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1. Proofs of Theorems 1 and 2. Let η = (ηT1 , · · · ,ηTp )T be a (pqn)-
vector and Θ = (Θ1, · · · ,Θp) be an n× (pqn) matrix. With matrix notation,
the linear FAR criterion minimizes the following objective function

Q(η) =
1

2n
‖Y −Θη‖2 +

p∑
j=1

ρλn(
1√
n
‖Θjηj‖).(1)

Define the (qnsn)-dimensional hypercube

N = {η ∈ Rpqn : ηMc
0

= 0, ‖η − η0‖∞ ≤
√
c0q
−1/2
n n−α},(2)

where ‖ · ‖∞ stands for the infinity norm of a vector.

Lemma 1.1. Define the event E1 = {‖ΘT
M0
ε∗‖∞ ≤ nλn/2}. Assume that

λnn
αqn
√
sn → 0 with α defined in Condition 2(B), then under Condition 2

and conditional on event E1, there exits a vector η ∈ N such that ηM0
is a

solution to the following nonlinear equations

− 1

n
ΘT

M0
(Y −ΘM0ηM0

) + vM0(η) = 0,(3)

where vM0(η) is a vector obtained by stacking vk(η) = ρ′λn( 1√
n
‖Θkηk‖) 1√

n

ΘT
k Θkηk

‖Θkηk‖
,

k ∈M0 one underneath another.

Proof. For any η̃ = (η̃T1 , η̃
T
2 , · · · , η̃Tp )T ∈ N , by Condition 2(D) we have

1√
n

max
k∈M0

‖Θk(η̃k − η0,k)‖ ≤ c
−1/2
0 max

k∈M0

‖η̃k − η0,k‖

≤ c−1/2
0

√
qn max

k∈M0

‖η̃k − η0,k‖∞ ≤ n−α.(4)

This together with triangular inequality and Condition 2(B) entails that for
n large enough,

(5) ‖Θkη̃k‖ ≥ ‖Θkη0,k‖− ‖Θk(η̃k − η0,k)‖ ≥ ‖Θkη0,k‖− n
1
2
−α >

√
nan/2.
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Thus, by Condition 2(A), for any k ∈ M0, ρ′λn( 1√
n
‖Θkη̃k‖) ≤ ρ′λn(an/2).

Hence, by the definition of v and Condition 2(D) we obtain that for any
η̃ ∈ N ,
(6)

‖vM0(η̃k)‖∞ ≤ max
k∈M0

ρ′λn(
1√
n
‖Θkη̃k‖) max

k∈M0

1√
n

‖ΘT
k Θkη̃k‖
‖Θkη̃k‖

≤
ρ′λn(an/2)
√
c0

.

Since 1
nΘT

M0
ΘM0 has bounded eigenvalues, it follows from matrix norm cal-

culations that

‖(ΘT
M0

ΘM0)−1‖∞ ≤
√
snqnΛmax

(
(ΘT

M0
ΘM0)−1

)
≤ c−1

0 n−1√snqn.

Combining the above inequality with Cauchy-Schwartz inequality, Condition
2(C) and (6) yields

n‖(ΘT
M0

ΘM0)−1vM0(η̃k)‖∞
≤ n‖(ΘT

M0
ΘM0)−1‖∞‖vM0(η̃k)‖∞ ≤ o

(
n−αq−1/2

n

)
.

Similarly, since λnn
αqn
√
sn → 0, conditional on the event E1 we have

‖(ΘT
M0

ΘM0)−1ΘT
M0
ε∗‖∞ ≤ ‖(ΘT

M0
ΘM0)−1‖∞‖ΘT

M0
ε∗‖∞ ≤ o(n−αq−1/2

n ).

