SUPPLEMENTARY MATERIAL FOR: FUNCTIONAL ADDITIVE REGRESSION

BY YINGYING FAN AND GARETH M. JAMES AND PETER RADCHENKO University of Southern California

1. Proofs of Theorems 1 and 2. Let $\boldsymbol{\eta} = (\boldsymbol{\eta}_1^T, \cdots, \boldsymbol{\eta}_p^T)^T$ be a (pq_n) -vector and $\Theta = (\Theta_1, \cdots, \Theta_p)$ be an $n \times (pq_n)$ matrix. With matrix notation, the linear FAR criterion minimizes the following objective function

(1)
$$Q(\boldsymbol{\eta}) = \frac{1}{2n} \|\mathbf{Y} - \Theta \boldsymbol{\eta}\|^2 + \sum_{j=1}^p \rho_{\lambda_n}(\frac{1}{\sqrt{n}} \|\Theta_j \boldsymbol{\eta}_j\|).$$

Define the $(q_n s_n)$ -dimensional hypercube

(2)
$$\mathcal{N} = \{ \boldsymbol{\eta} \in R^{pq_n} : \boldsymbol{\eta}_{\mathfrak{M}_0^c} = \boldsymbol{0}, \ \|\boldsymbol{\eta} - \boldsymbol{\eta}_0\|_{\infty} \le \sqrt{c_0} q_n^{-1/2} n^{-\alpha} \},$$

where $\|\cdot\|_{\infty}$ stands for the infinity norm of a vector.

LEMMA 1.1. Define the event $\mathcal{E}_1 = \{ \| \Theta_{\mathfrak{M}_0}^T \boldsymbol{\varepsilon}^* \|_{\infty} \leq n\lambda_n/2 \}$. Assume that $\lambda_n n^{\alpha} q_n \sqrt{s_n} \to 0$ with α defined in Condition 2(B), then under Condition 2 and conditional on event \mathcal{E}_1 , there exits a vector $\boldsymbol{\eta} \in \mathcal{N}$ such that $\boldsymbol{\eta}_{\mathfrak{M}_0}$ is a solution to the following nonlinear equations

(3)
$$-\frac{1}{n}\Theta_{\mathfrak{M}_{0}}^{T}(\mathbf{Y}-\Theta_{\mathfrak{M}_{0}}\boldsymbol{\eta}_{\mathfrak{M}_{0}})+\mathbf{v}_{\mathfrak{M}_{0}}(\boldsymbol{\eta})=0,$$

where $\mathbf{v}_{\mathfrak{M}_0}(\boldsymbol{\eta})$ is a vector obtained by stacking $\mathbf{v}_k(\boldsymbol{\eta}) = \rho'_{\lambda_n}(\frac{1}{\sqrt{n}} \|\Theta_k \eta_k\|) \frac{1}{\sqrt{n}} \frac{\Theta_k^T \Theta_k \eta_k}{\|\Theta_k \eta_k\|}$, $k \in \mathfrak{M}_0$ one underneath another.

PROOF. For any $\tilde{\boldsymbol{\eta}} = (\tilde{\boldsymbol{\eta}}_1^T, \tilde{\boldsymbol{\eta}}_2^T, \cdots, \tilde{\boldsymbol{\eta}}_p^T)^T \in \mathcal{N}$, by Condition 2(D) we have

(4)
$$\begin{aligned} \frac{1}{\sqrt{n}} \max_{k \in \mathfrak{M}_0} \|\Theta_k(\tilde{\boldsymbol{\eta}}_k - \boldsymbol{\eta}_{0,k})\| &\leq c_0^{-1/2} \max_{k \in \mathfrak{M}_0} \|\tilde{\boldsymbol{\eta}}_k - \boldsymbol{\eta}_{0,k}\| \\ &\leq c_0^{-1/2} \sqrt{q_n} \max_{k \in \mathfrak{M}_0} \|\tilde{\boldsymbol{\eta}}_k - \boldsymbol{\eta}_{0,k}\|_{\infty} \leq n^{-\alpha}. \end{aligned}$$

This together with triangular inequality and Condition 2(B) entails that for n large enough,

(5)
$$\|\Theta_k \tilde{\boldsymbol{\eta}}_k\| \ge \|\Theta_k \boldsymbol{\eta}_{0,k}\| - \|\Theta_k (\tilde{\boldsymbol{\eta}}_k - \boldsymbol{\eta}_{0,k})\| \ge \|\Theta_k \boldsymbol{\eta}_{0,k}\| - n^{\frac{1}{2}-\alpha} > \sqrt{n}a_n/2.$$

Thus, by Condition 2(A), for any $k \in \mathfrak{M}_0$, $\rho'_{\lambda_n}(\frac{1}{\sqrt{n}} \|\Theta_k \tilde{\boldsymbol{\eta}}_k\|) \leq \rho'_{\lambda_n}(a_n/2)$. Hence, by the definition of \mathbf{v} and Condition 2(D) we obtain that for any $\tilde{\boldsymbol{\eta}} \in \mathcal{N}$, (6)

$$\|\mathbf{v}_{\mathfrak{M}_{0}}(\tilde{\boldsymbol{\eta}}_{k})\|_{\infty} \leq \max_{k \in \mathfrak{M}_{0}} \rho_{\lambda_{n}}'(\frac{1}{\sqrt{n}} \|\Theta_{k} \tilde{\boldsymbol{\eta}}_{k}\|) \max_{k \in \mathfrak{M}_{0}} \frac{1}{\sqrt{n}} \frac{\|\Theta_{k}^{T} \Theta_{k} \tilde{\boldsymbol{\eta}}_{k}\|}{\|\Theta_{k} \tilde{\boldsymbol{\eta}}_{k}\|} \leq \frac{\rho_{\lambda_{n}}'(a_{n}/2)}{\sqrt{c_{0}}}.$$

Since $\frac{1}{n}\Theta_{\mathfrak{M}_0}^T\Theta_{\mathfrak{M}_0}$ has bounded eigenvalues, it follows from matrix norm calculations that

$$\|(\Theta_{\mathfrak{M}_0}^T \Theta_{\mathfrak{M}_0})^{-1}\|_{\infty} \leq \sqrt{s_n q_n} \Lambda_{\max} \Big((\Theta_{\mathfrak{M}_0}^T \Theta_{\mathfrak{M}_0})^{-1} \Big) \leq c_0^{-1} n^{-1} \sqrt{s_n q_n}.$$

Combining the above inequality with Cauchy-Schwartz inequality, Condition 2(C) and (6) yields

$$n \| (\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}})^{-1} \mathbf{v}_{\mathfrak{M}_{0}}(\tilde{\boldsymbol{\eta}}_{k}) \|_{\infty} \leq n \| (\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}})^{-1} \|_{\infty} \| \mathbf{v}_{\mathfrak{M}_{0}}(\tilde{\boldsymbol{\eta}}_{k}) \|_{\infty} \leq o \left(n^{-\alpha} q_{n}^{-1/2} \right).$$

