(\log \left(p q_{n}\right)\right)^{-1} \rightarrow \infty$ we further obtain

$$
\begin{aligned}
& P\left(\left\|\Theta^{T} \varepsilon\right\|_{\infty}>n \lambda_{n} / 4\right) \leq \sum_{i=1}^{q_{n} p} P\left(\left|\xi_{i}\right|>n \lambda_{n} / 4\right) \\
& \leq \frac{4 \sigma p q_{n}}{\sqrt{2 \pi n} \lambda_{n} \sigma} \exp \left(-n \lambda_{n}^{2} /\left(32 \sigma^{2}\right)\right) \rightarrow 0
\end{aligned}
$$

Combining the above two results we have completed the proof of Theorem 1.

Proof of Theorem 2

Proof. Let $\hat{\mathbf{v}}_{\mathfrak{M r}_{0}}=\mathbf{v}_{\mathfrak{M}_{0}}(\widehat{\boldsymbol{\eta}})$ and $\mathbf{v}_{0, \mathfrak{M}_{0}}=\mathbf{v}_{\mathfrak{M}_{0}}\left(\boldsymbol{\eta}_{0}\right)$ with the function $\mathbf{v}_{\mathfrak{M}_{0}}(\cdot)$ defined in Lemma 1.1, $\widehat{\boldsymbol{\eta}}_{\mathfrak{M}_{0}}$ the solution to (3), and $\boldsymbol{\eta}_{0}$ the true regression coefficient vector. Since $\widehat{\boldsymbol{\eta}}_{\mathfrak{M}_{0}}$ is a solution to (3), for any vector $\mathbf{c} \in \mathbf{R}^{s_{n} q_{n}}$ satisfying $\mathbf{c}^{T} \mathbf{c}=1$, we have the following decomposition

$$
\begin{align*}
& \quad \mathbf{c}^{T}\left[\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{1 / 2}\left(\widehat{\boldsymbol{\eta}}_{\mathfrak{M}_{0}}-\boldsymbol{\eta}_{0, \mathfrak{M}_{0}}\right)+n\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1 / 2} \mathbf{v}_{0, \mathfrak{M}_{0}}\right] \tag{14}\\
& =\mathbf{c}^{T}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1 / 2} \Theta_{\mathfrak{M}_{0}}^{T} \varepsilon+\mathbf{c}^{T}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1 / 2} \Theta_{\mathfrak{M}_{0}}^{T} \mathbf{e} \\
& \quad+n \mathbf{c}^{T}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1 / 2}\left(\hat{\mathbf{v}}_{\mathfrak{M}_{0}}-\mathbf{v}_{0, \mathfrak{M}_{0}}\right) \equiv I_{1}+I_{2}+I_{3} .
\end{align*}
$$

It is easy to see

$$
\begin{equation*}
I_{1} \sim N\left(0, \sigma^{2}\right) \tag{15}
\end{equation*}
$$

As for I_{2}, note that similar to Theorem 1 we can prove that $\|\mathbf{e}\|_{\infty}=o\left(n^{-1 / 2}\right)$. Thus, $\|\mathbf{e}\|=o(1)$. So we can derive

$$
\begin{equation*}
\left|I_{2}\right| \leq\left\|\mathbf{c}^{T}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1 / 2} \Theta_{\mathfrak{M}_{0}}^{T}\right\|\|\mathbf{e}\|=\|\mathbf{e}\|=o(1) . \tag{16}
\end{equation*}
$$

Now let us consider I_{3}. By Cauchy-Schwartz inequality we obtain

$$
\begin{align*}
\left|I_{3}\right| & \leq\left\|\sqrt{n} \mathbf{c}^{T}\left(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}}\right)^{-1 / 2}\right\|\left\|\sqrt{n}\left(\hat{\mathbf{v}}_{\mathfrak{M}_{0}}-\mathbf{v}_{0, \mathfrak{M}_{0}}\right)\right\| \tag{17}\\
& \leq c_{0}^{-1 / 2}\left\|\sqrt{n}\left(\hat{\mathbf{v}}_{\mathfrak{M}_{0}}-\mathbf{v}_{0, \mathfrak{M}_{0}}\right)\right\| .
\end{align*}
$$