Combing the above two inequalities and by Cauchy-Schwartz inequality we
obtain for large enough n,

‖(ΘT
M0

ΘM0)−1(nvM0(η̃k)−ΘT
M0
ε∗)‖∞ ≤ o(q−1/2

n n−α).(7)

Define the vector-valued continuous function g : Rsnqn → Rsnqn by g(x) =
η0,M0

− (ΘT
M0

ΘM0)−1(nvM0(x) − ΘT
M0
ε∗), where x = (xT1 , · · · ,xTsn)T with

xk ∈ Rqn for k = 1, · · · , sn, and vM0(x) is a vector obtained by stacking the

vectors vk(xk) = ρ′λn( 1√
n
‖Θkxk‖) 1√

n

ΘT
k Θkxk

‖Θkxk‖ , k = 1, · · · , sn one underneath

another. Then for any x ∈ N , by (7) we have

‖g(x)− η0,M0
‖∞ ≤

√
c0q
−1/2
n n−α

for large enough n. The above inequality indicates that g(N ) ⊂ N . Since
g(x) is a continuous function on the convex, compact hypercubeN , applying
Brouwer’s fixed point theorem shows that (3) indeed has a solution in N .

Lemma 1.2. Define E2 = {‖ΘT
Mc

0
ε∗‖∞ ≤ nλn/2}. Assume q−2

n sn =

o(λn), qn + log p = O(nλ2
n), and λnn

αqn
√
sn → 0 with α defined in Con-

dition 2(B). Then under Condition 2 and conditional on the event E1 ∩ E2,
there exists a local minimizer η̂ of Q(η) (1) such that η̂ ∈ N .



FUNCTIONAL ADDITIVE REGRESSION 3

Proof. Since λn satisfying conditions in Lemma 1.2 also satisfies con-
ditions in Lemma 1.1, by Lemma 1.1, we know that there exists a vector
η̂ ∈ N such that η̂M0

is a solution to (2). We next show that under some
additional conditions, η̂ is a local minimizer of Q(η) in the original Rpqn

space.
We first constraint the objective function Q(η) to the (qnsn)-dimensional

subspace N defined in (2). We will show that under Condition 2 and con-
ditional on E1 ∩ E2, Q(η) is strictly convex around η̂. Then this together
with Lemma 1.1 entails that the critical value η̂M0

minimizes Q(η) in the
subspace N .

We proceed to prove the strict convexity of Q(η) in N . Define h(η) =∑p
j=1 ρλn( 1√

n
‖Θjηj‖), which is a function in Rpqn . Note that for each k ∈

M0,

∂2

∂η2
k

h(η̂) = ΘT
k Θk

ρ′λn( 1√
n
‖Θkη̂k‖)

√
n‖Θkη̂k‖

(8)

+ ΘT
k Θkη̂kη̂

T
k ΘT

k Θk

(ρ′′λn( 1√
n
‖Θkη̂k‖)

n‖Θkη̂k‖2
−
ρ′λn( 1√

n
‖Θkη̂k‖)

√
n‖Θkη̂k‖3

)
.

Since η̂ ∈ N , similar to (5) we can show that ‖Θkη̂k‖ ≥ ‖Θkηk,0‖−‖Θk(η̂k−
ηk,0)‖ >

√
nan/2 for any k ∈M0 and large enough n. Thus it follows from

Condition 2 (A), (B) and (C) that

0 <
ρ′λn( 1√

n
‖Θkη̂k‖)

‖Θkη̂k‖/
√
n
≤
ρ′λn(an/2)

an/2
= o
(
1
)
,

ρ′′λn(
1√
n
‖Θkη̂k‖)) = o(1),

where the o(·) terms are uniformly over all k ∈M0. By linear algebra, for any
matrices A, B and C satisfying A = B + C, we have Λmin(A) ≥ Λmin(B) +
Λmin(C). By Condition 2(A), ρ′′λn( 1√

n
‖Θkη̂k‖) < 0 and ρ′λn( 1√

n
‖Θkη̂k‖) > 0.