Similarly, since $\lambda_n n^{\alpha} q_n \sqrt{s_n} \to 0$, conditional on the event \mathcal{E}_1 we have

$$\|(\Theta_{\mathfrak{M}_{0}}^{T}\Theta_{\mathfrak{M}_{0}})^{-1}\Theta_{\mathfrak{M}_{0}}^{T}\boldsymbol{\varepsilon}^{*}\|_{\infty} \leq \|(\Theta_{\mathfrak{M}_{0}}^{T}\Theta_{\mathfrak{M}_{0}})^{-1}\|_{\infty}\|\Theta_{\mathfrak{M}_{0}}^{T}\boldsymbol{\varepsilon}^{*}\|_{\infty} \leq o(n^{-\alpha}q_{n}^{-1/2}).$$

Combing the above two inequalities and by Cauchy-Schwartz inequality we obtain for large enough n,

(7)
$$\|(\Theta_{\mathfrak{M}_0}^T \Theta_{\mathfrak{M}_0})^{-1} (n \mathbf{v}_{\mathfrak{M}_0} (\tilde{\boldsymbol{\eta}}_k) - \Theta_{\mathfrak{M}_0}^T \boldsymbol{\varepsilon}^*)\|_{\infty} \le o(q_n^{-1/2} n^{-\alpha})$$

Define the vector-valued continuous function $\mathbf{g} : \mathbb{R}^{s_n q_n} \to \mathbb{R}^{s_n q_n}$ by $\mathbf{g}(\mathbf{x}) = \eta_{0,\mathfrak{M}_0} - (\Theta_{\mathfrak{M}_0}^T \Theta_{\mathfrak{M}_0})^{-1} (n \mathbf{v}_{\mathfrak{M}_0}(\mathbf{x}) - \Theta_{\mathfrak{M}_0}^T \boldsymbol{\varepsilon}^*)$, where $\mathbf{x} = (\mathbf{x}_1^T, \cdots, \mathbf{x}_{s_n}^T)^T$ with $\mathbf{x}_k \in \mathbb{R}^{q_n}$ for $k = 1, \cdots, s_n$, and $\mathbf{v}_{\mathfrak{M}_0}(\mathbf{x})$ is a vector obtained by stacking the vectors $\mathbf{v}_k(\mathbf{x}_k) = \rho'_{\lambda_n}(\frac{1}{\sqrt{n}} || \Theta_k \mathbf{x}_k ||) \frac{1}{\sqrt{n}} \frac{\Theta_k^T \Theta_k \mathbf{x}_k}{|| \Theta_k \mathbf{x}_k ||}$, $k = 1, \cdots, s_n$ one underneath another. Then for any $\mathbf{x} \in \mathcal{N}$, by (7) we have

$$\|\mathbf{g}(\mathbf{x}) - \boldsymbol{\eta}_{0,\mathfrak{M}_0}\|_{\infty} \leq \sqrt{c_0} q_n^{-1/2} n^{-\alpha}$$

for large enough n. The above inequality indicates that $\mathbf{g}(\mathcal{N}) \subset \mathcal{N}$. Since $\mathbf{g}(\mathbf{x})$ is a continuous function on the convex, compact hypercube \mathcal{N} , applying Brouwer's fixed point theorem shows that (3) indeed has a solution in \mathcal{N} .

LEMMA 1.2. Define $\mathcal{E}_2 = \{ \| \Theta_{\mathfrak{M}_0^c}^T \boldsymbol{\varepsilon}^* \|_{\infty} \leq n\lambda_n/2 \}$. Assume $q_n^{-2}s_n = o(\lambda_n), q_n + \log p = O(n\lambda_n^2), and \lambda_n n^{\alpha}q_n\sqrt{s_n} \to 0$ with α defined in Condition 2(B). Then under Condition 2 and conditional on the event $\mathcal{E}_1 \cap \mathcal{E}_2$, there exists a local minimizer $\hat{\boldsymbol{\eta}}$ of $Q(\boldsymbol{\eta})$ (1) such that $\hat{\boldsymbol{\eta}} \in \mathcal{N}$.

PROOF. Since λ_n satisfying conditions in Lemma 1.2 also satisfies conditions in Lemma 1.1, by Lemma 1.1, we know that there exists a vector $\hat{\eta} \in \mathcal{N}$ such that $\hat{\eta}_{\mathfrak{M}_0}$ is a solution to (2). We next show that under some additional conditions, $\hat{\eta}$ is a local minimizer of $Q(\eta)$ in the original \mathbb{R}^{pq_n} space.

We first constraint the objective function $Q(\boldsymbol{\eta})$ to the $(q_n s_n)$ -dimensional subspace \mathcal{N} defined in (2). We will show that under Condition 2 and conditional on $\mathcal{E}_1 \cap \mathcal{E}_2$, $Q(\boldsymbol{\eta})$ is strictly convex around $\hat{\boldsymbol{\eta}}$. Then this together with Lemma 1.1 entails that the critical value $\hat{\boldsymbol{\eta}}_{\mathfrak{M}_0}$ minimizes $Q(\boldsymbol{\eta})$ in the subspace \mathcal{N} .

We proceed to prove the strict convexity of $Q(\boldsymbol{\eta})$ in \mathcal{N} . Define $h(\boldsymbol{\eta}) = \sum_{j=1}^{p} \rho_{\lambda_n}(\frac{1}{\sqrt{n}} \|\Theta_j \boldsymbol{\eta}_j\|)$, which is a function in \mathbf{R}^{pq_n} . Note that for each $k \in \mathfrak{M}_0$,

$$(8) \quad \frac{\partial^2}{\partial \eta_k^2} h(\widehat{\boldsymbol{\eta}}) = \Theta_k^T \Theta_k \frac{\rho_{\lambda_n}'(\frac{1}{\sqrt{n}} \|\Theta_k \widehat{\boldsymbol{\eta}}_k\|)}{\sqrt{n} \|\Theta_k \widehat{\boldsymbol{\eta}}_k\|} \\ + \Theta_k^T \Theta_k \widehat{\boldsymbol{\eta}}_k \widehat{\boldsymbol{\eta}}_k^T \Theta_k^T \Theta_k \Big(\frac{\rho_{\lambda_n}'(\frac{1}{\sqrt{n}} \|\Theta_k \widehat{\boldsymbol{\eta}}_k\|)}{n \|\Theta_k \widehat{\boldsymbol{\eta}}_k\|^2} - \frac{\rho_{\lambda_n}'(\frac{1}{\sqrt{n}} \|\Theta_k \widehat{\boldsymbol{\eta}}_k\|)}{\sqrt{n} \|\Theta_k \widehat{\boldsymbol{\eta}}_k\|^3} \Big).$$