Define $g\left(\boldsymbol{\eta}_{k}\right)=\frac{1}{\sqrt{n}} \rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \boldsymbol{\eta}_{k}\right\|\right) \frac{\Theta_{k}^{T} \Theta_{k} \boldsymbol{\eta}_{k}}{\left\|\Theta_{k} \boldsymbol{\eta}_{k}\right\|}$. Then by definitions of $\hat{\mathbf{v}}_{\mathfrak{M}_{0}}$ and $\mathbf{v}_{0, \mathfrak{M}_{0}}$,

$$
\begin{equation*}
\hat{\mathbf{v}}_{k}-\mathbf{v}_{0, k}=g\left(\widehat{\boldsymbol{\eta}}_{k}\right)-g\left(\boldsymbol{\eta}_{0, k}\right)=\frac{\partial}{\partial \boldsymbol{\eta}_{k}} g\left(\tilde{\boldsymbol{\eta}}_{k}\right)\left(\widehat{\boldsymbol{\eta}}_{k}-\boldsymbol{\eta}_{0, k}\right) \tag{18}
\end{equation*}
$$

with $\tilde{\boldsymbol{\eta}}_{k}$ lying on the segment connecting $\boldsymbol{\eta}_{0, k}$ and $\widehat{\boldsymbol{\eta}}_{k}$. Thus, $\tilde{\boldsymbol{\eta}}=\left(\tilde{\boldsymbol{\eta}}_{1}^{T}, \cdots, \tilde{\boldsymbol{\eta}}_{p}^{T}\right)^{T} \in$ \mathcal{N}. It has been proved in (5) that $\left\|\Theta_{k} \boldsymbol{\eta}_{k}\right\| \geq \sqrt{n} a_{n} / 2$ for any $\boldsymbol{\eta} \in \mathcal{N}$. Note that for any $\boldsymbol{\eta}=\left(\boldsymbol{\eta}_{1}^{T}, \cdots, \boldsymbol{\eta}_{p}^{T}\right)^{T} \in \mathcal{N}$, and any $k \in \mathfrak{M}_{0}$,

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{\eta}_{k}} g\left(\boldsymbol{\eta}_{k}\right)=\rho_{\lambda_{n}}^{\prime \prime} & \left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \boldsymbol{\eta}_{k}\right\|\right) \frac{\Theta_{k}^{T} \Theta_{k} \boldsymbol{\eta}_{k} \boldsymbol{\eta}_{k}^{T} \Theta_{k}^{T} \Theta_{k}}{n\left\|\Theta_{k} \boldsymbol{\eta}_{k}\right\|^{2}} \\
& +\frac{\rho_{\lambda_{n}}^{\prime}\left(\frac{1}{\sqrt{n}}\left\|\Theta_{k} \boldsymbol{\eta}_{k}\right\|\right)}{\sqrt{n}}\left\{\frac{\Theta_{k}^{T} \Theta_{k}}{\left\|\Theta_{k} \boldsymbol{\eta}_{k}\right\|}-\frac{\Theta_{k}^{T} \Theta_{k} \boldsymbol{\eta}_{k} \boldsymbol{\eta}_{k}^{T} \Theta_{k}^{T} \Theta_{k}}{\left\|\Theta_{k} \boldsymbol{\eta}_{k}\right\|^{3}}\right\} .
\end{aligned}
$$