These together with (8) and Condition 2(D) entail that uniformly over all
k ∈M0,

Λmin(
∂2

∂η2
k

h(η̂)) ≥ Λmin

(
ΘT
k Θk

)ρ′λn( 1√
n
‖Θkη̂k‖)

√
n‖Θkη̂k‖

+ Λmax

(
ΘT
k Θkη̂kη̂

T
k ΘT

k Θk

)(ρ′′λn( 1√
n
‖Θkη̂k‖)

n‖Θkη̂k‖2
−
ρ′λn( 1√

n
‖Θkη̂k‖)

√
n‖Θkη̂k‖3

)
≥ Λmax(

1

n
ΘT
k Θk)

(
ρ′′λn(

1√
n
‖Θkη̂k‖)−

ρ′λn( 1√
n
‖Θkη̂k‖)

‖Θkη̂k‖/
√
n

)
= o(1),(9)
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where for the second inequality we used the fact that

Λmax

(
ΘT
k Θkη̂kη̂

T
k ΘT

k Θk

)
= Λmax

(
η̂Tk ΘT

k ΘkΘ
T
k Θkη̂k

)
≤ Λmax(ΘT

k Θk)‖Θkη̂k‖2.

Let H be a block diagonal matrix with block matrices ∂2

∂η2
k
h(η̂), k ∈ M0.

Then it is easy to see that the Hessian matrix ∂2

∂η2
M0

Q(η̂) = n−1ΘT
M0

ΘM0+H.

Thus, it follows from the above inequality (9) that

Λmin

( ∂2

∂η2
M0

Q(η̂)
)
≥ 1

n
Λmin(ΘT

M0
ΘM0) + min

k∈M0

Λmin(
∂2

∂η2
k

h(η̂)) ≥ c0 − o(1).

(10)

Therefore, for large enough n, restricted on the spaceN , the function Q(η) is
strictly convex around η̂ and thus has a unique minimizer in a ball N1 ⊂ N
centered at η̂. Since by Lemma 1.1 η̂ is a critical point, η̂ is indeed this
strict local minimizer in N1.

We next show that η̂ is also a local minimizer in the original Rpqn-
dimensional space. We will first show that for η̂M0

defined in Lemma 1.1,
conditional on E1 ∩ E2,

max
j∈Mc

0

{v̂Tj (ΘT
j Θj)

−1v̂j}1/2 = max
j∈Mc

0

‖Θj(Θ
T
j Θj)

−1v̂j‖ < n−1/2ρ′λn(0+), ∀j ∈Mc
0,

(11)

where

v̂j = n−1ΘT
j (Y −ΘM0 η̂M0

) = n−1ΘT
j ΘM0(η0,M0

− η̂M0
) + n−1ΘT

j ε
∗.

By Lemma 1.1, we have η0,M0
− η̂M0

= (ΘT
M0

ΘM0)−1(nvM0−ΘT
M0
ε∗). Plug-

ging this into v̂j , we obtain that for j ∈Mc
0, v̂j = ΘT

j ΘM0(ΘT
M0

ΘM0)−1vM0+

n−1[Θj −ΘT
j ΘM0(ΘT

M0
ΘM0)−1ΘT

M0
]ε∗. Therefore,

(12) {v̂Tj (ΘT
j Θj)

−1v̂j}1/2 = ‖Θj(Θ
T
j Θj)

−1v̂j‖ ≤ I1,j + I2,j ,

where

I1,j = ‖Θj(Θ
T
j Θj)

−1ΘT
j ΘM0(ΘT

M0
ΘM0)−1vM0‖,

I2,j = n−1‖Θj(Θ
T
j Θj)

−1ΘT
j

(
I−ΘM0(ΘT

M0
ΘM0)−1ΘT

M0

)
ε∗‖.