Since $\widehat{\boldsymbol{\eta}} \in \mathcal{N}$, similar to (5) we can show that $\|\Theta_k \widehat{\boldsymbol{\eta}}_k\| \ge \|\Theta_k \boldsymbol{\eta}_{k,0}\| - \|\Theta_k (\widehat{\boldsymbol{\eta}}_k - \boldsymbol{\eta}_{k,0})\| > \sqrt{n}a_n/2$ for any $k \in \mathfrak{M}_0$ and large enough n. Thus it follows from Condition 2 (A), (B) and (C) that

$$0 < \frac{\rho_{\lambda_n}'(\frac{1}{\sqrt{n}} \|\Theta_k \widehat{\boldsymbol{\eta}}_k\|)}{\|\Theta_k \widehat{\boldsymbol{\eta}}_k\| / \sqrt{n}} \le \frac{\rho_{\lambda_n}'(a_n/2)}{a_n/2} = o(1),$$

$$\rho_{\lambda_n}''(\frac{1}{\sqrt{n}} \|\Theta_k \widehat{\boldsymbol{\eta}}_k\|)) = o(1),$$

where the $o(\cdot)$ terms are uniformly over all $k \in \mathfrak{M}_0$. By linear algebra, for any matrices A, B and C satisfying A = B + C, we have $\Lambda_{\min}(A) \ge \Lambda_{\min}(B) + \Lambda_{\min}(C)$. By Condition 2(A), $\rho_{\lambda_n}'(\frac{1}{\sqrt{n}} || \Theta_k \widehat{\eta}_k ||) < 0$ and $\rho_{\lambda_n}'(\frac{1}{\sqrt{n}} || \Theta_k \widehat{\eta}_k ||) > 0$. These together with (8) and Condition 2(D) entail that uniformly over all $k \in \mathfrak{M}_0$,

$$\begin{aligned}
\Lambda_{\min}(\frac{\partial^{2}}{\partial \boldsymbol{\eta}_{k}^{2}}h(\boldsymbol{\hat{\eta}})) &\geq \Lambda_{\min}(\Theta_{k}^{T}\Theta_{k})\frac{\rho_{\lambda_{n}}'(\frac{1}{\sqrt{n}}\|\Theta_{k}\boldsymbol{\hat{\eta}}_{k}\|)}{\sqrt{n}\|\Theta_{k}\boldsymbol{\hat{\eta}}_{k}\|} \\
&+ \Lambda_{\max}(\Theta_{k}^{T}\Theta_{k}\boldsymbol{\hat{\eta}}_{k}\boldsymbol{\hat{\eta}}_{k}^{T}\Theta_{k}^{T}\Theta_{k})\left(\frac{\rho_{\lambda_{n}}''(\frac{1}{\sqrt{n}}\|\Theta_{k}\boldsymbol{\hat{\eta}}_{k}\|)}{n\|\Theta_{k}\boldsymbol{\hat{\eta}}_{k}\|^{2}} - \frac{\rho_{\lambda_{n}}'(\frac{1}{\sqrt{n}}\|\Theta_{k}\boldsymbol{\hat{\eta}}_{k}\|)}{\sqrt{n}\|\Theta_{k}\boldsymbol{\hat{\eta}}_{k}\|^{3}} \\
\end{aligned}$$

$$(9) \qquad \geq \Lambda_{\max}(\frac{1}{n}\Theta_{k}^{T}\Theta_{k})\left(\rho_{\lambda_{n}}''(\frac{1}{\sqrt{n}}\|\Theta_{k}\boldsymbol{\hat{\eta}}_{k}\|) - \frac{\rho_{\lambda_{n}}'(\frac{1}{\sqrt{n}}\|\Theta_{k}\boldsymbol{\hat{\eta}}_{k}\|)}{\|\Theta_{k}\boldsymbol{\hat{\eta}}_{k}\|/\sqrt{n}}\right) = o(1),
\end{aligned}$$

where for the second inequality we used the fact that

$$\begin{split} \Lambda_{\max} \big(\Theta_k^T \Theta_k \widehat{\boldsymbol{\eta}}_k \widehat{\boldsymbol{\eta}}_k^T \Theta_k^T \Theta_k \big) &= \Lambda_{\max} \big(\widehat{\boldsymbol{\eta}}_k^T \Theta_k^T \Theta_k \Theta_k^T \Theta_k \widehat{\boldsymbol{\eta}}_k \big) \leq \Lambda_{\max} (\Theta_k^T \Theta_k) \| \Theta_k \widehat{\boldsymbol{\eta}}_k \|^2. \end{split}$$
Let *H* be a block diagonal matrix with block matrices $\frac{\partial^2}{\partial \boldsymbol{\eta}_k^2} h(\widehat{\boldsymbol{\eta}}), \ k \in \mathfrak{M}_0.$ Then it is easy to see that the Hessian matrix $\frac{\partial^2}{\partial \boldsymbol{\eta}_{\mathfrak{M}_0}^2} Q(\widehat{\boldsymbol{\eta}}) = n^{-1} \Theta_{\mathfrak{M}_0}^T \Theta_{\mathfrak{M}_0} + H.$ Thus, it follows from the above inequality (9) that

(10)

$$\Lambda_{\min}\left(\frac{\partial^2}{\partial \boldsymbol{\eta}_{\mathfrak{M}_0}^2}Q(\widehat{\boldsymbol{\eta}})\right) \geq \frac{1}{n}\Lambda_{\min}(\Theta_{\mathfrak{M}_0}^T\Theta_{\mathfrak{M}_0}) + \min_{k\in\mathfrak{M}_0}\Lambda_{\min}(\frac{\partial^2}{\partial \boldsymbol{\eta}_k^2}h(\widehat{\boldsymbol{\eta}})) \geq c_0 - o(1).$$

Therefore, for large enough n, restricted on the space \mathcal{N} , the function $Q(\eta)$ is strictly convex around $\hat{\eta}$ and thus has a unique minimizer in a ball $\mathcal{N}_1 \subset \mathcal{N}$ centered at $\hat{\eta}$. Since by Lemma 1.1 $\hat{\eta}$ is a critical point, $\hat{\eta}$ is indeed this strict local minimizer in \mathcal{N}_1 .

We next show that $\hat{\eta}$ is also a local minimizer in the original R^{pq_n} dimensional space. We will first show that for $\hat{\eta}_{\mathfrak{M}_0}$ defined in Lemma 1.1, conditional on $\mathcal{E}_1 \cap \mathcal{E}_2$,

(11)

$$\max_{j \in \mathfrak{M}_0^c} \{ \hat{\mathbf{v}}_j^T (\Theta_j^T \Theta_j)^{-1} \hat{\mathbf{v}}_j \}^{1/2} = \max_{j \in \mathfrak{M}_0^c} \| \Theta_j (\Theta_j^T \Theta_j)^{-1} \hat{\mathbf{v}}_j \| < n^{-1/2} \rho_{\lambda_n}'(0+), \forall j \in \mathfrak{M}_0^c,$$

where

$$\hat{\mathbf{v}}_j = n^{-1}\Theta_j^T(\mathbf{Y} - \Theta_{\mathfrak{M}_0}\widehat{\boldsymbol{\eta}}_{\mathfrak{M}_0}) = n^{-1}\Theta_j^T\Theta_{\mathfrak{M}_0}(\boldsymbol{\eta}_{0,\mathfrak{M}_0} - \widehat{\boldsymbol{\eta}}_{\mathfrak{M}_0}) + n^{-1}\Theta_j^T\boldsymbol{\varepsilon}^*.$$

By Lemma 1.1, we have $\boldsymbol{\eta}_{0,\mathfrak{M}_{0}} - \widehat{\boldsymbol{\eta}}_{\mathfrak{M}_{0}} = (\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}})^{-1} (n \mathbf{v}_{\mathfrak{M}_{0}} - \Theta_{\mathfrak{M}_{0}}^{T} \boldsymbol{\varepsilon}^{*})$. Plugging this into $\hat{\mathbf{v}}_{j}$, we obtain that for $j \in \mathfrak{M}_{0}^{c}, \hat{\mathbf{v}}_{j} = \Theta_{j}^{T} \Theta_{\mathfrak{M}_{0}} (\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}})^{-1} \mathbf{v}_{\mathfrak{M}_{0}} + n^{-1} [\Theta_{j} - \Theta_{j}^{T} \Theta_{\mathfrak{M}_{0}} (\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}})^{-1} \Theta_{\mathfrak{M}_{0}}^{T}] \boldsymbol{\varepsilon}^{*}$. Therefore,