Using similar arguments to (9) and by Condition 2(A) and the assumption $\sup _{t \geq \frac{a_{n}}{2}} \rho_{\lambda_{n}}^{\prime \prime}(t)=O\left(n^{-1 / 2}\right)$, we have for any $k \in \mathfrak{M}_{0}$,

$$
c_{0}^{-1}\left(-O\left(\frac{1}{\sqrt{n}}\right)-\frac{2 \rho_{\lambda_{n}}^{\prime}\left(\frac{a_{n}}{2}\right)}{a_{n}}\right) \leq \Lambda_{\min }\left(\frac{\partial}{\partial \boldsymbol{\eta}_{k}} g\left(\boldsymbol{\eta}_{k}\right)\right) \leq \Lambda_{\max }\left(\frac{\partial}{\partial \boldsymbol{\eta}_{k}} g\left(\boldsymbol{\eta}_{k}\right)\right) \leq c_{0}^{-1} \frac{2 \rho_{\lambda_{n}}^{\prime}\left(\frac{a_{n}}{2}\right)}{a_{n}} .
$$

This together with (18), Theorem 1, and the theorem assumptions ensures that

$$
\begin{aligned}
& \left\|\hat{\mathbf{v}}_{\mathfrak{M}_{0}}-\mathbf{v}_{0, \mathfrak{M}}\right\| \leq c_{0}^{-1}\left(O\left(\frac{1}{\sqrt{n}}\right)+\frac{2 \rho_{\lambda_{n}}^{\prime}\left(\frac{a_{n}}{2}\right)}{a_{n}}\right)\left\{\sum_{k \in \mathfrak{M}_{0}}\left\|\widehat{\boldsymbol{\eta}}_{k}-\boldsymbol{\eta}_{0, k}\right\|^{2}\right\}^{1 / 2} \\
& \leq c_{0}^{-3 / 2}\left(O\left(\frac{1}{\sqrt{n}}\right)+o\left(n^{\alpha-\frac{1}{2}} s_{n}^{-1 / 2}\right)\right) O_{p}\left(s_{n}^{1 / 2} n^{-\alpha}\right)=o_{p}\left(n^{-1 / 2}\right),
\end{aligned}
$$

So it follows that $\sqrt{n}\left\|\hat{\mathbf{v}}_{\mathfrak{M}_{0}}-\mathbf{v}_{0, \mathfrak{M}_{0}}\right\|=o_{p}(1)$. Combing this with (17) yields $I_{3} \xrightarrow{\mathrm{P}} 0$. This together with (14)-(16) completes the proof.
2. Proof of Lemma 1. Observe that

$$
\begin{align*}
& \text { (19) } P\left(\left(\varepsilon, \widehat{f}-f^{*}\right)_{n}>C_{1} s_{n} r_{n}^{2}+C_{1} r_{n} \sum_{j=1}^{p_{n}}\left\|\widehat{f}_{j}-f_{j}^{*}\right\|_{n}\right) \leq \tag{19}\\
& \sum_{j \in \mathfrak{M}_{0}} P\left(\frac{\left(\varepsilon, \widehat{f}_{j}-f_{j}^{*}\right)_{n}}{r_{n}+\left\|\widehat{f}_{j}-f_{j}^{*}\right\|_{n}}>C_{1} r_{n}\right)+\sum_{j \in M_{0}^{c}} P\left(\left(\varepsilon, \widehat{f_{j}}-f_{j}^{*}\right)_{n}>C_{1} r_{n}\left\|\widehat{f}_{j}-f_{j}^{*}\right\|_{n}\right) .
\end{align*}
$$

Consider an index $j \in \mathfrak{M}_{0}^{c}$, and note that $f_{j}^{*} \equiv 0$. We have,

$$
P\left(\left(\varepsilon, \widehat{f}_{j}-f_{j}^{*}\right)_{n}>C_{1} r_{n}\left\|\widehat{f}_{j}-f_{j}^{*}\right\|_{n}\right) \leq P\left(\sup _{f \in \mathcal{F}_{j}(1)}(\varepsilon, f)_{n}>C_{1} r_{n}\right),
$$