By (6), Condition 2(B) and Condition 2(D), conditional on E1 ∩E2, we have

I1,j ≤ ‖vM0‖∞‖Θj(Θ
T
j Θj)

−1ΘT
j ΘM0(ΘT

M0
ΘM0)−1‖∞,2 <

1

2
√
n
ρ′λn(0+),

I2,j ≤ n−1‖Θj(Θ
T
j Θj)

−1ΘT
j

(
I−ΘM0(ΘT

M0
ΘM0)−1ΘT

M0

)
ε‖

+ n−1‖Θj(Θ
T
j Θj)

−1ΘT
j

(
I−ΘM0(ΘT

M0
ΘM0)−1ΘT

M0

)
e‖ ≡ I2,1,j + I2,2,j ,



FUNCTIONAL ADDITIVE REGRESSION 5

where the inequality for I1,j is uniformly over all j ∈ M0. Since both
Θj(Θ

T
j Θj)

−1ΘT
j and (I − ΘM0(ΘT

M0
ΘM0)−1ΘT

M0
) are projection matrices

and ε is a n-vector of Gaussian random variables, it follows that n2I2
2,1,j

is a Chi-square random variable with degrees of freedom at most qn. Thus,
by Chi-square tail probability inequality (see [1]),

P (max
j∈Mc

0

I2,1,j > n−1
√
qn + C log p)

= P
(

max
j∈Mc

0

n2I2
2,1,j > (qn + C log p)

)
≤ C(p− sn) exp(−C log p)→ 0,

where C is a large enough generic positive constant. Thus, maxj∈Mc
0
I2,1,j =

op(n
−1(q

1/2
n +

√
log p)). Now by Condition 1 and assumption that q−2

n sn =
o(λn), it is easy to derive that ‖e‖∞ = o(λn). Thus, ‖e‖2 = o(n1/2λn).
This together with Θj(Θ

T
j Θj)

−1ΘT
j and (I − ΘM0(ΘT

M0
ΘM0)−1ΘT

M0
) being

projection matrix ensures that uniformly over all j ∈Mc
0,

I2,2,j ≤ n−1‖e‖2 = o(n−1/2λn).

Since it is assumed in the theorem that qn + log p = O(nλ2
n), combining the

above results on I2,1,j and I2,2,j yields

max
j∈Mc

0

I2,j = op(n
−1(q1/2

n +
√

log(p))) = op(λn/
√
n) < ρ′λn(0+)/(2

√
n).

In summary, the results on I1 and I2 show that inequality (11) holds.
Let B = {η ∈ Rqnp : ηMc

0
= 0} be a subspace in Rpqn . Take a sufficiently

small ball N2 in Rpqn centered at η̂ such that N2 ∩ B ⊂ N1. Since ρ′λn(t) is
a continuous decreasing function and (11) holds for η̂ ∈ N2, appropriately
shrink the radius of the ball N2 gives that there exists a δ ∈ (0,∞) such
that for any η ∈ N2,

max
j∈M0

‖Θj(Θ
T
j Θj)

−1ΘT
j (Y −Θη)‖ < n1/2ρ′λn(δ).(13)

Fix an arbitrary η1 = (ηT1,1, · · · ,ηT1p)T ∈ N2 ∩ N c
1 , we next show that

Q(η1) > Q(η̂). Let η2 = (ηT2,1, · · · ,ηT2p)T be the projection of η1 onto B.
Then it follows from the definitions of N1, N2, B and η̂ that Q(η2) > Q(η̂).
Thus we only need to show Q(η1) ≥ Q(η2).

Note that Q(η1)−Q(η2) = ∇Q(η3)(η1− η2) =
∑

j∈Mc
0
ηT1j

∂Q(η3)
∂ηj

, where

η3 is a vector on the segment connecting η1 and η2. Since η2k = 0 for any
k ∈ Mc

0, there exits a constant 0 < γ < 1 such that η3k = γη1k, k ∈ Mc
0.