(12)
$$\{\hat{\mathbf{v}}_{j}^{T}(\Theta_{j}^{T}\Theta_{j})^{-1}\hat{\mathbf{v}}_{j}\}^{1/2} = \|\Theta_{j}(\Theta_{j}^{T}\Theta_{j})^{-1}\hat{\mathbf{v}}_{j}\| \le I_{1,j} + I_{2,j},$$

where

$$I_{1,j} = \|\Theta_j(\Theta_j^T \Theta_j)^{-1} \Theta_j^T \Theta_{\mathfrak{M}_0} (\Theta_{\mathfrak{M}_0}^T \Theta_{\mathfrak{M}_0})^{-1} \mathbf{v}_{\mathfrak{M}_0} \|,$$

$$I_{2,j} = n^{-1} \|\Theta_j(\Theta_j^T \Theta_j)^{-1} \Theta_j^T (\mathbf{I} - \Theta_{\mathfrak{M}_0} (\Theta_{\mathfrak{M}_0}^T \Theta_{\mathfrak{M}_0})^{-1} \Theta_{\mathfrak{M}_0}^T) \boldsymbol{\varepsilon}^* \|.$$

By (6), Condition 2(B) and Condition 2(D), conditional on $\mathcal{E}_1 \cap \mathcal{E}_2$, we have

$$\begin{split} I_{1,j} &\leq \|\mathbf{v}_{\mathfrak{M}_{0}}\|_{\infty} \|\Theta_{j}(\Theta_{j}^{T}\Theta_{j})^{-1}\Theta_{j}^{T}\Theta_{\mathfrak{M}_{0}}(\Theta_{\mathfrak{M}_{0}}^{T}\Theta_{\mathfrak{M}_{0}})^{-1}\|_{\infty,2} < \frac{1}{2\sqrt{n}}\rho_{\lambda_{n}}'(0+), \\ I_{2,j} &\leq n^{-1} \|\Theta_{j}(\Theta_{j}^{T}\Theta_{j})^{-1}\Theta_{j}^{T} \big(\mathbf{I} - \Theta_{\mathfrak{M}_{0}}(\Theta_{\mathfrak{M}_{0}}^{T}\Theta_{\mathfrak{M}_{0}})^{-1}\Theta_{\mathfrak{M}_{0}}^{T}\big)\varepsilon\| \\ &+ n^{-1} \|\Theta_{j}(\Theta_{j}^{T}\Theta_{j})^{-1}\Theta_{j}^{T} \big(\mathbf{I} - \Theta_{\mathfrak{M}_{0}}(\Theta_{\mathfrak{M}_{0}}^{T}\Theta_{\mathfrak{M}_{0}})^{-1}\Theta_{\mathfrak{M}_{0}}^{T}\big)\varepsilon\| \equiv I_{2,1,j} + I_{2,2,j} \end{split}$$

where the inequality for $I_{1,j}$ is uniformly over all $j \in \mathfrak{M}_0$. Since both $\Theta_j(\Theta_j^T \Theta_j)^{-1} \Theta_j^T$ and $(\mathbf{I} - \Theta_{\mathfrak{M}_0}(\Theta_{\mathfrak{M}_0}^T \Theta_{\mathfrak{M}_0})^{-1} \Theta_{\mathfrak{M}_0}^T)$ are projection matrices and $\boldsymbol{\varepsilon}$ is a *n*-vector of Gaussian random variables, it follows that $n^2 I_{2,1,j}^2$ is a Chi-square random variable with degrees of freedom at most q_n . Thus, by Chi-square tail probability inequality (see [1]),

$$P(\max_{j \in \mathfrak{M}_{0}^{c}} I_{2,1,j} > n^{-1} \sqrt{q_{n}} + C \log p)$$

= $P(\max_{j \in \mathfrak{M}_{0}^{c}} n^{2} I_{2,1,j}^{2} > (q_{n} + C \log p)) \leq C(p - s_{n}) \exp(-C \log p) \to 0,$

where C is a large enough generic positive constant. Thus, $\max_{j \in \mathfrak{M}_0^c} I_{2,1,j} = o_p(n^{-1}(q_n^{1/2} + \sqrt{\log p}))$. Now by Condition 1 and assumption that $q_n^{-2}s_n = o(\lambda_n)$, it is easy to derive that $\|\mathbf{e}\|_{\infty} = o(\lambda_n)$. Thus, $\|\mathbf{e}\|_2 = o(n^{1/2}\lambda_n)$. This together with $\Theta_j(\Theta_j^T\Theta_j)^{-1}\Theta_j^T$ and $(\mathbf{I} - \Theta_{\mathfrak{M}_0}(\Theta_{\mathfrak{M}_0}^T\Theta_{\mathfrak{M}_0})^{-1}\Theta_{\mathfrak{M}_0}^T)$ being projection matrix ensures that uniformly over all $j \in \mathfrak{M}_0^c$,

$$I_{2,2,j} \le n^{-1} \|\mathbf{e}\|_2 = o(n^{-1/2}\lambda_n)$$

Since it is assumed in the theorem that $q_n + \log p = O(n\lambda_n^2)$, combining the above results on $I_{2,1,j}$ and $I_{2,2,j}$ yields

$$\max_{j \in \mathfrak{M}_0^c} I_{2,j} = o_p(n^{-1}(q_n^{1/2} + \sqrt{\log(p)})) = o_p(\lambda_n/\sqrt{n}) < \rho_{\lambda_n}'(0+)/(2\sqrt{n}).$$

In summary, the results on I_1 and I_2 show that inequality (11) holds.

Let $\mathcal{B} = \{ \boldsymbol{\eta} \in R^{q_n p} : \boldsymbol{\eta}_{\mathfrak{M}_0^c} = 0 \}$ be a subspace in R^{pq_n} . Take a sufficiently small ball \mathcal{N}_2 in R^{pq_n} centered at $\hat{\boldsymbol{\eta}}$ such that $\mathcal{N}_2 \cap \mathcal{B} \subset \mathcal{N}_1$. Since $\rho'_{\lambda_n}(t)$ is a continuous decreasing function and (11) holds for $\hat{\boldsymbol{\eta}} \in \mathcal{N}_2$, appropriately shrink the radius of the ball \mathcal{N}_2 gives that there exists a $\delta \in (0, \infty)$ such that for any $\boldsymbol{\eta} \in \mathcal{N}_2$,

(13)
$$\max_{j \in \mathfrak{M}_0} \|\Theta_j (\Theta_j^T \Theta_j)^{-1} \Theta_j^T (\mathbf{Y} - \Theta \boldsymbol{\eta})\| < n^{1/2} \rho_{\lambda_n}'(\delta).$$

Fix an arbitrary $\boldsymbol{\eta}_1 = (\boldsymbol{\eta}_{1,1}^T, \cdots, \boldsymbol{\eta}_{1p}^T)^T \in \mathcal{N}_2 \cap \mathcal{N}_1^c$, we next show that $Q(\boldsymbol{\eta}_1) > Q(\widehat{\boldsymbol{\eta}})$. Let $\boldsymbol{\eta}_2 = (\boldsymbol{\eta}_{2,1}^T, \cdots, \boldsymbol{\eta}_{2p}^T)^T$ be the projection of $\boldsymbol{\eta}_1$ onto \mathcal{B} . Then it follows from the definitions of $\mathcal{N}_1, \mathcal{N}_2, \mathcal{B}$ and $\widehat{\boldsymbol{\eta}}$ that $Q(\boldsymbol{\eta}_2) > Q(\widehat{\boldsymbol{\eta}})$. Thus we only need to show $Q(\boldsymbol{\eta}_1) \geq Q(\boldsymbol{\eta}_2)$.

