
Asymmetric error control under imperfect supervision: a

label-noise-adjusted Neyman-Pearson umbrella algorithm

Shunan Yao1, Bradley Rava2, Xin Tong2,3, and Gareth James2,3

1Department of Mathematics, Dana and David Dornsife College of Letters, Arts and Sciences, University of

Southern California.

2Department of Data Sciences and Operations, Marshall School of Business, University of Southern California.

3To whom correspondence should be addressed. xint@marshall.usc.edu, gareth.james@marshall.usc.edu

October 10, 2021

Abstract

Label noise in data has long been an important problem in supervised learning applications

as it affects the effectiveness of many widely used classification methods. Recently, important

real-world applications, such as medical diagnosis and cybersecurity, have generated renewed

interest in the Neyman-Pearson (NP) classification paradigm, which constrains the more severe

type of error (e.g., the type I error) under a preferred level while minimizing the other (e.g., the

type II error). However, there has been little research on the NP paradigm under label noise.

It is somewhat surprising that even when common NP classifiers ignore the label noise in the

training stage, they are still able to control the type I error with high probability. However,

the price they pay is excessive conservativeness of the type I error and hence a significant drop

in power (i.e., 1− type II error). Assuming that domain experts provide lower bounds on the

corruption severity, we propose the first theory-backed algorithm that adapts most state-of-the-

art classification methods to the training label noise under the NP paradigm. The resulting

classifiers not only control the type I error with high probability under the desired level but also

improve power.

KEY WORDS: label noise, classification, Neyman-Pearson (NP) paradigm, type I error,

umbrella algorithm.

1

1. INTRODUCTION

Most classification methods assume a perfectly labeled training dataset. Yet, it is estimated that

in real-world databases around five percent of labels are incorrect (Orr, 1998; Redman, 1998).

Labeling errors might come from insufficient guidance to human coders, poor data quality, or

human mistakes in decisions, among others (Brazdil and Konolige, 1990; Hickey, 1996; Brodley

and Friedl, 1999b). Specifically, in the medical field, a 2011 survey of more than 6,000 physicians

found that half said they encountered diagnostic errors at least once a month (MacDonald, 2011).

The existence of labeling errors in training data is often referred to as label noise, imperfect labels

or imperfect supervision. It belongs to a more general data corruption problem, which refers to

“anything which obscures the relationship between description and class” (Hickey, 1996).

The study of label noise in supervised learning has been a vibrant field in academia. On the

empirical front, researchers have found that some statistical learning methods such as quadratic

discriminant analysis (Lachenbruch, 1979) and k-NN (Okamoto and Yugami, 1997), can be greatly

affected by label noise and have accuracy seriously reduced, while other methods, such as linear

discriminant analysis (Lachenbruch, 1966), are more label noise tolerant. Moreover, one can modify

AdaBoost (Cao et al., 2012), perceptron algorithm (Khardon and Wachman, 2007) and neural

networks (Sukhbaatar and Fergus, 2014), so that they are more tolerant to label noise. Data

cleansing techniques were also developed, such as in Guyon et al. (1996) and Brodley and Friedl

(1999a). On the theoretical front, Natarajan et al. (2013) provided a guarantee for risk minimization

in the setting of convex surrogates. Manwani and Sastry (2013) proved label noise tolerance of risk

minimization for certain types of loss functions, and Ghosh et al. (2015) extended the result by

considering more loss types. Liu and Tao (2016) proposed learning methods with importance-

reweighting which can minimize the risk. Blanchard et al. (2016) studied intensely the class-

conditional corruption model, a model that many works on label noise are based on. In particular,

theoretical results about parameter estimation and consistency of classifiers under this model were

presented in their work. Most recently, Cannings et al. (2020) derived innovative theory of excess

risk for general classifiers.

In many classification settings, one type of error may have far worse consequences than the

other. For example, a biomedical diagnosis/prognosis that misidentifies a benign tumor as malig-

2

nant will cause distress and potentially unnecessary medical procedures, but the alternative, where

a malignant tumor is classified as benign, will have far worse outcomes. Other related predictive

applications include cybersecurity and finance. Despite great advances in the label-noise classifica-

tion literature, to our knowledge, no classifier has been constructed to deal with this asymmetry in

error importance under label noise so as to control the level of the more severe error type.

In this paper, we concentrate on the classification setting involving both mislabeled outcomes

and error importance asymmetry. The Neyman-Pearson (NP) paradigm (Cannon et al., 2002;

Scott and Nowak, 2005), which controls the false-negative rate (FNR, a.k.a., type I error1) under

some desired level while minimizing the false-positive rate (FPR, a.k.a., type II error), provides a

natural approach to this problem. However, to the best of our knowledge, there has been no work

that studies how label noise issues affect the control of the more severe FNR. We show that if one

trains a standard NP classifier on corrupted labels (e.g., the NP umbrella algorithm (Tong et al.,

2018)), then the actual achieved FNR is far below the control target, resulting in a very high, and

undesirable, FPR.

