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ADDITIVE REGRESSION
By YINGYING FAN AND GARETH M. JAMES AND PETER RADCHENKO

University of Southern California

1. Proofs of Theorems 1 and 2. Let n=(n{,---,n.)" be a (pgn)-
vector and © = (01, ---,0,) be an n X (pg,) matrix. With matrix notation,
the linear FAR criterion minimizes the following objective function

(1) Qn) = *llY on|* + Zmn \fl!@m]H)
Define the (¢, s,)-dimensional hypercube

() N={neRm iy =0, |n—mnoll < veos; 20},
where || - || stands for the infinity norm of a vector.

LEMMA 1.1. Define the event & = {H@g;to’f*uoo < nA,/2}. Assume that
Ann®Qn/3n — 0 with o defined in Condition 2(B), then under Condition 2
and conditional on event £, there exits a vector n € N such that ngy, is a
solution to the following nonlinear equations

1
(3) _EG%O (Y - @93?0"793?0) + VSRO (TI) = 07
where von, (n) is a vector obtained by stacking vi(n) = p/\n(f H@;mkH) é?ﬂ’“g’f ,

k € Mo one underneath another.

PRrOOF. For any 7 = (71,73, ,A.)" € N, by Condition 2(D) we have

o < ~1/2
f}?el%%( 1Ok (1, no,k)” > ¢ ,gng%%( 175, — 770,1:”

«

) < g i a7 = 1o lloe < 17

This together with triangular inequality and Condition 2(B) entails that for
n large enough,

~ ~ 1_
(5) 110kl = 19km0 1| = 19k(71, = m0) Il = OkM0 4l = 227 > V/nat /2.
1
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Thus, by Condition 2(A), for any k € My, p’)\n(ﬁﬂ@kﬁkﬂ) < P, (an/2).
Hence, by the definition of v and Condition 2(D) we obtain that for any
nenN,

(6)
) L L |©F Oyl _ Ah,(an/2)

< (=@ —= ST =
e ()lloo < sec 3, (2 IOR D a7 =0 S <~ G

Since %@%O Ogn, has bounded eigenvalues, it follows from matrix norm cal-

culations that
H(G&O@mo)_l”m < vV SnQnAmax((@g;IO@{mO)_l> < caln_l Sndn-

Combining the above inequality with Cauchy-Schwartz inequality, Condition
2(C) and (6) yields

1| (©53, Oom) ™ Vo (7)o
< 1| (O, Om0) oo Voo (i) lloe < 0(n =, /2).

Similarly, since A\,n“qy+/Sn — 0, conditional on the event £ we have
(O30, O )~ O, lloo < 11(On, O ) ™ oo O, |0 < 0(n™ g5 /2).

Combing the above two inequalities and by Cauchy-Schwartz inequality we
obtain for large enough n,

(7) 1(O32, Omto) ™ (nvamy (1) — O, ") loo < 0(a,*n ™).

Define the vector-valued continuous function g : R — R by g(x) =
Mo, — (@&O@mo)_l(nvmo (x) — @%Os*), where x = (x7,--- 7XL(),Tn)T with
xi € R for k=1,--- sy, and vop, (%) is a vector obtained by stacking the

ofe
vectors vi(xy) = p’)\n(ﬁHkakH)ﬁ”"Tm, k=1,---,s, one underneath

another. Then for any x € N, by (7) we have

g (%) — Mo, lloc < v/eoa, /20~

for large enough n. The above inequality indicates that g(A) C N. Since

g(x) is a continuous function on the convex, compact hypercube N, applying

Brouwer’s fixed point theorem shows that (3) indeed has a solution in .
O

LEMMA 1.2. Define & = {||6)%(L).5"‘HoO < nA\p/2}. Assume q,%s, =
o(An), qn +logp = O(nA2), and AnnGn/5n — 0 with « defined in Con-
dition 2(B). Then under Condition 2 and conditional on the event &1 N &,
there exists a local minimizer n of Q(n) (1) such that n € N.
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PROOF. Since A, satisfying conditions in Lemma 1.2 also satisfies con-
ditions in Lemma 1.1, by Lemma 1.1, we know that there exists a vector
1 € N such that 7y, is a solution to (2). We next show that under some
additional conditions, 7} is a local minimizer of @Q(n) in the original RPI"
space.