where $\mathcal{F}_{j}(\delta)$ is defined for every positive δ as $\left\{f \in \mathcal{F}_{j}^{0},\|f\|_{n} \leq \delta\right\}$. Given a pseudo-metric space (\mathcal{X}, d), we will use $N(u, \mathcal{X}, d)$ to denote the smallest
number N, such that N balls of d-radius u can cover \mathcal{X}. We will also write $H(u, \mathcal{X}, d)$ for $\log N(u, \mathcal{X}, d)$. In Appendix 3 we demonstrate that

$$
\begin{equation*}
\int_{0}^{\delta} H^{1 / 2}\left(u, \mathcal{F}_{j}(\delta),\|\cdot\|_{n}\right) d u \lesssim q_{n}^{1 / 2} \delta \tag{20}
\end{equation*}
$$

which, by a maximal inequality for weighted sums of subgaussian variables, e.g. Corollary 8.3 of [2], implies $P\left(\sup _{f \in \mathcal{F}_{j}(1)}(\varepsilon, f)_{n}>C_{1} r_{n}\right) \lesssim \exp \left(-c_{2}^{2} C_{1}^{2} n r_{n}^{2}\right)$ for some universal constants C_{1} and c_{2}. Moreover, c_{2} depends only on the distribution of the ε_{i} 's, and the bound holds for all j and n, provided C_{1} is above a certain universal threshold. Hence,

$$
\begin{equation*}
\sum_{j \in \mathbb{M}_{0}^{c}} P\left(\left(\varepsilon, \widehat{f}_{j}-f_{j}^{*}\right)_{n}>C_{1} r_{n}\left\|\widehat{f}_{j}-f_{j}^{*}\right\|_{n}\right) \lesssim p_{n} \exp \left(-c_{2}^{2} C_{1}^{2} n r_{n}^{2}\right) . \tag{21}
\end{equation*}
$$

Now consider an index $j \in \mathfrak{M}_{0}$. We will apply a peeling argument and intersect the set $A=\left\{\left(\varepsilon, \widehat{f}_{j}-f_{j}^{*}\right)_{n}>C_{1} r_{n}^{2}+C_{1} r_{n}\left\|\widehat{f}_{j}-f_{j}^{*}\right\|_{n}\right\}$ with the sets $B_{0}=\left\{\left\|\widehat{f}_{j}-f_{j}^{*}\right\|_{n} \leq r_{n}\right\}, B_{s}=\left\{2^{s-1} r_{n}<\left\|\widehat{f_{j}}-f_{j}^{*}\right\|_{n} \leq 2^{s} r_{n}\right\}$, where $s=$ $1,2, \ldots, S$, and $B_{S+1}=\left\{\tau / 2<\left\|\widehat{f}_{j}-f_{j}^{*}\right\|_{n}\right\}$. Here τ is the constant from Condition 4(B) and $S=\left\lfloor\log _{2}\left(\tau r_{n}^{-1}\right)\right\rfloor$, which guarantees $\tau / 2 \leq 2^{S} r_{n} \leq \tau$. Note that there exists a universal constant \tilde{C}, such that $\left\|f_{j}^{*}\right\|_{n} \leq \tilde{C}$ for all j and n. Take $\tilde{c}=1+2 \tilde{C} / \tau$. On the event B_{S+1}, we have $\left\|\widehat{f}_{j}\right\|_{n} /\left\|\widehat{f}_{j}-f_{j}^{*}\right\|_{n} \leq \tilde{c}$ and $\left\|f_{j}^{*}\right\|_{n} /\left\|\widehat{f_{j}}-f_{j}^{*}\right\|_{n} \leq \tilde{c}$ for all j and n. Note that $P(A) \leq \sum_{s=0}^{S+1} P\left(A B_{s}\right)$, and, consequently,