This problem motivates us to devise a new label-noise-adjusted umbrella algorithm that corrects

for the labeling errors to produce a lower FPR while still controlling the FNR. The construction of

such an algorithm is challenging because we must identify the optimal correction level without any

training data from the uncorrupted distribution. To address this challenge, we employ a common

class-conditional noise model and derive the population-level difference between the type I errors

of the true and corrupted labels. Based on this difference, we propose a sample-based correction

term that, even without observing any uncorrupted labels, can correctly adjust the NP umbrella

algorithm to significantly reduce the FPR while still controlling the FNR.

Our approach has several advantages. First, it is the first theory-backed methodology in the

label noise setting to control population-level type I error (i.e., FNR) regarding the true labels.

Concretely, we can show analytically that the new algorithm produces classifiers that have a high

probability of controlling the FNR below the desired threshold with a FPR lower than that provided

by the original NP umbrella algorithm. Second, when there are no labeling errors, our new algorithm

1Note that type I error in our work is defined to be the conditional probability of misclassifying a 0 instance as
class 1. Moreover, we code the more severe class as class 0. In the disease diagnosis example, the disease class would
be class 0.

3

reduces to the original NP algorithm. Finally, we demonstrate on both simulated and real-world

data, that under the NP paradigm the new algorithm dominates the original unadjusted one and

competes favorably against existing methods which handle label noise in classification.

The rest of the paper is organized as follows. In Section 2, we introduce some notation and

a corruption model to study the label noise. In Section 3, we demonstrate the ineffectiveness

of the original NP umbrella algorithm under label noise and propose a new label-noise-adjusted

version. The validity and the high-probability type I error control property of the new algorithm

are established in Section 4. Simulation and real data analysis are conducted in Section 5, followed

by a Discussion section. All proofs, additional numerical results, and technical results are relegated

to the Appendix.

2. NOTATION AND CORRUPTION MODEL

Let (X,Y, Ỹ) be a random triplet, where X ∈ X ⊂ IRd represents features, Y ∈ {0, 1} encodes the

true class labels and Ỹ ∈ {0, 1} the corrupted ones. Note that in our setting, we cannot observe Y ;

the observations come from (X, Ỹ). Denote X0 , X | (Y = 0) and X1 , X | (Y = 1). Similarly,

denote X̃0 , X | (Ỹ = 0) and X̃1 , X | (Ỹ = 1). Denote by IP and IE generic probability measure

and expectation whose meanings depend on the context. For any Borel set A ⊂ X , we denote

P0(A) = IP(X ∈ A|Y = 0) , P1(A) = IP(X ∈ A|Y = 1) ,

P̃0(A) = IP(X ∈ A|Ỹ = 0) , P̃1(A) = IP(X ∈ A|Ỹ = 1) .

Then, we denote by F0 , F1 , F̃0 and F̃1 their respective distribution functions and by f0 , f1 , f̃0 and

f̃1 the density functions, assuming they exist. Moreover, for a measurable function T : X → IR, we

denote, for any z ∈ IR,

F T0 (z) = P0(T (X) ≤ z) , F T1 (z) = P1(T (X) ≤ z) ,

F̃ T0 (z) = P̃0(T (X) ≤ z) , F̃ T1 (z) = P̃1(T (X) ≤ z) .

Since the effect of, and adjustment to, the label noise depend on the type and severity of

corruption, we need to specify a corruption model to work with. Our choice for this work is the

class-conditional noise (contamination) model, which is specified in the next assumption.

4

0.0

0.1

0.2

0.3

0.4

-5.0 -2.5 0.0 2.5 5.0 7.5
x

de
ns
ity

Figure 1: Density plots in Example 1. True (lighter and solid) and corrupted (darker and dashed).

Assumption 1. There exist constants m0,m1 ∈ [0, 1] such that for any Borel set A ⊂ X ,

P̃0(A) = m0P0(A) + (1−m0)P1(A) and P̃1(A) = m1P0(A) + (1−m1)P1(A) . (1)

Furthermore, assume m0 > m1 but both quantities can be unknown. Moreover, let m#
0 ,m

#
1 ∈ [0, 1]

be known constants such that m#
0 ≥ m0 and m#

1 ≤ m1.

Example 1. [An example of Assumption 1] Let X0 ∼ N (µ0, σ
2) and X1 ∼ N (µ1, σ

2), where

µ0, µ1 ∈ IR and σ > 0. Then F̃0(z) = m0Φ(z−µ0σ)+(1−m0)Φ(z−µ1σ) and F̃1(z) = m1Φ(z−µ0σ)+(1−

m1)Φ(z−µ1σ), where Φ(·) is the distribution function of N (0, 1). With the choice of µ0 = 0, µ1 = 1,

σ = 1, m0 = 0.9, and m1 = 0.05, the density functions f0, f̃0, f1 and f̃1 are plotted in Figure 1.

Note that equation (1) specifies perhaps the simplest model for label noise in supervised learning.