Then by the definitions of B, N1, N2, we know that η3 ∈ N2. Shrink the
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ball N2 such that for any η ∈ N2, ‖Θkηk‖ = ‖Θk(ηk− η̂k)‖ ≤
√
nδ, k ∈Mc

0.
Since η3 ∈ N2, we have ‖Θkη3k‖ ≤

√
nδ and thus ρ′λn( 1√

n
‖Θkη3k‖) ≥ ρ′λn(δ)

for k ∈Mc
0. Therefore,

Q(η1)−Q(η2) = ∇Q(η3)(η1 − η2) =
∑
j∈Mc

0

ηT1j
∂Q(η3)

∂ηj

=
∑
j∈Mc

0

ηT1j

(
− 1

n
ΘT
j (Y −Θη3) +

ρ′λn( 1√
n
‖Θjη3j‖)

√
n‖Θjη3j‖

ΘT
j Θjη3j

)
≥ − 1

n

∑
j∈Mc

0

ηT1jΘ
T
j (Y −Θη3) +

1√
nγ
ρ′λn(δ)

∑
j∈Mc

0

‖Θjη3j‖ ≡ I3 + I4.

Next note that by Cauchy-Schwartz inequality and (13),

|I3| ≤
1

n

∑
j∈Mc

0

‖Θjη1j‖‖Θj(Θ
T
j Θj)

−1ΘT
j (Y −Θη3)‖

=
1

nγ

∑
j∈Mc

0

‖Θjη3j‖‖Θj(Θ
T
j Θj)

−1ΘT
j (Y −Θη3)‖ ≤ I4.

Thus, Q(η1) ≥ Q(η2), which together with Q(η2) > Q(η̂) ensures that η̂
is also a strict local minimizer in the original Rpqn dimensional space. The
proof is completed.

Proof of Theorem 1

Proof. We only need to show that P (E1 ∩ E2) → 1. Then Theorem 1
follows easily from Lemmas 1.1 and 1.2. To this end, note that

P (E1 ∩ E2) = 1− P (‖ΘTε∗‖∞ ≥ nλn/2)

≥ 1− P (‖ΘTε‖∞ ≥ nλn/2− ‖ΘTe‖∞).

By the assumption that snq
−2
n = o(λn), it is easy to derive that ‖e‖∞ =

o(λn). Since each column of Θ has `2 norm
√
n, it follows that ‖Θ‖1 ≤ n.

Thus, by Cauchy-Schwartz inequality, ‖ΘTe‖∞ ≤ ‖Θ‖1‖e‖∞ ≤ o(nλn). This
follows that

‖ΘTe‖∞ ≤ nλn/4

for large enough n.
Now we consider ‖ΘTε‖∞. Let ξ = (ξ1, · · · , ξpq)T = ΘTε, then ξi ∼

N(0, nσ2d2
i ) with d2

i the i-th diagonal of matrix n−1ΘTΘ. Since each column
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of Θ has `2 norm
√
n, we have d2

i = 1 for 1 ≤ i ≤ qnp. Hence, by Bonferroni’s
inequality and the assumption nλ2

n(log(pqn))−1 →∞ we further obtain

P (‖ΘTε‖∞ > nλn/4) ≤
qnp∑
i=1

P (|ξi| > nλn/4)

≤ 4σpqn√
2πnλnσ

exp
(
− nλ2

n/(32σ2)
)
→ 0.

Combining the above two results we have completed the proof of Theorem
1.

Proof of Theorem 2

Proof. Let v̂M0 = vM0(η̂) and v0,M0 = vM0(η0) with the function
vM0(·) defined in Lemma 1.1, η̂M0

the solution to (3), and η0 the true
regression coefficient vector. Since η̂M0

is a solution to (3), for any vector
c ∈ Rsnqn satisfying cT c = 1, we have the following decomposition

cT
[
(ΘT

M0
ΘM0)1/2(η̂M0

− η0,M0
) + n(ΘT

M0
ΘM0)−1/2v0,M0 ](14)

=cT (ΘT
M0

ΘM0)−1/2ΘT
M0
ε+ cT (ΘT

M0
ΘM0)−1/2ΘT

M0
e

+ ncT (ΘT
M0

ΘM0)−1/2(v̂M0 − v0,M0) ≡ I1 + I2 + I3.