$$
\begin{aligned}
P(A) \leq & P\left(\sup _{g \in \mathcal{G}_{j}\left(r_{n}\right)}(\varepsilon, g)_{n}>C_{1} r_{n}^{2}\right)+\sum_{s=1}^{S} P\left(\sup _{g \in \mathcal{G}_{j}\left(2^{s} r_{n}\right)}(\varepsilon, g)_{n}>C_{1}\left(2^{s-1} r_{n}\right) r_{n}\right) \\
& +P\left(\sup _{\tilde{g} \in \tilde{\mathcal{G}}_{j}(\tilde{c})}(\varepsilon, \tilde{g})_{n}>C_{1} r_{n}\right)
\end{aligned}
$$

where $\mathcal{G}_{j}(\delta)=\left\{g=f-f_{j}^{*},\|g\|_{n} \leq \delta, f \in \mathcal{F}_{j}^{0}\right\}$ and $\tilde{\mathcal{G}}_{j}(\tilde{c})=\mathcal{F}_{j}(\tilde{c}) \ominus \mathcal{F}_{j}(\tilde{c})$. Arguing as in Appendix 3, while taking advantage of Condition 4(B), we can derive $\int_{0}^{\delta} H^{1 / 2}\left(u, \mathcal{G}_{j}(\delta),\|\cdot\|_{n}\right) d u \lesssim q_{n}^{1 / 2} \delta$, for $\delta \leq \tau$. Using Corollary 8.3 of [2] again we derive $P\left(\sup _{g \in \mathcal{G}_{j}(\delta)}(\varepsilon, g)_{n}>C_{1}(\delta / 2) r_{n}\right) \lesssim \exp \left(-c_{3}^{2} C_{1}^{2} n r_{n}^{2}\right)$, where c_{3} is half the constant c_{2}, introduced earlier, provided C_{1} is above a certain universal threshold. Thus,

$$
\begin{array}{r}
P\left(\sup _{g \in \mathcal{G}_{j}\left(r_{n}\right)}(\varepsilon, g)_{n}>C_{1} r_{n}^{2}\right)+\sum_{s=1}^{S} P\left(\sup _{g \in \mathcal{G}_{j}\left(2^{s} r_{n}\right)}(\varepsilon, g)_{n}>C_{1} 2^{s-1} r_{n}^{2}\right) \\
\lesssim \log n \exp \left(-c_{3}^{2} C_{1}^{2} n r_{n}^{2}\right) .
\end{array}
$$

Similar arguments lead to $P\left(\sup _{\tilde{g} \in \tilde{\mathcal{G}}_{j}(\tilde{c})}(\varepsilon, \tilde{g})_{n}>C_{1} r_{n}\right) \lesssim \exp \left(-c_{4}^{2} C_{1}^{2} n r_{n}^{2}\right)$, where $c_{4}=c_{2} /(2 \tilde{c})$. Consequently, $P(A) \lesssim \log n \exp \left(-c_{5}^{2} C_{1}^{2} n r_{n}^{2}\right)$, where $c_{5}=$ $\min \left(c_{3}, c_{4}\right)$. It follows from bounds (19) and (21) that
$P\left(\left(\varepsilon, \widehat{f}-f^{*}\right)_{n}>C_{1} s_{n} r_{n}^{2}+C_{1} r_{n} \sum_{j=1}^{p_{n}}\left\|\widehat{f}_{j}-f_{j}^{*}\right\|_{n}\right) \lesssim p_{n} \log n \exp \left(-c_{5}^{2} C_{1}^{2} n r_{n}^{2}\right)$,
provided C_{1} is above a universal threshold. The right-hand side of the above bound tends to zero by the assumption on the rate of growth for d_{n}, provided $C_{1}^{2}>2 c_{5}^{-2}$.
3. Proof of inequality (20). For each given j and $\boldsymbol{\eta}_{j}$, we will write $H_{\boldsymbol{\eta}_{j}, j}(\cdot)$ for the d_{n}-dimensional row vector valued function $\mathbf{h}_{\boldsymbol{\eta}_{j}, j}\left(\boldsymbol{\eta}_{j}^{T}.\right)$. Note that $\left\|H_{\boldsymbol{\eta}_{2}, j} \boldsymbol{\xi}_{2}-H_{\boldsymbol{\eta}_{1}, j} \boldsymbol{\xi}_{1}\right\|_{n} \leq\left\|H_{\boldsymbol{\eta}_{2}, j}\left(\boldsymbol{\xi}_{2}-\boldsymbol{\xi}_{1}\right)\right\|_{n}+\left\|H_{\boldsymbol{\eta}_{2}, j} \boldsymbol{\xi}_{1}-H_{\boldsymbol{\eta}_{1}, j} \boldsymbol{\xi}_{1}\right\|_{n}$. Thus,