Here, m0 and m1 represent the severity of corruption levels. Concretely, m0 can be interpreted

as the proportion of true 0 observations among corrupted 0 observations, and m1 the proportion

of true 0 observations among corrupted 1 observations. The assumption m0 > m1 means that

corrupted class 0 resembles true class 0 more than corrupted class 1 does, and that corrupted class

1 resembles true class 1 more than corrupted class 0 does. However, this assumption does not mean

that corrupted class 0 resembles true class 0 more than it resembles true class 1 (i.e, m0 > 1/2) or

5

that corrupted class 1 resembles true class 1 more than it resembles true class 0 (i.e., m1 < 1/2).

Note that by the way our model is written, m0 = 1 and m1 = 0 correspond to the no label noise

situation; as such, the roles of m0 and m1 are not symmetric. Hence, the assumptions m#
0 ≥ m0

and m#
1 ≤ m1 mean that we know some lower bounds of the corruption levels.

The class-conditional label noise model has been widely adopted in the literature (Natarajan

et al., 2013; Liu and Tao, 2016; Blanchard et al., 2016). We note here that the assumption m0 > m1

aligns with the total noise assumption π0 + π1 < 1 in Blanchard et al. (2016) as π0 and π1 in their

work correspond to 1 − m0 and m1 in Assumption 1, respectively. In Natarajan et al. (2013)

and Liu and Tao (2016), the label noise was modeled through the label flipping probabilities:

µi = IP(Ỹ = 1 − i|Y = i), i = 0, 1. This alternative formulation is related to our formulation

via Bayes’ rule. An in-depth study of the class-conditional label noise model, including mutual

irreducibility and identifiability, was presented in Blanchard et al. (2016). Moreover, Blanchard

et al. (2016) developed a noisy label trained classifier based on weighted cost-sensitive surrogate

loss and established its consistency. Similarly, Natarajan et al. (2013) provided two methods to

train classifiers, both relying on classification-calibrated surrogate loss; bounds for respective excess

risks of these two methods were also given. Moreover, Liu and Tao (2016) proposed an importance

reweighting method and extended the result in Natarajan et al. (2013) to all surrogate losses. Other

than Blanchard et al. (2016), which briefly discussed the NP paradigm at the population level, in

all aforementioned papers, though loss functions vary, the goal of classification is to minimize the

overall risk. Our work focuses on the NP paradigm. Moreover, we focus on high probability control

on the type I error based on finite samples, in contrast to asymptotic results in the literature.

In this work, we take the perspective that the domain experts can provide under-estimates

of corruption levels. In the literature, there are existing methods to estimate these levels. For

example, Liu and Tao (2016) and Blanchard et al. (2016) developed methods to estimate πi’s and

µi’s, and showed consistency of their estimators. In numerical studies, we apply the method in Liu

and Tao (2016) to estimate m0 and m1
2. Numerical evidence shows that using these estimators

in our proposed algorithm fails to establish a high probability control of the true type I error.

In fact, even using consistent and unbiased estimators of m0 and m1 as inputs of our proposed

2Note that though their method targets at µi’s, estimates of mi’s in equation (1) can be constructed from those
of µi’s by the Bayes’ theorem.

6

algorithm would not be able to control the true type I error with high probability. One such case

is demonstrated in Simulation 8 of the Appendix, where estimators for m0 and m1 are normally

distributed and centered at the true values. To have high probability control on the true type I

error, we do need the “under-estimates” of corruption levels as in Assumption 1.

3. METHODOLOGY

In this section, we first formally introduce the Neyman-Pearson (NP) classification paradigm and

review the NP umbrella algorithm (Tong et al., 2018) for the uncorrupted label scenario (Section

3.1). Then we provide an example demonstrating that in the presence of label noise, naively

implementing the NP umbrella algorithm leads to excessively conservative type I error. i.e., type

I error much smaller than the control target α. We analyze and capitalize on this phenomenon,

and present new noise-adjusted versions of the NP umbrella algorithm, Algorithm 1 for known

corruption levels (Section 3.2) and Algorithm 1# for unknown corruption levels (Section 3.3).

Algorithm 1 can be considered as a special case of Algorithm 1#: m#
0 = m0 and m#

1 = m1.

A few additional notations are introduced to facilitate our discussion. A classifier φ : X → {0, 1}

maps from the feature space to the label space. The (population-level) type I and II errors of φ(·)

regarding the true labels (a.k.a., true type I and II errors) are respectively R0(φ) = P0(φ(X) 6= Y)

and R1(φ) = P1(φ(X) 6= Y). The (population-level) type I and II errors of φ(·) regarding the

corrupted labels (a.k.a., corrupted type I and II errors) are respectively R̃0(φ) = P̃0(φ(X) 6= Ỹ)

and R̃1(φ) = P̃1(φ(X) 6= Ỹ). In verbal discussion in this paper, type I error without any suffix

refers to type I error regarding the true labels.