Note that $Q(\eta_1) - Q(\eta_2) = \nabla Q(\eta_3)(\eta_1 - \eta_2) = \sum_{j \in \mathfrak{M}_0^c} \eta_{1j}^T \frac{\partial Q(\eta_3)}{\partial \eta_j}$, where η_3 is a vector on the segment connecting η_1 and η_2 . Since $\eta_{2k} = 0$ for any $k \in \mathfrak{M}_0^c$, there exits a constant $0 < \gamma < 1$ such that $\eta_{3k} = \gamma \eta_{1k}, k \in \mathfrak{M}_0^c$. Then by the definitions of $\mathcal{B}, \mathcal{N}_1, \mathcal{N}_2$, we know that $\eta_3 \in \mathcal{N}_2$. Shrink the ball \mathcal{N}_2 such that for any $\boldsymbol{\eta} \in \mathcal{N}_2$, $\|\Theta_k \boldsymbol{\eta}_k\| = \|\Theta_k(\boldsymbol{\eta}_k - \hat{\boldsymbol{\eta}}_k)\| \le \sqrt{n}\delta, k \in \mathfrak{M}_0^c$. Since $\boldsymbol{\eta}_3 \in \mathcal{N}_2$, we have $\|\Theta_k \boldsymbol{\eta}_{3k}\| \le \sqrt{n}\delta$ and thus $\rho'_{\lambda_n}(\frac{1}{\sqrt{n}}\|\Theta_k \boldsymbol{\eta}_{3k}\|) \ge \rho'_{\lambda_n}(\delta)$ for $k \in \mathfrak{M}_0^c$. Therefore,

$$Q(\boldsymbol{\eta}_1) - Q(\boldsymbol{\eta}_2) = \nabla Q(\boldsymbol{\eta}_3)(\boldsymbol{\eta}_1 - \boldsymbol{\eta}_2) = \sum_{j \in \mathfrak{M}_0^c} \boldsymbol{\eta}_{1j}^T \frac{\partial Q(\boldsymbol{\eta}_3)}{\partial \boldsymbol{\eta}_j}$$

$$= \sum_{j \in \mathfrak{M}_0^c} \boldsymbol{\eta}_{1j}^T \left(-\frac{1}{n} \Theta_j^T (\mathbf{Y} - \Theta \boldsymbol{\eta}_3) + \frac{\rho_{\lambda_n}' (\frac{1}{\sqrt{n}} \|\Theta_j \boldsymbol{\eta}_{3j}\|)}{\sqrt{n} \|\Theta_j \boldsymbol{\eta}_{3j}\|} \Theta_j^T \Theta_j \boldsymbol{\eta}_{3j} \right)$$

$$\geq -\frac{1}{n} \sum_{j \in \mathfrak{M}_0^c} \boldsymbol{\eta}_{1j}^T \Theta_j^T (\mathbf{Y} - \Theta \boldsymbol{\eta}_3) + \frac{1}{\sqrt{n}\gamma} \rho_{\lambda_n}'(\delta) \sum_{j \in \mathfrak{M}_0^c} \|\Theta_j \boldsymbol{\eta}_{3j}\| \equiv I_3 + I_4.$$

Next note that by Cauchy-Schwartz inequality and (13),

$$\begin{aligned} |I_3| &\leq \frac{1}{n} \sum_{j \in \mathfrak{M}_0^c} \|\Theta_j \boldsymbol{\eta}_{1j}\| \|\Theta_j (\Theta_j^T \Theta_j)^{-1} \Theta_j^T (\mathbf{Y} - \Theta \boldsymbol{\eta}_3)\| \\ &= \frac{1}{n\gamma} \sum_{j \in \mathfrak{M}_0^c} \|\Theta_j \boldsymbol{\eta}_{3j}\| \|\Theta_j (\Theta_j^T \Theta_j)^{-1} \Theta_j^T (\mathbf{Y} - \Theta \boldsymbol{\eta}_3)\| \leq I_4 \end{aligned}$$

Thus, $Q(\eta_1) \ge Q(\eta_2)$, which together with $Q(\eta_2) > Q(\hat{\eta})$ ensures that $\hat{\eta}$ is also a strict local minimizer in the original R^{pq_n} dimensional space. The proof is completed.

Proof of Theorem 1

PROOF. We only need to show that $P(\mathcal{E}_1 \cap \mathcal{E}_2) \to 1$. Then Theorem 1 follows easily from Lemmas 1.1 and 1.2. To this end, note that

$$P(\mathcal{E}_1 \cap \mathcal{E}_2) = 1 - P(\|\Theta^T \boldsymbol{\varepsilon}^*\|_{\infty} \ge n\lambda_n/2)$$

$$\ge 1 - P(\|\Theta^T \boldsymbol{\varepsilon}\|_{\infty} \ge n\lambda_n/2 - \|\Theta^T \mathbf{e}\|_{\infty})$$

By the assumption that $s_n q_n^{-2} = o(\lambda_n)$, it is easy to derive that $\|\mathbf{e}\|_{\infty} = o(\lambda_n)$. Since each column of Θ has ℓ_2 norm \sqrt{n} , it follows that $\|\Theta\|_1 \leq n$. Thus, by Cauchy-Schwartz inequality, $\|\Theta^T \mathbf{e}\|_{\infty} \leq \|\Theta\|_1 \|\mathbf{e}\|_{\infty} \leq o(n\lambda_n)$. This follows that

$$\|\Theta^T \mathbf{e}\|_{\infty} \le n\lambda_n/4$$

for large enough n.

Now we consider $\|\Theta^T \boldsymbol{\varepsilon}\|_{\infty}$. Let $\boldsymbol{\xi} = (\xi_1, \cdots, \xi_{pq})^T = \Theta^T \boldsymbol{\varepsilon}$, then $\xi_i \sim N(0, n\sigma^2 d_i^2)$ with d_i^2 the *i*-th diagonal of matrix $n^{-1}\Theta^T \Theta$. Since each column

of Θ has ℓ_2 norm \sqrt{n} , we have $d_i^2 = 1$ for $1 \leq i \leq q_n p$. Hence, by Bonferroni's inequality and the assumption $n\lambda_n^2(\log(pq_n))^{-1} \to \infty$ we further obtain

$$P(\|\Theta^{T}\boldsymbol{\varepsilon}\|_{\infty} > n\lambda_{n}/4) \leq \sum_{i=1}^{q_{n}p} P(|\xi_{i}| > n\lambda_{n}/4)$$
$$\leq \frac{4\sigma pq_{n}}{\sqrt{2\pi n}\lambda_{n}\sigma} \exp\left(-n\lambda_{n}^{2}/(32\sigma^{2})\right) \to 0.$$

Combining the above two results we have completed the proof of Theorem 1. $\hfill \Box$