$$
\begin{equation*}
H\left(u, \mathcal{F}_{j}(\delta),\|\cdot\|_{n}\right) \lesssim H_{1}(u / 2)+H_{2}(u / 2), \tag{22}
\end{equation*}
$$

where $\exp \left[H_{1}(u)\right]$ is the size of the grid of $\boldsymbol{\xi}_{1}$ values, for which $\| H_{\eta_{2}, j}\left(\boldsymbol{\xi}_{2}-\right.$ $\left.\boldsymbol{\xi}_{1}\right) \|_{n} \leq u$ can be guaranteed for all $\boldsymbol{\xi}_{2}$ and $\boldsymbol{\eta}_{2}$ with $\left\|\boldsymbol{\eta}_{2}\right\|=1$ by choosing the appropriate grid point, while $\exp \left[H_{2}(u)\right]$ is the size of the grid of $\boldsymbol{\eta}_{1}$ values, for which $\left\|H_{\boldsymbol{\eta}_{2}, j} \boldsymbol{\xi}_{1}-H_{\boldsymbol{\eta}_{1}, j} \boldsymbol{\xi}_{1}\right\|_{n} \leq u$ can be ensured all $\boldsymbol{\xi}_{1}$ and $\boldsymbol{\eta}_{2}$ with $\left\|\boldsymbol{\eta}_{2}\right\|=1$.

First consider H_{1}. Note the general inequalities $d_{n}^{-1 / 2}\|\boldsymbol{\xi}\| \lesssim\left\|H_{\boldsymbol{\eta}, j} \boldsymbol{\xi}\right\|_{n} \lesssim$ $d_{n}^{-1 / 2}\|\boldsymbol{\xi}\|$, which follow from Condition $3(\mathrm{E})$ and Lemma 6.1 in [3]. Using these bounds, Corollary 2.6 of [2] implies $H_{1}(u / 2) \lesssim d_{n}[1+\log (\delta / u)]$.

Now consider H_{2}. Note that $\mathbf{h}_{\eta_{2}}\left(\boldsymbol{\eta}_{2}^{T} \cdot\right)=\mathbf{h}_{\boldsymbol{\eta}_{1}}\left(a+b \boldsymbol{\eta}_{2}^{T} \cdot\right)$, where $\max (|a|, \mid b-$ 1|) $\lesssim \max _{i}\left|\left(\boldsymbol{\eta}_{2}-\boldsymbol{\eta}_{1}\right)^{T} \boldsymbol{\theta}_{i}\right|$. Let $g=\mathbf{h}_{\boldsymbol{\eta}_{1}} \boldsymbol{\xi}_{1}$, and note that $\left|g\left(z_{2}\right)-g\left(z_{1}\right)\right| \lesssim$ $d_{n}^{3 / 2} \delta\left|z_{2}-z_{1}\right|$ by the properties of the cubic B-spline derivatives. Consequently,
$\left\|H_{\boldsymbol{\eta}_{2}, j} \boldsymbol{\xi}_{1}-H_{\boldsymbol{\eta}_{1}, j} \boldsymbol{\xi}_{1}\right\|_{n}=\| g\left(a+b \boldsymbol{\eta}_{2}^{T} \cdot\right)-g\left(\boldsymbol{\eta}_{1}^{T} \cdot\right)| |_{n} \lesssim d_{n}^{3 / 2} \delta \max _{i \leq n}\left|\left(\boldsymbol{\eta}_{2}-\boldsymbol{\eta}_{1}\right)^{T} \boldsymbol{\theta}_{i}\right|$.
Write Δ_{k} for the k-th element of $\boldsymbol{\eta}_{2}-\boldsymbol{\eta}_{1}$ and note that the right-hand side of the above inequality is written as $d_{n}^{3 / 2} \delta \max _{i \leq n}\left|\sum_{k=1}^{q_{n}} \Delta_{k} \theta_{i k}\right|$. Observe that