3.1 The NP umbrella algorithm without label noise

The NP paradigm (Cannon et al., 2002; Scott and Nowak, 2005) aims to mimic the NP oracle

φ∗α ∈ arg min
φ: R0(φ)≤α

R1(φ) ,

where α ∈ (0, 1) is a user-specified level that reflects the priority towards the type I error. In

practice, with or without label noise, based on training data of finite sample size, it is usually

impossible to ensure R0(·) ≤ α almost surely. Instead, we aim to control the type I error with

7

high probability. Recently, the NP umbrella algorithm (Tong et al., 2018) has attracted significant

attention3. This algorithm works in conjunction with any score based classification method (e.g.,

logistic regression, support vector machines, or random forest) to compress a d-dimensional feature

measurement to a 1-dimensional score, and then threshold the score to classify. Specifically, given

a (score based) classification method, the NP umbrella algorithm uses a model-free order statistics

approach to decide the threshold, attaining a high probability control on type I error with minimum

type II error for that method. Moreover, when coupling with a classification method that matches

the underlying data distribution, the NP umbrella algorithm also achieves a diminishing excess

type II error, i.e., R1(φ̂α) − R1(φ
∗
α) → 0. For example, Tong et al. (2020) showed that under a

linear discriminant analysis (LDA) model, an LDA classifier with the score threshold determined

by the NP umbrella algorithm satisfies both the control on type I error and a diminishing excess

type II error4. Next we will review the implementation of the NP umbrella algorithm.

Let S0 = {X0
j }
M0
j=1 and S1 = {X1

j }
M1
j=1, respectively be the uncorrupted observations in classes

0 and 1, where M0 and M1 are the number of observations from each class5. Then, given a

classification method (i.e., base algorithm, e.g., logistic regression), the NP umbrella algorithm is

implemented by randomly splitting the class 0 data S0 into two parts: S0b and S0t . The first part,

S0b, together with S1, is used to train the base algorithm, while the second part S0t determines the

threshold candidates. Specifically, we train a base algorithm with scoring function T̂ (·) (e.g., the

sigmoid function in logistic regression) using S0b ∪ S1, apply T̂ (·) on S0t (|S0t | = n) to get threshold

candidates {t1, . . . , tn}, and sort them in an increasing order {t(1), . . . , t(n)}. Then the NP umbrella

algorithm proposes classifier φ̂k∗(·) = 1I{T̂ (·) > t(k∗)}, where

k∗ = min

k ∈ {1, . . . , n} :

n∑
j=k

(
n

j

)
(1− α)jα(n−j) ≤ δ

 , (2)

in which δ is a user-specified tolerance probability of the type I error exceeding α. The key to this

approach is that Tong et al. (2018) established, for all φ̂k(·) = 1I{T̂ (·) > t(k)} where k ∈ {1, . . . , n},

3At the time of writing, the NP umbrella package has been downloaded over 35,000 times.
4These two properties together were coined as the NP oracle inequalities by Rigollet and Tong (2011). Classifiers

with these properties were constructed with non-parametric assumptions in Tong (2013) and Zhao et al. (2016).
5Note that the uncorrupted data S0 and S1 are not available in our present label noise setting and we only use

them here for review purposes.

8

original adjusted

200 500 1000 2000 200 500 1000 2000

0.00

0.04

0.08

0.12

training sample size (N)

tru
e

ty
pe

 I
er

ro
rs

original adjusted

200 500 1000 2000 200 500 1000 2000

0.2

0.4

0.6

0.8

1.0

training sample size (N)

tru
e

ty
pe

 II
 e

rr
or

s

Figure 2: The original NP umbrella algorithm vs. a label-noise-adjusted version for Example 2.
The plots in the left panel (blue) are the true type I and II errors for the original NP umbrella
algorithm. The plots in the right panel (orange) are the true type I and II errors for the label-noise-
adjusted NP umbrella algorithm with known corruption levels. The black dot and vertical bar in
every violin represent mean and standard deviation, respectively. In the top row, the horizontal
black line is α = 0.05 and the boundaries between lighter and darker color in each violin plot mark
the 1− δ = 95% quantiles.

it holds IP(R0(φ̂k) > α) ≤
∑n

j=k

(
n
j

)
(1 − α)jα(n−j), where IP corresponds to random draws of S0

and S1, as well as potential randomness in the classification method (e.g., random forest), and

the inequality becomes an equality when T̂ is continuous almost surely. In view of this inequality

and the definition for k∗, we have IP(R0(φ̂k∗) > α) ≤ δ, and φ̂k∗ achieves the smallest type II

error among the φ̂k’s that respect the (1 − δ) probability control of the type I error. We call this

algorithm the original NP umbrella algorithm to contrast with the newly developed versions.

3.2 Algorithm 1: label-noise-adjusted NP umbrella algorithm with known corruption levels

Returning to our errors in labels problem leads one to ask what would happen if we were to directly

apply the original NP umbrella algorithm to the label noise setting? The results are mixed. While

this algorithm successfully controls type I error, it tends to be massively conservative, leading to

very low type I errors, but high type II errors. The next example illustrates this phenomenon.