It is easy to see

(15) I1 ∼ N(0, σ2).

As for I2, note that similar to Theorem 1 we can prove that ‖e‖∞ = o(n−1/2).
Thus, ‖e‖ = o(1). So we can derive

|I2| ≤ ‖cT (ΘT
M0

ΘM0)−1/2ΘT
M0
‖‖e‖ = ‖e‖ = o(1).(16)

Now let us consider I3. By Cauchy-Schwartz inequality we obtain

|I3| ≤ ‖
√
ncT (ΘT

M0
ΘM0)−1/2‖‖

√
n(v̂M0 − v0,M0)‖(17)

≤ c−1/2
0 ‖

√
n(v̂M0 − v0,M0)‖.

Define g(ηk) = 1√
n
ρ′λn( 1√

n
‖Θkηk‖)

ΘT
k Θkηk

‖Θkηk‖
. Then by definitions of v̂M0 and

v0,M0 ,

v̂k − v0,k = g(η̂k)− g(η0,k) =
∂

∂ηk
g(η̃k)(η̂k − η0,k)(18)
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with η̃k lying on the segment connecting η0,k and η̂k. Thus, η̃ = (η̃T1 , · · · , η̃Tp )T ∈
N . It has been proved in (5) that ‖Θkηk‖ ≥

√
nan/2 for any η ∈ N . Note

that for any η = (ηT1 , · · · ,ηTp )T ∈ N , and any k ∈M0,

∂

∂ηk
g(ηk) =ρ′′λn(

1√
n
‖Θkηk‖)

ΘT
k Θkηkη

T
k ΘT

k Θk

n‖Θkηk‖2

+
ρ′λn( 1√

n
‖Θkηk‖)
√
n

{
ΘT
k Θk

‖Θkηk‖
−

ΘT
k Θkηkη

T
k ΘT

k Θk

‖Θkηk‖3

}
.

Using similar arguments to (9) and by Condition 2(A) and the assumption
supt≥an

2
ρ′′λn(t) = O(n−1/2), we have for any k ∈M0,

c−1
0

(
−O(

1√
n

)−
2ρ′λn(an2 )

an

)
≤ Λmin(

∂

∂ηk
g(ηk)) ≤ Λmax(

∂

∂ηk
g(ηk)) ≤ c−1

0

2ρ′λn(an2 )

an
.

This together with (18), Theorem 1, and the theorem assumptions ensures
that

‖v̂M0 − v0,M0‖ ≤ c−1
0

(
O(

1√
n

) +
2ρ′λn(an2 )

an

){ ∑
k∈M0

‖η̂k − η0,k‖2
}1/2

≤ c−3/2
0

(
O(

1√
n

) + o
(
nα−

1
2 s−1/2
n

))
Op(s

1/2
n n−α) = op(n

−1/2),

So it follows that
√
n‖v̂M0 − v0,M0‖ = op(1). Combing this with (17) yields

I3
P−→ 0. This together with (14) –(16) completes the proof.

2. Proof of Lemma 1. Observe that

(19) P

(ε, f̂ − f∗)n > C1snr
2
n + C1rn

pn∑
j=1

‖f̂j − f∗j ‖n

 ≤
∑
j∈M0

P

(
(ε, f̂j − f∗j )n

rn + ‖f̂j − f∗j ‖n
> C1rn

)
+
∑
j∈Mc

0

P
(

(ε, f̂j − f∗j )n > C1rn‖f̂j − f∗j ‖n
)
.