We first constraint the objective function Q(n) to the (¢,s,)-dimensional
subspace N defined in (2). We will show that under Condition 2 and con-
ditional on & N &2, Q(n) is strictly convex around 7). Then this together
with Lemma 1.1 entails that the critical value gy, minimizes Q(n) in the
subspace N

We proceed to prove the strict convexity of Q(n) in N. Define h(n) =
Z§:1 pAn(ﬁH@jnjH), which is a function in RP%. Note that for each k €

m(h

o2 P, (=107, )
8) ——=h(n) =0L0,—— -
®) Gz = OO e
Pl (L0l oy (2= ]1Okikl)
+ OF Ot O 0 (Vi - )
n||©rny || V1||©Orm ||

Since n € N, similar to (5) we can show that [|©x7[l > [|©rmy ol — 1Ok (M —
Ni.o)ll > v/nan/2 for any k € My and large enough n. Thus it follows from
Condition 2 (A), (B) and (C) that
p&n(ﬁH@kﬁkH) P\ (an/2)
= < =o(1),
1©x7[l/v/n /2

pxn<jﬁrr@kﬁkr\>> — o(1),

where the o(-) terms are uniformly over all & € 9. By linear algebra, for any
matrices A, B and C satisfying A = B + C, we have Apin(A) > Apin(B) +
Amin(C). By Condition 2(A), pf, (= ©47¢]) < 0 and g}, (= [©41c]) > 0.
These together with (8) and Condition 2(D) entail that uniformly over all
k € My,

P&n(ﬁH@kﬁkH)
V1| Ory |
Plﬁn(ﬁH@kﬁkH) - pg\n(\/lﬁH@kﬁkH)>
n|| Ok Vnl|©pn |3

pgn%nekmn))
o~ =0 )
1€l /v

82
on;,

Amin( h(ﬁ)) > Amin (@g@k)

+ Amax (@;{@kﬁkﬁ%@;{@k) (

1 1 ~
9) 2> A, 07 01) (4, (= 047 ]) -
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where for the second inequality we used the fact that
Amax(@ggkﬁkﬁgggek) = Amax (nk @T@k@T@knk) < Amax(eT@k)H@knkHQ'

2 ~
%%h(n), k € M.

Then it is easy to see that the Hessian matrix & 2 Q(ﬁ) = n*16%0 O, +H.
Mo

Let H be a block diagonal matrix with block matrices

Thus, it follows from the above inequality (9) that
(10)

Amin ( 2 2

N 1 T ) .
_Z > A (2 > o0 — .
877331()@(77)) - nAmm(Gng@mo) + krgigtlo Amm(@nih(n)) > e = oll)

Therefore, for large enough n, restricted on the space AV, the function Q(n) is
strictly convex around 7} and thus has a unique minimizer in a ball N7 C N
centered at 7). Since by Lemma 1.1 1) is a critical point, 7 is indeed this
strict local minimizer in Nj.

We next show that 7 is also a local minimizer in the original RPIn-
dimensional space. We will first show that for 7y, defined in Lemma 1.1,
conditional on & N &,

(11)

T 1o 11/2 T \—1a —1/2 c
;Ielgg{v CHCT = max [0;(6;6;)7 ¥l <n 2p\,.(04), V5 € 9,
where

V= ”_l@gr(Y — O,y Nan,) = n—l(ajT@mO (Mo,9my — Mom,) + n_l@]TE*-
By Lemma 1.1, we have ng gy, —Non, = (@%O@gmo)*l(nvmo - @%Os*). Plug-
ging this into v, we obtain that for j € MG, v; = @;‘-F@gmo (@%0 Oom,)  tvam, +
n~1[0; — ©7 Om,(Ogy, Om,) 'Oy le*. Therefore,

(12) (V] (0]0,)"'v;}1? = 10;(6]€;) ¥l < I + 25,
where
Ii; =0;(0]0;) 0T Om, (O, Om,) Vo, |,
L; =n""(16;(676,)7'67 (I - Om,(Om,Om,) ™ O, )|
By (6), Condition 2(B) and Condition 2(D), conditional on & N &;, we have

L1 g < (Vo [l [1©5(8 0;) ™ 07 Oany (Ory Omtg) ~loo2 < 5 \fp,\n(o‘ir)

I; <n~'0;(6]0;) 0] (I - Om, (O, Om,) O, )€l
+ nilH@J(@?@j)ilef(I — @mo(@%o@mo)il@g}}o)e” = 12717]' + 12727j,
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where the inequality for I ; is uniformly over all j € 9. Since both
@j(@f(aj)*lef and (I — 69330(9%0@9310)*19%0) are projection matrices
and € is a n-vector of Gaussian random variables, it follows that n2I2271’j
is a Chi-square random variable with degrees of freedom at most ¢,. Thus,
by Chi-square tail probability inequality (see [1]),