Example 2. Let X0 ∼ N (0, 1) and X1 ∼ N (2, 1), m0 = 0.85, m1 = 0.15, α = 0.05 and

δ = 0.05. For simplicity, we use the identity scoring function: T̂ (X) = X. We generate N ∈

9

0.0

0.1

0.2

0.3

0.4

-5.0 -2.5 0.0 2.5 5.0
x

de
ns
ity

Figure 3: The blue solid curve is the density of true class 0 (i.e., N (0, 1)) and the orange dashed
curve is the density of corrupted class 0 (i.e., a mixture of N (0, 1) and N (2, 1) with m0 = 0.85).
The black vertical line marks the threshold of the classifier 1I{X > 2.52} whose corrupted type I
error is 0.05.

{200, 500, 1000, 2000} corrupted class 0 observations and train a classifier φ̂k∗(·) based on them.

Due to normality, we can analytically calculate the type I and II errors regarding the true labels.

The above steps are repeated 1,000 times for every value of N to graph the violin plots of both errors

as shown in the left panel of Figure 2. Clearly, all the achieved true type I errors are much lower

than the control target α and true type II errors are very high 6.

The phenomenon illustrated in the left panel of Figure 2 is not a contrived one. Indeed, under the

class-conditional noise model (i.e., Assumption 1), at the same threshold level, the tail probability

of corrupted class 0 is greater than that of true class 0 since the corrupted 0 distribution is a

mixture of true 0 and 1 distributions. Figure 3 provides further illustration. In this figure, the

black vertical line (x = 2.52) marks the threshold of the classifier 1I{X > 2.52} whose corrupted

type I error (i.e., the right tail probability under the orange dashed curve) is 0.05. In contrast, its

true type I error (i.e., the right tail probability under the blue solid curve) is much smaller.

The above observation motivates us to create new label-noise-adjusted NP umbrella algorithms

6To make a contrast, we also plot in the right panel of Figure 2 the true type I and II errors of φ̂k∗(·), the classifier
constructed by the label-noise-adjusted NP umbrella algorithm with known corruption levels to be introduced in the
next section. The details to generate φ̂k∗(·)’s are skipped here, except we reveal that corrupted class 1 observations,
in addition to the corrupted class 0 observations, are also needed to construct the thresholds.

10

by carefully studying the discrepancy between true and corrupted type I errors, whose population-

level relation is channeled by the class-conditional noise model and can be estimated based on

data with corrupted labels alone. We will first develop a version for known corruption levels (i.e.,

Algorithm 1) and then a variant for unknown corruption levels (i.e., Algorithm 1#). Although the

latter variant is suitable for most applications, we believe that presenting first the known corruption

level version streamlines the reasoning and presentation.

For methodology and theory development, we assume the following sampling scheme. Let S̃0 =

{X̃0
j }
N0
j=1 be corrupted class 0 observations and S̃1 = {X̃1

j }
N1
j=1 corrupted class 1 ones. The sample

sizes N0 and N1 are considered to be non-random numbers, and we assume that all observations

in S̃0 and S̃1 are independent. Then, we divide S̃0 into three random disjoint non-empty subsets.

The first two parts S̃0b and S̃0t are used to train the base algorithm and determine the threshold

candidates, respectively. The third part S̃0e is used to estimate a correction term to account for the

label noise. Similarly, we randomly divide S̃1 into two disjoint non-empty subsets: S̃1b and S̃1e .

Let T̂ (·) be a scoring function trained on S̃b = S̃0b ∪ S̃1b. We apply T̂ (·) to elements in S̃0t

and sort them in an increasing order: {t(1), . . . , t(n)}, where n = |S̃0t |7. These will serve as the

threshold candidates, just as in the original NP umbrella algorithm. However, instead of k∗, the

label-noise-adjusted NP umbrella algorithm with known corruption levels will take the order k∗

defined by

k∗ = min{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k)) ≤ α} ,

where αk,δ
8 satisfies

n∑
j=k

(
n

j

)
αn−jk,δ (1− αk,δ)j = δ , (3)

D̂+(·) = D̂(·) ∨ 0 := max(D̂(·), 0) and D̂(·) = 1−m0
m0−m1

(
ˆ̃F T̂0 (·)− ˆ̃F T̂1 (·)

)
, in which ˆ̃F T̂0 (·) and ˆ̃F T̂1 (·)

are empirical estimates of F̃ T̂0 (·) and F̃ T̂1 (·) based on S̃0e and S̃1e , respectively.

The entire construction process of φ̂k∗(·) = 1I{T̂ (·) > t(k∗)} is summarized and detailed in

Algorithm 1. In this algorithm, to solve αk,δ, we use a binary search subroutine (Algorithm 2 in

7In Appendix A, we summarize the notations related to the sampling scheme for the readers’ convenience.
8The existence and uniqueness of αk,δ are ensured by Lemma 5 in the Appendix.