Proof of Theorem 2

PROOF. Let $\hat{\mathbf{v}}_{\mathfrak{M}_0} = \mathbf{v}_{\mathfrak{M}_0}(\widehat{\boldsymbol{\eta}})$ and $\mathbf{v}_{0,\mathfrak{M}_0} = \mathbf{v}_{\mathfrak{M}_0}(\boldsymbol{\eta}_0)$ with the function $\mathbf{v}_{\mathfrak{M}_0}(\cdot)$ defined in Lemma 1.1, $\widehat{\boldsymbol{\eta}}_{\mathfrak{M}_0}$ the solution to (3), and $\boldsymbol{\eta}_0$ the true regression coefficient vector. Since $\widehat{\boldsymbol{\eta}}_{\mathfrak{M}_0}$ is a solution to (3), for any vector $\mathbf{c} \in \mathbf{R}^{s_n q_n}$ satisfying $\mathbf{c}^T \mathbf{c} = 1$, we have the following decomposition

(14)
$$\mathbf{c}^{T} \left[(\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}})^{1/2} (\widehat{\boldsymbol{\eta}}_{\mathfrak{M}_{0}} - \boldsymbol{\eta}_{0,\mathfrak{M}_{0}}) + n (\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}})^{-1/2} \mathbf{v}_{0,\mathfrak{M}_{0}} \right] \\ = \mathbf{c}^{T} (\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}})^{-1/2} \Theta_{\mathfrak{M}_{0}}^{T} \boldsymbol{\varepsilon} + \mathbf{c}^{T} (\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}})^{-1/2} \Theta_{\mathfrak{M}_{0}}^{T} \mathbf{e} \\ + n \mathbf{c}^{T} (\Theta_{\mathfrak{M}_{0}}^{T} \Theta_{\mathfrak{M}_{0}})^{-1/2} (\hat{\mathbf{v}}_{\mathfrak{M}_{0}} - \mathbf{v}_{0,\mathfrak{M}_{0}}) \equiv I_{1} + I_{2} + I_{3}.$$

It is easy to see

(15)
$$I_1 \sim N(0, \sigma^2).$$

As for I_2 , note that similar to Theorem 1 we can prove that $\|\mathbf{e}\|_{\infty} = o(n^{-1/2})$. Thus, $\|\mathbf{e}\| = o(1)$. So we can derive

(16)
$$|I_2| \leq \|\mathbf{c}^T (\Theta_{\mathfrak{M}_0}^T \Theta_{\mathfrak{M}_0})^{-1/2} \Theta_{\mathfrak{M}_0}^T \|\|\mathbf{e}\| = \|\mathbf{e}\| = o(1).$$

Now let us consider I_3 . By Cauchy-Schwartz inequality we obtain

(17)
$$|I_3| \leq \|\sqrt{n} \mathbf{c}^T (\Theta_{\mathfrak{M}_0}^T \Theta_{\mathfrak{M}_0})^{-1/2} \| \|\sqrt{n} (\hat{\mathbf{v}}_{\mathfrak{M}_0} - \mathbf{v}_{0,\mathfrak{M}_0}) \|$$
$$\leq c_0^{-1/2} \|\sqrt{n} (\hat{\mathbf{v}}_{\mathfrak{M}_0} - \mathbf{v}_{0,\mathfrak{M}_0}) \|.$$

Define $g(\boldsymbol{\eta}_k) = \frac{1}{\sqrt{n}} \rho'_{\lambda_n}(\frac{1}{\sqrt{n}} \|\Theta_k \boldsymbol{\eta}_k\|) \frac{\Theta_k^T \Theta_k \boldsymbol{\eta}_k}{\|\Theta_k \boldsymbol{\eta}_k\|}$. Then by definitions of $\hat{\mathbf{v}}_{\mathfrak{M}_0}$ and $\mathbf{v}_{0,\mathfrak{M}_0}$,

(18)
$$\hat{\mathbf{v}}_k - \mathbf{v}_{0,k} = g(\hat{\boldsymbol{\eta}}_k) - g(\boldsymbol{\eta}_{0,k}) = \frac{\partial}{\partial \boldsymbol{\eta}_k} g(\hat{\boldsymbol{\eta}}_k) (\hat{\boldsymbol{\eta}}_k - \boldsymbol{\eta}_{0,k})$$

with $\tilde{\boldsymbol{\eta}}_k$ lying on the segment connecting $\boldsymbol{\eta}_{0,k}$ and $\hat{\boldsymbol{\eta}}_k$. Thus, $\tilde{\boldsymbol{\eta}} = (\tilde{\boldsymbol{\eta}}_1^T, \cdots, \tilde{\boldsymbol{\eta}}_p^T)^T \in \mathcal{N}$. It has been proved in (5) that $\|\Theta_k \boldsymbol{\eta}_k\| \ge \sqrt{na_n/2}$ for any $\boldsymbol{\eta} \in \mathcal{N}$. Note that for any $\boldsymbol{\eta} = (\boldsymbol{\eta}_1^T, \cdots, \boldsymbol{\eta}_p^T)^T \in \mathcal{N}$, and any $k \in \mathfrak{M}_0$,

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\eta}_{k}}g(\boldsymbol{\eta}_{k}) = & \rho_{\lambda_{n}}''(\frac{1}{\sqrt{n}} \|\Theta_{k}\boldsymbol{\eta}_{k}\|) \frac{\Theta_{k}^{T}\Theta_{k}\boldsymbol{\eta}_{k}\boldsymbol{\eta}_{k}^{T}\Theta_{k}^{T}\Theta_{k}}{n\|\Theta_{k}\boldsymbol{\eta}_{k}\|^{2}} \\ & + \frac{\rho_{\lambda_{n}}'(\frac{1}{\sqrt{n}} \|\Theta_{k}\boldsymbol{\eta}_{k}\|)}{\sqrt{n}} \left\{ \frac{\Theta_{k}^{T}\Theta_{k}}{\|\Theta_{k}\boldsymbol{\eta}_{k}\|} - \frac{\Theta_{k}^{T}\Theta_{k}\boldsymbol{\eta}_{k}\boldsymbol{\eta}_{k}^{T}\Theta_{k}^{T}\Theta_{k}}{\|\Theta_{k}\boldsymbol{\eta}_{k}\|^{3}} \right\} \end{split}$$

Using similar arguments to (9) and by Condition 2(A) and the assumption $\sup_{t \ge \frac{a_n}{2}} \rho_{\lambda_n}''(t) = O(n^{-1/2})$, we have for any $k \in \mathfrak{M}_0$,

$$c_0^{-1}\Big(-O(\frac{1}{\sqrt{n}})-\frac{2\rho_{\lambda_n}'(\frac{a_n}{2})}{a_n}\Big) \leq \Lambda_{\min}(\frac{\partial}{\partial \eta_k}g(\eta_k)) \leq \Lambda_{\max}(\frac{\partial}{\partial \eta_k}g(\eta_k)) \leq c_0^{-1}\frac{2\rho_{\lambda_n}'(\frac{a_n}{2})}{a_n}.$$