Consider an index j ∈Mc
0, and note that f∗j ≡ 0. We have,

P
(

(ε, f̂j − f∗j )n > C1rn‖f̂j − f∗j ‖n
)
≤ P

(
sup

f∈Fj(1)
(ε, f)n > C1rn

)
,

where Fj(δ) is defined for every positive δ as {f ∈ F0
j , ‖f‖n ≤ δ}. Given

a pseudo-metric space (X , d), we will use N(u,X , d) to denote the smallest
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number N , such that N balls of d-radius u can cover X . We will also write
H(u,X , d) for logN(u,X , d). In Appendix 3 we demonstrate that

(20)

∫ δ

0
H1/2(u,Fj(δ), || · ||n)du . q1/2

n δ,

which, by a maximal inequality for weighted sums of subgaussian variables,
e.g. Corollary 8.3 of [2], implies P (supf∈Fj(1)(ε, f)n > C1rn) . exp(−c2

2C
2
1nr

2
n)

for some universal constants C1 and c2. Moreover, c2 depends only on the
distribution of the εi’s, and the bound holds for all j and n, provided C1 is
above a certain universal threshold. Hence,

(21)
∑
j∈Mc

0

P
(

(ε, f̂j − f∗j )n > C1rn‖f̂j − f∗j ‖n
)
. pn exp

(
−c2

2C
2
1nr

2
n

)
.

Now consider an index j ∈ M0. We will apply a peeling argument and
intersect the set A = {(ε, f̂j − f∗j )n > C1r

2
n +C1rn‖f̂j − f∗j ‖n} with the sets

B0 = {‖f̂j − f∗j ‖n ≤ rn}, Bs = {2s−1rn < ‖f̂j − f∗j ‖n ≤ 2srn}, where s =

1, 2, ..., S, and BS+1 = {τ/2 < ‖f̂j − f∗j ‖n}. Here τ is the constant from

Condition 4(B) and S = blog2(τr−1
n )c, which guarantees τ/2 ≤ 2Srn ≤ τ .

Note that there exists a universal constant C̃, such that ‖f∗j ‖n ≤ C̃ for all j

and n. Take c̃ = 1+2C̃/τ . On the event BS+1, we have ‖f̂j‖n/‖f̂j−f∗j ‖n ≤ c̃
and ‖f∗j ‖n/‖f̂j−f∗j ‖n ≤ c̃ for all j and n. Note that P (A) ≤

∑S+1
s=0 P (ABs),

and, consequently,

P (A) ≤ P
(

sup
g∈Gj(rn)

(ε, g)n > C1r
2
n

)
+

S∑
s=1

P
(

sup
g∈Gj(2srn)

(ε, g)n > C1(2s−1rn)rn

)
+P
(

sup
g̃∈G̃j(c̃)

(ε, g̃)n > C1rn

)
,

where Gj(δ) = {g = f − f∗j , ‖g‖n ≤ δ, f ∈ F0
j } and G̃j(c̃) = Fj(c̃) 	 Fj(c̃).

Arguing as in Appendix 3, while taking advantage of Condition 4(B), we

can derive
∫ δ

0 H
1/2(u,Gj(δ), || · ||n)du . q

1/2
n δ, for δ ≤ τ . Using Corollary 8.3

of [2] again we derive P (supg∈Gj(δ)(ε, g)n > C1(δ/2)rn) . exp(−c2
3C

2
1nr

2
n),

where c3 is half the constant c2, introduced earlier, provided C1 is above a
certain universal threshold. Thus,

P
(

sup
g∈Gj(rn)

(ε, g)n > C1r
2
n

)
+

S∑
s=1

P
(

sup
g∈Gj(2srn)

(ε, g)n > C12s−1r2
n

)
. log n exp(−c2

3C
2
1nr

2
n).
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Similar arguments lead to P (supg̃∈G̃j(c̃)(ε, g̃)n > C1rn) . exp(−c2
4C

2
1nr

2
n),

where c4 = c2/(2c̃). Consequently, P (A) . log n exp(−c2
5C

2
1nr

2
n), where c5 =

min(c3, c4). It follows from bounds (19) and (21) that

P

(ε, f̂ − f∗)n > C1snr
2
n + C1rn

pn∑
j=1

‖f̂j − f∗j ‖n

 . pn log n exp(−c2
5C

2
1nr

2
n),

provided C1 is above a universal threshold. The right-hand side of the above
bound tends to zero by the assumption on the rate of growth for dn, provided
C2

1 > 2c−2
5 .