11

Algorithm 1: Label-noise-adjusted NP Umbrella Algorithm with known corruption levels

Input : S̃0: sample of corrupted 0 observations
S̃1: sample of corrupted 1 observations
α: type I error upper bound, 0 < α < 1
δ: type I error violation rate target, 0 < δ < 1
m0: probability of a corrupted class 0 sample being of true class 0
m1: probability of a corrupted class 1 sample being of true class 0

1 S̃0b, S̃0t ,S̃0e ← random split on S̃0

2 S̃1b, S̃1e ← random split on S̃1

3 S̃b ← S̃1b ∪ S̃0b ; // combine S̃0b and S̃1b as S̃b
4 T̂ (·)← base classification algorithm(S̃b) ; // train a scoring function on S̃b
5 Tt = {t1, t2, . . . , tn} ← T̂ (S̃0t) ; // apply T̂ to every entry in S̃t
6 {t(1), t(2), . . . , t(n)} ← sort(Tt)
7 T 0

e ← T̂ (S̃0e)

8 T 1
e ← T̂ (S̃1e) ; // apply T̂ to all elements in S̃0e and S̃1e

9 for k in {1, . . . , n} do
10 αk,δ ← BinarySearch(δ, k, n) ; // compute αk,δ through binary search

11
ˆ̃F T̂0 (t(k))←

∣∣T 0
e

∣∣−1 ·∑t∈T 0
e

1I{t ≤ t(k)}

12
ˆ̃F T̂1 (t(k))←

∣∣T 1
e

∣∣−1 ·∑t∈T 1
e

1I{t ≤ t(k)} ; // compute the empirical distributions

13 D̂(t(k))← 1−m0
m0−m1

(
ˆ̃F T̂0 (t(k))−

ˆ̃F T̂1 (t(k))
)

; // compute an estimate of R̃0 −R0

14 D̂+(t(k))← D̂(t(k)) ∨ 0 ; // if D̂(t(k)) is negative, then set it to 0

15 end

16 k∗ ← min{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k)) ≤ α} ; // select the order

17 φ̂k∗(·)← 1I{T̂ (·) > t(k∗)} ; // construct an NP classifier

Output: φ̂k∗(·)

Appendix B) on the function x 7→
∑n

j=k

(
n
k

)
xn−j(1− x)j , leveraging its strict monotone decreasing

property in x. Interested readers are referred to the proof of Lemma 5 in the Appendix for further

reasoning. Currently we randomly split S̃0 and S̃1 respectively into three and two equal sized

subgroups. An optimal splitting strategy could be a subject for future research.

The key to the new algorithm is D̂+(·), which adjusts for the label corruption. Indeed, the

original NP umbrella algorithm can be seen as a special case of our approach where D̂+(·) = 0.

The numerical advantage of the new algorithm is demonstrated in the right panel of Figure 2

and in Section 5. We will prove in the next section that the label-noise-adjusted NP classifier

φ̂k∗(·) = 1I{T̂ (·) > t(k∗)} controls true type I error with high probability while avoiding the excessive

conservativeness of the original NP umbrella algorithm. Note that in contrast to the deterministic

12

order k∗ in the original NP umbrella algorithm, the new order k∗ is random, calling for much more

involved technicalities to establish the theoretical properties of φ̂k∗(·).

3.3 Algorithm 1#: label-noise-adjusted NP umbrella algorithm with unknown corruption levels

For most applications in practice, accurate corruption levels m0 and m1 are inaccessible. To address

this, we propose Algorithm 1#, a simple variant of Algorithm 1 that replaces m0 and m1 with

estimates m#
0 and m#

1 . In all other respects the two algorithms are identical. Specifically, when

estimating R̃0 −R0, Algorithm 1# uses D̂#(t(k)) =
1−m#

0

m#
0 −m

#
1

(
ˆ̃F T̂0 (t(k))−

ˆ̃F T̂1 (t(k))
)

and D̂+
#(t(k)) =

D̂#(t(k)) ∨ 0. Then, Algorithm 1# delivers the NP classifier φ̂k∗#(·) = 1I{T̂ (·) > t(k∗#)}, where

k∗# = min{k ∈ {1, . . . , n} : αk,δ − D̂+
#(t(k)) ≤ α}. Due to the similarity with Algorithm 1, we do

not re-produce the other steps of Algorithm 1# to write it out in a full algorithm format.

Rather than supplying unbiased estimates for m0 and m1, we will demonstrate that it is impor-

tant that m#
0 and m#

1 are under-estimates of the corruption levels (i.e., m#
0 ≥ m0 and m#

1 ≤ m1

as in Assumption 1). In this work, we assume that domain experts supply these under-estimates.

While it would be unrealistic to assume that these experts know m0 and m1 exactly, in many sce-

narios one can provide accurate bounds on these quantities. It would be interesting to investigate

data-driven estimators that have such a property for future work.