$$
\max _{i \leq n}\left|\sum_{k=1}^{q_{n}} \Delta_{k} \theta_{i k}\right| \leq \max _{i \leq n}\left(\sum_{k=1}^{q_{n}} \Delta_{k}^{2} k^{-4}\right)^{1 / 2}\left(\sum_{k=1}^{q_{n}} \theta_{i k}^{2} k^{4}\right)^{1 / 2} \lesssim\left(\sum_{k=1}^{q_{n}} \Delta_{k}^{2} k^{-4}\right)^{1 / 2}
$$

where the last inequality holds by Condition 3(A). It follows from (23) that

$$
\begin{equation*}
\left\|H_{\boldsymbol{\eta}_{2}, j} \boldsymbol{\xi}_{1}-H_{\boldsymbol{\eta}_{1}, j} \boldsymbol{\xi}_{1}\left|\|_{n} \lesssim d_{n}^{3 / 2} \delta q_{n}^{1 / 2} \max _{k \leq d_{n}}\right| \Delta_{k} \mid k^{-2}\right. \tag{24}
\end{equation*}
$$

Construct the $\boldsymbol{\eta}_{1}$ grid by selecting the locations for the k-th coordinate from a uniform grid with step u on $\left[0, d_{n}^{3 / 2} \delta q_{n}^{1 / 2} k^{-2}\right]$. Then, for each $\boldsymbol{\eta}_{2}$ and $\boldsymbol{\xi}_{1}$, we can find a grid point $\boldsymbol{\eta}_{1}$ for which the right-hand side of (24) is bounded by u. The total number of the corresponding grid points is bounded by a constant factor of

$$
\begin{equation*}
\prod_{k=1}^{q_{n}}\left(\delta d_{n}^{3 / 2} q_{n}^{1 / 2} k^{-2} / u\right) \lesssim\left(4 \delta e^{2} / u\right)^{q_{n}} \tag{25}
\end{equation*}
$$

where the last inequality follows from Stirling's formula and $d_{n} \lesssim q_{n}$. Hence, $H_{2}(u / 2) \lesssim q_{n}[1+\log (\delta / u)]$, and

$$
\begin{aligned}
\int_{0}^{\delta} H^{1 / 2}\left(u, \mathcal{F}_{j}(\delta),\|\cdot\|_{n}\right) d u & \leq \int_{0}^{\delta}\left[H_{1}^{1 / 2}(u / 2)+H_{2}^{1 / 2}(u / 2)\right] d u \\
& \lesssim q_{n}^{1 / 2}\left(\delta+\delta \int_{0}^{1} \log ^{1 / 2}(1 / v) d v\right) \lesssim q_{n}^{1 / 2} \delta
\end{aligned}
$$

References.

[1] Inglot, T. (2010). Inequalities for quantiles of the chi-square distribution. Probability and Mathematical Statistics 30, 339-351.
[2] van de Geer, S. (1999). Empirical Processes in M-Estimation. Cambridge University Press.
[3] Zhou, S., Shen, X. and Wolfe, D. (1998). Local asymptotics for regression splines and confidence regions. The Annals of Statistics 26, 1760-1782.

Data Sciences and Operations Department
Marshall School of Business
University of Southern California
Los Angeles, CA 90089
USA
E-MAIL: fanyingy@marshall.usc.edu
gareth@marshall.usc.edu
radchenk@marshall.usc.edu