This together with (18), Theorem 1, and the theorem assumptions ensures that

$$\begin{aligned} \|\hat{\mathbf{v}}_{\mathfrak{M}_{0}} - \mathbf{v}_{0,\mathfrak{M}_{0}}\| &\leq c_{0}^{-1} \left(O(\frac{1}{\sqrt{n}}) + \frac{2\rho_{\lambda_{n}}'\left(\frac{a_{n}}{2}\right)}{a_{n}} \right) \left\{ \sum_{k \in \mathfrak{M}_{0}} \|\widehat{\boldsymbol{\eta}}_{k} - \boldsymbol{\eta}_{0,k}\|^{2} \right\}^{1/2} \\ &\leq c_{0}^{-3/2} \left(O(\frac{1}{\sqrt{n}}) + o\left(n^{\alpha - \frac{1}{2}} s_{n}^{-1/2}\right) \right) O_{p}(s_{n}^{1/2} n^{-\alpha}) = o_{p}(n^{-1/2}), \end{aligned}$$

So it follows that $\sqrt{n} \| \hat{\mathbf{v}}_{\mathfrak{M}_0} - \mathbf{v}_{0,\mathfrak{M}_0} \| = o_p(1)$. Combining this with (17) yields $I_3 \xrightarrow{\mathrm{P}} 0$. This together with (14) –(16) completes the proof. \Box

2. Proof of Lemma 1. Observe that

(19)
$$P\left((\varepsilon, \hat{f} - f^*)_n > C_1 s_n r_n^2 + C_1 r_n \sum_{j=1}^{p_n} \|\hat{f}_j - f_j^*\|_n\right) \le$$

$$\sum_{j \in \mathfrak{M}_0} P\left(\frac{(\varepsilon, \widehat{f}_j - f_j^*)_n}{r_n + \|\widehat{f}_j - f_j^*\|_n} > C_1 r_n\right) + \sum_{j \in \mathfrak{M}_0^c} P\left((\varepsilon, \widehat{f}_j - f_j^*)_n > C_1 r_n \|\widehat{f}_j - f_j^*\|_n\right).$$

Consider an index $j \in \mathfrak{M}_0^c$, and note that $f_j^* \equiv 0$. We have,

$$P\left((\varepsilon, \widehat{f}_j - f_j^*)_n > C_1 r_n \| \widehat{f}_j - f_j^* \|_n\right) \le P\left(\sup_{f \in \mathcal{F}_j(1)} (\varepsilon, f)_n > C_1 r_n\right),$$

where $\mathcal{F}_j(\delta)$ is defined for every positive δ as $\{f \in \mathcal{F}_j^0, \|f\|_n \leq \delta\}$. Given a pseudo-metric space (\mathcal{X}, d) , we will use $N(u, \mathcal{X}, d)$ to denote the smallest number N, such that N balls of d-radius u can cover \mathcal{X} . We will also write $H(u, \mathcal{X}, d)$ for $\log N(u, \mathcal{X}, d)$. In Appendix 3 we demonstrate that

(20)
$$\int_0^{\delta} H^{1/2}(u, \mathcal{F}_j(\delta), ||\cdot||_n) du \lesssim q_n^{1/2} \delta,$$

which, by a maximal inequality for weighted sums of subgaussian variables, e.g. Corollary 8.3 of [2], implies $P(\sup_{f \in \mathcal{F}_j(1)}(\varepsilon, f)_n > C_1 r_n) \leq \exp(-c_2^2 C_1^2 n r_n^2)$ for some universal constants C_1 and c_2 . Moreover, c_2 depends only on the distribution of the ε_i 's, and the bound holds for all j and n, provided C_1 is above a certain universal threshold. Hence,

(21)
$$\sum_{j \in \mathfrak{M}_0^c} P\left((\varepsilon, \hat{f}_j - f_j^*)_n > C_1 r_n \| \hat{f}_j - f_j^* \|_n \right) \lesssim p_n \exp\left(-c_2^2 C_1^2 n r_n^2 \right).$$

Now consider an index $j \in \mathfrak{M}_0$. We will apply a peeling argument and intersect the set $A = \{(\varepsilon, \widehat{f}_j - f_j^*)_n > C_1 r_n^2 + C_1 r_n \| \widehat{f}_j - f_j^* \|_n\}$ with the sets $B_0 = \{\|\widehat{f}_j - f_j^*\|_n \leq r_n\}, B_s = \{2^{s-1}r_n < \|\widehat{f}_j - f_j^*\|_n \leq 2^s r_n\}$, where s = 1, 2, ..., S, and $B_{S+1} = \{\tau/2 < \|\widehat{f}_j - f_j^*\|_n\}$. Here τ is the constant from Condition 4(B) and $S = \lfloor \log_2(\tau r_n^{-1}) \rfloor$, which guarantees $\tau/2 \leq 2^S r_n \leq \tau$. Note that there exists a universal constant \widetilde{C} , such that $\|f_j^*\|_n \leq \widetilde{C}$ for all jand n. Take $\widetilde{c} = 1 + 2\widetilde{C}/\tau$. On the event B_{S+1} , we have $\|\widehat{f}_j\|_n/\|\widehat{f}_j - f_j^*\|_n \leq \widetilde{c}$ and $\|f_j^*\|_n/\|\widehat{f}_j - f_j^*\|_n \leq \widetilde{c}$ for all j and n. Note that $P(A) \leq \sum_{s=0}^{S+1} P(AB_s)$, and, consequently,

$$P(A) \leq P\left(\sup_{g \in \mathcal{G}_{j}(r_{n})}(\varepsilon,g)_{n} > C_{1}r_{n}^{2}\right) + \sum_{s=1}^{S} P\left(\sup_{g \in \mathcal{G}_{j}(2^{s}r_{n})}(\varepsilon,g)_{n} > C_{1}(2^{s-1}r_{n})r_{n}\right)$$
$$+ P\left(\sup_{\tilde{g} \in \tilde{\mathcal{G}}_{j}(\tilde{c})}(\varepsilon,\tilde{g})_{n} > C_{1}r_{n}\right),$$

where $\mathcal{G}_j(\delta) = \{g = f - f_j^*, \|g\|_n \leq \delta, f \in \mathcal{F}_j^0\}$ and $\tilde{\mathcal{G}}_j(\tilde{c}) = \mathcal{F}_j(\tilde{c}) \ominus \mathcal{F}_j(\tilde{c})$. Arguing as in Appendix 3, while taking advantage of Condition 4(B), we can derive $\int_0^{\delta} H^{1/2}(u, \mathcal{G}_j(\delta), || \cdot ||_n) du \lesssim q_n^{1/2} \delta$, for $\delta \leq \tau$. Using Corollary 8.3 of [2] again we derive $P(\sup_{g \in \mathcal{G}_j(\delta)}(\varepsilon, g)_n > C_1(\delta/2)r_n) \lesssim \exp(-c_3^2 C_1^2 n r_n^2)$, where c_3 is half the constant c_2 , introduced earlier, provided C_1 is above a certain universal threshold. Thus,

$$P\Big(\sup_{g \in \mathcal{G}_{j}(r_{n})}(\varepsilon,g)_{n} > C_{1}r_{n}^{2}\Big) + \sum_{s=1}^{S} P\Big(\sup_{g \in \mathcal{G}_{j}(2^{s}r_{n})}(\varepsilon,g)_{n} > C_{1}2^{s-1}r_{n}^{2}\Big) \\ \lesssim \log n \exp(-c_{3}^{2}C_{1}^{2}nr_{n}^{2}).$$

Similar arguments lead to $P(\sup_{\tilde{g}\in\tilde{\mathcal{G}}_{j}(\tilde{c})}(\varepsilon,\tilde{g})_{n} > C_{1}r_{n}) \leq \exp(-c_{4}^{2}C_{1}^{2}nr_{n}^{2}),$ where $c_{4} = c_{2}/(2\tilde{c})$. Consequently, $P(A) \leq \log n \exp(-c_{5}^{2}C_{1}^{2}nr_{n}^{2}),$ where $c_{5} = \min(c_{3}, c_{4})$. It follows from bounds (19) and (21) that

$$P\left((\varepsilon, \hat{f} - f^*)_n > C_1 s_n r_n^2 + C_1 r_n \sum_{j=1}^{p_n} \|\hat{f}_j - f_j^*\|_n\right) \lesssim p_n \log n \exp(-c_5^2 C_1^2 n r_n^2),$$

provided C_1 is above a universal threshold. The right-hand side of the above bound tends to zero by the assumption on the rate of growth for d_n , provided $C_1^2 > 2c_5^{-2}$.