4. THEORY

In this section, we first elaborate the rationale behind Algorithm 1 (Section 4.1), and then show

that under a few technical conditions, this new algorithm induces well-defined classifiers whose type

I errors are bounded from above by the desired level with high probability (Section 4.2). Then we

establish a similar result for its unknown-corruption-level variant, Algorithm 1# (Section 4.3).

4.1 Rationale behind Algorithm 1

Proposition 1. Let T̂ (·) be a scoring function (e.g., sigmoid function in logistic regression) trained

on S̃b. Applying T̂ (·) to every element in S̃0t , we get a set of scores. Order these scores and denote

them by {t(1), t(2), . . . , t(n)}, in which t(1) ≤ t(2) ≤ . . . ≤ t(n). Then, for any α ∈ (0, 1) and

13

k ∈ {1, 2, . . . , n}, the classifier φ̂k(·) = 1I{T̂ (·) > t(k)} satisfies

IP
(
R̃0(φ̂k) > α

)
≤

n∑
j=k

(
n

j

)
(1− α)jα(n−j) ,

in which IP is regarding the randomness in all training observations, as well as additional random-

ness if we adopt certain random classification methods (e.g., random forest). Moreover, when T̂ (·)

is continuous almost surely, the above inequality obtains the equal sign.

Recall that R̃0(·) denotes type I error regarding the corrupted labels. We omit a proof for

Proposition 1 as it follows the same proof as its counterpart in Tong et al. (2018). For α, δ ∈ (0, 1),

recall that the original NP umbrella algorithm selects k∗ = min{k ∈ {1, . . . , n} :
∑n

j=k

(
n
j

)
(1 −

α)jα(n−j) ≤ δ}. The smallest k among all that satisfy
∑n

j=k

(
n
j

)
(1 − α)jα(n−j) ≤ δ is desirable

because we also wish to minimize the type II error. There is a sample size requirement for this

order statistics approach to work because a finite order k∗ should exist. Precisely, an order statistics

approach works if the last order does; that is (1− α)n ≤ δ. This translates to Assumption 2 on n,

the sample size of S̃0t . This is a mild requirement. For instance, when α = δ = 0.05, n should be

at least 59.

Assumption 2. n ≥ dlog δ/ log(1− α)e, in which d·e denotes the ceiling function.

In view of Proposition 1, the choice of k∗ guarantees IP
(
R̃0(φ̂k∗) ≤ α

)
≥ 1− δ. In other words,

if we were to ignore the label noise presence and apply the original NP umbrella algorithm, the

type I error regarding the corrupted labels, R̃0, is controlled under level α with probability at least

1− δ. Moreover, the achieved R̃0 is usually not far from α when the sample size n is much larger

than the lower bound requirement. However, this is not our main target; what we really want is

to control R0. Example 2 in Section 3.1 convincingly demonstrates that in the presence of label

noise, the achieved R0 after naive implementation of the original NP umbrella algorithm can be

much lower than the control target α. This is no exception. To aid in analyzing the gap between

R0 and R̃0, we make the following assumption.

Assumption 3. The scoring function T̂ is trained such that F̃ T̂0 (z) > F̃ T̂1 (z) for all z ∈ IR with

probability at least 1− δ1(nb), where nb = |S̃b| and δ1(nb) converges to 0 as nb goes to infinity.

14

Loosely, Assumption 3 means that the scoring function trained on corrupted data still has

the “correct direction.” For any classifier of the form φ̂c(·) = 1I{T̂ (·) > c}, Assumption 3 implies

that with probability at least 1 − δ1(nb), P̃0(φ̂c(X) = 0) > P̃1(φ̂c(X) = 0), which means that a

corrupted class 0 observation is more likely to be classified as 0 than a corrupted class 1 observation

is. Interested readers can find a concrete example that illustrates this mild assumption in the

Appendix C (Example 3). Now we are ready to describe the discrepancy between R0 and R̃0.

Lemma 1. Let T̂ be a scoring function trained on S̃b and φ̂c(·) = 1I{T̂ (·) > c} be a classifier

that thresholds the scoring function at c ∈ IR. Denote D(c) = R̃0(φ̂c) − R0(φ̂c). Then, under

Assumptions 1, 2 and 3, for given α and δ, it holds that

IP

(
inf
c∈IR

D(c) ≥ 0

)
≥ 1− δ1(nb) and IP

(
R0(φ̂k∗) > α−D(t(k∗))

)
≤ δ + δ1(nb) ,

where k∗ and δ are related via equation (2). Moreover, we have

D(c) = M
(
F̃ T̂0 (c)− F̃ T̂1 (c)

)
, (4)

where M = (1−m0)(m0 −m1)
−1.

Note that D(c) measures the discrepancy between the corrupted type I error and the true type

I error of the classifier φ̂c(·). Lemma 1 implies that with high probability, φ̂k∗(·) has R0, the type I

error regarding true labels, under a level that is smaller than the target value α, and that the gap

is measured by D(t(k∗)). It is important to note that D(c) is solely a function of the distributions

of the corrupted data, and does not require any knowledge of the uncorrupted scores, so we are

able to estimate this quantity from our observed data.