P(max Ir1; > n '\/g, + Clogp)
JEMS

= P(maxn’I, ; > (gn + Clogp)) < C(p — sp) exp(~Clogp) = 0,
J 0

where C'is a large enough generic positive constant. Thus, max;eomg I2,1,; =

op(rfl(q}/2 + v/logp)). Now by Condition 1 and assumption that g, 2%s, =
o(An), it is easy to derive that |e|lcc = 0(\,). Thus, [lellz = o(n!/2\,).
This together with @j(@f@j)_l(%f and (I — @mo(@%()@gmo)_l@%o) being
projection matrix ensures that uniformly over all j € 9,

Laj <n 'ells =o(n/2\,).

Since it is assumed in the theorem that g, + logp = O(n)2?), combining the
above results on Iz ; and I ; yields

max L j = op(n” " (gy/* + V10g(p))) = 0p(\n/ V1) < P, (04)/(2V/).
In summary, the results on I; and I show that inequality (11) holds.

Let B={n € R™P . Nong = 0} be a subspace in RPI". Take a sufficiently
small ball A5 in RPI" centered at 7) such that Ao N B C Nj. Since p’/\n (t) is
a continuous decreasing function and (11) holds for i € N, appropriately
shrink the radius of the ball A gives that there exists a 6 € (0,00) such
that for any 1 € Na,

(13) max [|6;(076,) 167 (Y — en)l| < n'/2; (9).
Fix an arbitrary n; = (n{l, e ,n{p)T € Na NNF, we next show that

QM) > Q(n). Let my = (ng’l, e ,ngp)T be the projection of ; onto B.
Then it follows from the definitions of N7, N2, B and 7 that Q(ny) > Q(n).
Thus we only need to show Q(n;) > Q(n5).
o)
Note that Q(n,) — Q(n2) = VQ(n3)(n, —n,) = Zjemg 77{]- %523)7 where
713 is a vector on the segment connecting 1, and m,. Since 14, = 0 for any

k € 9NG, there exits a constant 0 < v < 1 such that ng, = ynq,, k£ € M.
Then by the definitions of B, Ni, N3, we know that n; € Na. Shrink the
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ball M such that for any n € Na, [|©xn,|l = [|Or(n, — 1) || < /nd, k € M.
Since 13 € Na, we have ||Ogns;|| < +/nd and thus p’/\n(ﬁH@kn%H) > ph\ (9)
for k € M. Therefore,

9Q(n
Q(m) — Q(n2) = VQ(n3)(n E 771T] )
JEME 7’]
/
T 1 _r P,\n(ﬁH@j’th) T
= | — =05 (Y —0n3)+ ©1n;3;
jzemc"”( RO (Y =6 T €O

Vv

1
n Z n1,0; (Y — Ong) + Jn ——p, (9) Z 19;m3ll = Is + Iu.
" jems v jems

Next note that by Cauchy-Schwartz inequality and (13),

1 -
sl < > 105my;119;(070;) 107 (Y — ony)|
jems
1 _
=— > 95m116;(8]0;) 7' O] (Y — 6ny)| < L.
jEME
Thus, Q(n;) > Q(ny), which together with Q(ny) > Q(7n) ensures that 7

is also a strict local minimizer in the original RP?* dimensional space. The
proof is completed. O

Proof of Theorem 1

PRrROOF. We only need to show that P (& N &) — 1. Then Theorem 1
follows easily from Lemmas 1.1 and 1.2. To this end, note that

P(E1NE&)=1—P(|0Te"|00 > nAn/2)
>1-P(|0%e]o = nAn/2 — 07 e]c0).

By the assumption that s,q,2 = o()\,), it is easy to derive that ||e|lo =
o(An). Since each column of © has ¢ norm +/n, it follows that [|O; < n.
Thus, by Cauchy-Schwartz inequality, [|©7e||o < [|O]|1]/€]lco < 0o(nAy,). This
follows that

187 elloo < nA,/4

for large enough n.
Now we consider ||©Te|lw. Let & = (&1, ,&,)T = OT€, then & ~
N(0,n02d?) with d? the i-th diagonal of matrix n=1©7'©. Since each column
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of © has f3 norm /n, we have d? = 1 for 1 < i < g,p. Hence, by Bonferroni’s
inequality and the assumption n2 (log(pg,)) ™! — oo we further obtain

qnpP
P(|07¢|ls > nAn/4) <> P(I&] > nn/4)
i=1
4opgn 2 2
< —exp(—nA,/(3207)) — 0.
Combining the above two results we have completed the proof of Theorem
1. O