3. Proof of inequality (20). For each given j and η_j , we will write $H_{\eta_j,j}(\cdot)$ for the d_n -dimensional row vector valued function $\mathbf{h}_{\eta_j,j}(\eta_j^T \cdot)$. Note that $||H_{\eta_2,j}\boldsymbol{\xi}_2 - H_{\eta_1,j}\boldsymbol{\xi}_1||_n \leq ||H_{\eta_2,j}(\boldsymbol{\xi}_2 - \boldsymbol{\xi}_1)||_n + ||H_{\eta_2,j}\boldsymbol{\xi}_1 - H_{\eta_1,j}\boldsymbol{\xi}_1||_n$. Thus,

(22)
$$H(u, \mathcal{F}_{j}(\delta), || \cdot ||_{n}) \lesssim H_{1}(u/2) + H_{2}(u/2),$$

where $\exp[H_1(u)]$ is the size of the grid of $\boldsymbol{\xi}_1$ values, for which $||H_{\boldsymbol{\eta}_2,j}(\boldsymbol{\xi}_2 - \boldsymbol{\xi}_1)||_n \leq u$ can be guaranteed for all $\boldsymbol{\xi}_2$ and $\boldsymbol{\eta}_2$ with $||\boldsymbol{\eta}_2|| = 1$ by choosing the appropriate grid point, while $\exp[H_2(u)]$ is the size of the grid of $\boldsymbol{\eta}_1$ values, for which $||H_{\boldsymbol{\eta}_2,j}\boldsymbol{\xi}_1 - H_{\boldsymbol{\eta}_1,j}\boldsymbol{\xi}_1||_n \leq u$ can be ensured all $\boldsymbol{\xi}_1$ and $\boldsymbol{\eta}_2$ with $||\boldsymbol{\eta}_2|| = 1$.

First consider H_1 . Note the general inequalities $d_n^{-1/2} \|\boldsymbol{\xi}\| \lesssim \|H_{\boldsymbol{\eta},j}\boldsymbol{\xi}\|_n \lesssim d_n^{-1/2} \|\boldsymbol{\xi}\|$, which follow from Condition 3(E) and Lemma 6.1 in [3]. Using these bounds, Corollary 2.6 of [2] implies $H_1(u/2) \lesssim d_n [1 + \log(\delta/u)]$.

Now consider H_2 . Note that $\mathbf{h}_{\eta_2}(\boldsymbol{\eta}_2^T \cdot) = \mathbf{h}_{\eta_1}(a+b\boldsymbol{\eta}_2^T \cdot)$, where $\max(|a|, |b-1|) \leq \max_i |(\boldsymbol{\eta}_2 - \boldsymbol{\eta}_1)^T \boldsymbol{\theta}_i|$. Let $g = \mathbf{h}_{\eta_1} \boldsymbol{\xi}_1$, and note that $|g(z_2) - g(z_1)| \leq d_n^{3/2} \delta |z_2 - z_1|$ by the properties of the cubic B-spline derivatives. Consequently,

$$||H_{\boldsymbol{\eta}_2,j}\boldsymbol{\xi}_1 - H_{\boldsymbol{\eta}_1,j}\boldsymbol{\xi}_1||_n = ||g(a+b\boldsymbol{\eta}_2^T\cdot) - g(\boldsymbol{\eta}_1^T\cdot)||_n \lesssim d_n^{3/2}\delta \max_{i\leq n} |(\boldsymbol{\eta}_2 - \boldsymbol{\eta}_1)^T\boldsymbol{\theta}_i|.$$

Write Δ_k for the k-th element of $\eta_2 - \eta_1$ and note that the right-hand side of the above inequality is written as $d_n^{3/2} \delta \max_{i \leq n} |\sum_{k=1}^{q_n} \Delta_k \theta_{ik}|$. Observe that

$$\max_{i \le n} |\sum_{k=1}^{q_n} \Delta_k \theta_{ik}| \le \max_{i \le n} \Big(\sum_{k=1}^{q_n} \Delta_k^2 k^{-4} \Big)^{1/2} \Big(\sum_{k=1}^{q_n} \theta_{ik}^2 k^4 \Big)^{1/2} \lesssim \Big(\sum_{k=1}^{q_n} \Delta_k^2 k^{-4} \Big)^{1/2},$$

where the last inequality holds by Condition 3(A). It follows from (23) that

(24)
$$||H_{\eta_2,j}\boldsymbol{\xi}_1 - H_{\eta_1,j}\boldsymbol{\xi}_1||_n \lesssim d_n^{3/2} \delta q_n^{1/2} \max_{k \le d_n} |\Delta_k| k^{-2}.$$

Construct the η_1 grid by selecting the locations for the k-th coordinate from a uniform grid with step u on $[0, d_n^{3/2} \delta q_n^{1/2} k^{-2}]$. Then, for each η_2 and $\boldsymbol{\xi}_1$, we can find a grid point η_1 for which the right-hand side of (24) is bounded by u. The total number of the corresponding grid points is bounded by a constant factor of

(25)
$$\prod_{k=1}^{q_n} (\delta d_n^{3/2} q_n^{1/2} k^{-2} / u) \lesssim (4\delta e^2 / u)^{q_n},$$

where the last inequality follows from Stirling's formula and $d_n \leq q_n$. Hence, $H_2(u/2) \leq q_n [1 + \log(\delta/u)]$, and

$$\begin{split} \int_0^{\delta} H^{1/2}(u,\mathcal{F}_j(\delta),||\cdot||_n) du &\leq \int_0^{\delta} [H_1^{1/2}(u/2) + H_2^{1/2}(u/2)] du \\ &\lesssim q_n^{1/2} \left(\delta + \delta \int_0^1 \log^{1/2}(1/v) dv\right) \lesssim q_n^{1/2} \delta. \end{split}$$

References.

- Inglot, T. (2010). Inequalities for quantiles of the chi-square distribution. Probability and Mathematical Statistics 30, 339–351.
- [2] van de Geer, S. (1999). Empirical Processes in M-Estimation. Cambridge University Press.
- [3] Zhou, S., Shen, X. and Wolfe, D. (1998). Local asymptotics for regression splines and confidence regions. *The Annals of Statistics* 26, 1760–1782.

DATA SCIENCES AND OPERATIONS DEPARTMENT MARSHALL SCHOOL OF BUSINESS UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CA 90089 USA E-MAIL: fanyingy@marshall.usc.edu

gareth@marshall.usc.edu radchenk@marshall.usc.edu