3. Proof of inequality (20). For each given j and ηj , we will writeHηj ,j(·)
for the dn-dimensional row vector valued function hηj ,j(η

T
j ·). Note that

||Hη2,jξ2 −Hη1,jξ1||n ≤ ||Hη2,j(ξ2 − ξ1)||n + ||Hη2,jξ1 −Hη1,jξ1||n. Thus,

(22) H(u,Fj(δ), || · ||n) . H1(u/2) +H2(u/2),

where exp[H1(u)] is the size of the grid of ξ1 values, for which ||Hη2,j(ξ2 −
ξ1)||n ≤ u can be guaranteed for all ξ2 and η2 with ‖η2‖ = 1 by choosing
the appropriate grid point, while exp[H2(u)] is the size of the grid of η1

values, for which ||Hη2,jξ1 − Hη1,jξ1||n ≤ u can be ensured all ξ1 and η2

with ‖η2‖ = 1.

First consider H1. Note the general inequalities d
−1/2
n ‖ξ‖ . ‖Hη,jξ‖n .

d
−1/2
n ‖ξ‖, which follow from Condition 3(E) and Lemma 6.1 in [3]. Using

these bounds, Corollary 2.6 of [2] implies H1(u/2) . dn[1 + log(δ/u)].
Now consider H2. Note that hη2

(ηT2 ·) = hη1
(a+bηT2 ·), where max(|a|, |b−

1|) . maxi |(η2 − η1)Tθi|. Let g = hη1
ξ1, and note that |g(z2) − g(z1)| .

d
3/2
n δ|z2 − z1| by the properties of the cubic B-spline derivatives. Conse-

quently,
(23)
||Hη2,jξ1−Hη1,jξ1||n = ||g(a+bηT2 ·)−g(ηT1 ·)||n . d3/2

n δmax
i≤n
|(η2−η1)Tθi|.

Write ∆k for the k-th element of η2−η1 and note that the right-hand side of

the above inequality is written as d
3/2
n δmaxi≤n |

∑qn
k=1 ∆kθik|. Observe that

max
i≤n
|
qn∑
k=1

∆kθik| ≤ max
i≤n

( qn∑
k=1

∆2
kk
−4
)1/2( qn∑

k=1

θ2
ikk

4
)1/2

.
( qn∑
k=1

∆2
kk
−4
)1/2

,

where the last inequality holds by Condition 3(A). It follows from (23) that

(24) ||Hη2,jξ1 −Hη1,jξ1||n . d3/2
n δq1/2

n max
k≤dn

|∆k|k−2.
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Construct the η1 grid by selecting the locations for the k-th coordinate from

a uniform grid with step u on [0, d
3/2
n δq

1/2
n k−2]. Then, for each η2 and ξ1,

we can find a grid point η1 for which the right-hand side of (24) is bounded
by u. The total number of the corresponding grid points is bounded by a
constant factor of

(25)

qn∏
k=1

(δd3/2
n q1/2

n k−2/u) . (4δe2/u)qn ,

where the last inequality follows from Stirling’s formula and dn . qn. Hence,
H2(u/2) . qn[1 + log(δ/u)], and∫ δ

0
H1/2(u,Fj(δ), || · ||n)du ≤

∫ δ

0
[H

1/2
1 (u/2) +H

1/2
2 (u/2)]du

. q1/2
n

(
δ + δ

∫ 1

0
log1/2(1/v)dv

)
. q1/2

n δ.
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