Proof of Theorem 2

PROOF. Let Von, = von,(n) and voom, = Von, (1) with the function
Vo, () defined in Lemma 1.1, 79y, the solution to (3), and 7y the true
regression coefficient vector. Since 7jgy, is a solution to (3), for any vector
c € R*"9" gsatisfying ¢’ ¢ = 1, we have the following decomposition

(14) c" (O30, Omo) " (o, — Mo,am,) + (O, Omey) ™/ v ]
=c’ (0%, Om,) /20L& + T (0%, Om,) /?0%; e
+ ”CT(@QOGMO)_IM(‘A’WO — Vo) =11 + Iz + I3.
It is easy to see
(15) I ~ N(0,0?%).

As for I, note that similar to Theorem 1 we can prove that ||e[|oo = o(n~'/2).
Thus, ||e|| = o(1). So we can derive

(16) |I5] < [|c" (Odr,Omo) "0, lllell = el = o(1).
Now let us consider I3. By Cauchy-Schwartz inequality we obtain

(17) |3] < [[Vnc" (O, Om,) =21V (¥at, — vom, )l

—1/2 N
< ey 2 IV (Fam, — voamo)|-

eTe oy N
Define g(n;) = iﬂp&n(ﬁ”@knkﬂ) ”’ék:;:lr. Then by definitions of voy, and
Vo,Mo >
. . 9
(18) Vi = Vo = 9(0k) = 9(Mox) = 59 () (T = 1Mo 1)
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with 7, lying on the segment connecting 7 ;, and 7. Thus, 7 = G ,ﬁZ)T €
N. Tt has been proved in (5) that [|©gn,| > /na,/2 for any n € N. Note
that for any n = (n{,--- ,n.)" € N, and any k € Mo,

@T@k’l’] TITGT@k
(__) k E'NE ™~k
N P,\n(ﬁ”@knk”) { STACH @T@knknk @TG)k} '
vn [©km 1Ok |1

Using similar arguments to (9) and by Condition 2(A) and the assumption
Sup;> an Py, (1) = O(n=1/?), we have for any k € My,

QPAn(Tn)

an

(L 2h,(%) 0 0
@' (~0(72)= "2 2) < Awiny-9010)) < Auax((5-9(m)) < €

This together with (18), Theorem 1, and the theorem assumptions ensures
that

. _ 1 210>\n (%) 2
¥y —vom | < 5" (O(2) + 225 {5~ g2y
vn
keMo
_ 1
<" (012 + ol 351 ) O,(s1/2072) = oy (0711,
So it follows that v/n||Vor, — Vo, || = 0p(1). Combing this with (17) yields
I; 25 0. This together with (14) —(16) completes the proof. O

2. Proof of Lemma 1. Observe that

Pn

(19) P (e.f = > Crsur? + Crra Y_IF5 = flln | <

j=1
S p < (s,fj: 3 )*n - le)+ s ((e,fj — Y > Cumllf; - f;“lln) .
jem, o+ — fj lIn JEME

Consider an index j € MG, and note that fj’-k = 0. We have,
P((fi= 10> Corallfi = £10) <P [ swp (5,10 > Cirn ]
feF;(1)

where F;(9) is defined for every positive 0 as {f € J’:]Q, | flln < 0}. Given
a pseudo-metric space (X, d), we will use N(u,X,d) to denote the smallest
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number N, such that N balls of d-radius u can cover X. We will also write
H(u,X,d) for log N(u,X,d). In Appendix 3 we demonstrate that

)
(20) /0 HY2(u, F5(8), | - |ln)du < q1/26,

which, by a maximal inequality for weighted sums of subgaussian variables,
e.g. Corollary 8.3 of [2], implies P(sup ez, (1) (€, f)n > Cirn) < exp(—c 2C%nr2)
for some universal constants C'; and co. Moreover, ca depends only on the
distribution of the ¢;’s, and the bound holds for all j and n, provided C is
above a certain universal threshold. Hence,

(21) Z P ((57}3‘ - fg*)n > Clrn”fj - f;”n) S Pnexp (*03012”7”721) .
jEME

Now consider an index j € My. We will apply a peeling argument and
intersect the set A = {(e, f] fn > Cyr? +C’1rn||f] filln} with the sets
By = {Hfj - fj ln < 7Tn}, Bs = {2°7 1rn < ||fj - f;”n < 2°r,}, where s =

2,..,8, and Bg11 = {7/2 < H]/"; filln}. Here 7 is the constant from
Condition 4(B) and S = [logy(77,; 1), which guarantees 7/2 < ZSrn <.
Note that there exists a universal constant C, such that || f e < C for all j
and n. Take ¢ = 1+2C /7. On the event Bg,1, we have HfJHn/Hf] filln < ¢
and || £#]ln/ ]| f; — f7]ln < ¢ for all j and n. Note that P(A) < 54 P(AB,),
and, consequently,

< s—1
R R I o

—i—P( sup (&,9)n > Clrn>,
3€6;(9)
where G;(6) = {g = f — 7, lglln <6, f € F0} and G;(&) = F;(&) & F;(@).
Arguing as in Appendix 3, while taking advantage of Condition 4(B), we
can derive fo‘s HY2(u,G;(0), 1] [|n)du < a/*5, for § < 7. Using Corollary 8.3
of [2] again we derive P(supyeg,(s)(€,9)n > C1(6/2)rn) < exp(—c3Cinr?),
where c3 is half the constant co, introduced earlier, provided C] is above a
certain universal threshold. Thus,

P( sup (c,9)n > Cir2) —|—ZP sup  (g,9)n > C12°112)
9€G;(rn) s=1  9€9;(2°Tn)

< lognexp(—c3Cinr?).
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Similar arguments lead to P(Supgeé’j(é) (6,9)n > C11mp) < exp(—c2C3nrl),
where ¢4 = c/(2¢). Consequently, P(A) < lognexp(—c2C?nr2), where c5 =
min(cs, ¢4). It follows from bounds (19) and (21) that

Pn

P (e,f = [)n> Crisarp+ Cirn D |fj = [Fln | S pnlognexp(—c3Cinry),
j=1

provided C' is above a universal threshold. The right-hand side of the above

bound tends to zero by the assumption on the rate of growth for d,,, provided
C? > 2c5%

3. Proof of inequality (20). For each given j and n;, we will write Hy_ ;(-)
for the d,-dimensional row vector valued function hnj,j(an')- Note that

[Hy, &2 — Hu,j€1lln < |[Hn, (&2 — &)ln + |[Hn, i€ — Hy, &1 [|n- Thus,

where exp[H(u)] is the size of the grid of §; values, for which ||H,, ;(§s —
&€1)|ln < u can be guaranteed for all &, and 1, with ||1,]| = 1 by choosing
the appropriate grid point, while exp[Hz(u)| is the size of the grid of n
values, for which ||Hy, ;&1 — Hy, j&1|ln < u can be ensured all §; and n,
with ]| = 1.

First consider H;. Note the general inequalities d,, Y 2||§H S 1 Hnjlln S
d;l/QHEH, which follow from Condition 3(E) and Lemma 6.1 in [3]. Using
these bounds, Corollary 2.6 of [2] implies H(u/2) < dy,[1 + log(d/u)].

Now consider Hy. Note that hy,(nl") = hy, (a+bnl-), where max(|al, [b—
1) < max; [(ny — 11)76;|. Let g = hy &, and note that [g(22) — g(z1)| <
d:;’/ %5 |z2 — 21| by the properties of the cubic B-spline derivatives. Conse-
quently,

(23)
|Hn, ;€61 — Hn, €1 lIn = lg(a+bm3-) —g(ni )l S d3/25 max [(ny—m1)7 64

Write Ay, for the k-th element of n, —m; and note that the right-hand side of
the above inequality is written as do/*s maxi<n | Y i Agbix|. Observe that

qn qn 1/2
, 27— 2 14 2.
e 3l < nae (3 o) (o) 5 (o)
= k=1 = k=1
where the last inequality holds by Condition 3(A). It follows from (23) that
(24) ([ Hn, &1 = Hn, j€1lln S d/?00;/% max [ Ag|k~2.
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Construct the n; grid by selecting the locations for the k-th coordinate from
a uniform grid with step u on [0, di/25q71/2k_2]. Then, for each n, and &,
we can find a grid point 1, for which the right-hand side of (24) is bounded
by u. The total number of the corresponding grid points is bounded by a
constant factor of

qn
(25) [ G0k u) < (46 fu)™,
k=1

where the last inequality follows from Stirling’s formula and d,, < ¢,,. Hence,
Hy(u/2) S qn[l 4 log(6/u)], and

) )
/ HY2(u, F(5), || - Il)du < / Y (u)2) + HY(u/2))du
0 0
1
< g2 <5+5 / 1og1/2(1/v)dv> < ¢/2%.
0
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