As argued previously, excessive conservativeness in type I error is not desirable because it is

usually associated with a high type II error. Therefore, a new NP umbrella algorithm should adjust

to the label noise, so that the resulting classifier respects the true type I error control target, but

is not excessively conservative. Motivated by Lemma 1, our central plan is to choose some less

conservative (i.e., smaller) order than that in the original NP umbrella algorithm, in view of the

difference between R0 and R̃0. Recall that δ ∈ (0, 1) is the target type I error violation rate. In

15

the presence of label noise, we do not expect to control at this precise violation rate, but just some

number around it.

For any φ̂k(·), under Assumptions 1, 2 and 3, Lemma 1 implies R̃0(φ̂k) ≥ R0(φ̂k) with probability

at least 1−δ1(nb). Note that the δ1(nb) term is small and asymptotically 0; we will ignore it in this

section when motivating our new strategy. With this simplification, R̃0(φ̂k) is always greater than

R0(φ̂k), as illustrated in Figure 4. The definition of αk,δ in equation (3) and Proposition 1 imply

with probability at least 1 − δ, αk,δ ≥ R̃0(φ̂k), which corresponds to the green region (the region

on the right) in Figure 4. Since we only need 1− δ probability control on R0, it suffices to control

R0 corresponding to this region. Combining the results αk,δ ≥ R̃0(φ̂k) and R̃0(φ̂k) ≥ R0(φ̂k), we

have the inequalities αk,δ ≥ αk,δ − D(t(k)) ≥ R0(φ̂k) on our interested region (Recall D(t(k)) =

R̃0(φ̂k) − R0(φ̂k)). By the previous argument, αk,δ can be used as an upper bound for R0, but to

have a good type II error, a better choice is clearly the smaller αk,δ −D(t(k)). So if D(t(k)) were a

known quantity, we can set the order to be k̃∗ = min{k ∈ {1 . . . , n} : αk,δ−D(t(k)) ≤ α} and propose

a classifier φ̂k̃∗(·) = 1I{T̂ (·) > t(k̃∗)}. This is to be compared with the order k∗ chosen by the original

NP umbrella algorithm, which can be equivalently expressed as k∗ = min{k ∈ {1 . . . , n} : αk,δ ≤ α}

(Lemma 5 in the Appendix). Then we have k̃∗ ≤ k∗, and so φ̂k̃∗(·) is less conservative than φ̂k∗(·)

in terms of type I error.

However, φ̂k̃∗(·) is not accessible because D is unknown. Instead we estimate D by replacing F̃ T̂0

and F̃ T̂1 in (4) with their empirical distributions ˆ̃F T̂0 and ˆ̃F T̂1 , which are calculated using S̃0e and S̃1e ,

i.i.d. samples from the corrupted 0 and 1 observations. Note that these estimates are independent

of S̃b and S̃0t . For a given T̂ , we define for every c ∈ IR,

D̂(c) =
1−m0

m0 −m1

(
ˆ̃F T̂0 (c)− ˆ̃F T̂1 (c)

)
and k∗∗ = min{k ∈ {1, . . . , n} : αk,δ − D̂(t(k)) ≤ α− ε} ,

in which a small ε > 0 is introduced to compensate for the randomness of D̂ in the theory proofs.

For simulation and real data, we actually just use ε = 0. Finally, the proposed new label-noise-

adjusted NP classifier with known corruption levels is φ̂k∗(·) = 1I{T̂ (·) > t(k∗)}, in which k∗ is a

small twist from k∗∗ by replacing D̂ with its positive part. The construction of φ̂k∗(·) was detailed

in Algorithm 1.

16

type I error

𝛼𝑘,𝛿

with probability 𝛿 with probability 1 − 𝛿

𝑡(𝑘)

෨𝑅0(𝜙𝑘)

𝑅0(𝜙𝑘)

threshold

𝐷(𝑡(𝑘))

corrupted type I error

true type I error

𝐷(𝑡(𝑘))
𝛼𝑘,𝛿 − 𝐷(𝑡(𝑘))

𝑅0(𝜙𝑘)

Figure 4: A cartoon illustration of 1− δ probability upper bound of type I error.

We have two comments on the implementation of Algorithm 1. First, though the ε compensation

for the randomness is necessary for the theory proof, our empirical results suggest almost identical

performance between ε = 0 relative to any small ε, so we recommend setting ε to 0 for simplicity,

and we do not use the ε compensation in Algorithm 1. Second, in the order selection criterion of

k∗ in Algorithm 1, we use D̂+ = D̂ ∨ 0 := max(D̂, 0) instead of D̂, because empirically, although

highly unlikely, D̂ can be negative, which results in min{k ∈ {1, . . . , n} : αk,δ − D̂(t(k)) ≤ α} ≥

min{k ∈ {1, . . . , n} : αk,δ ≤ α}. In this case, the new order could be greater than k∗. Since we aim

to reduce the conservativeness of the original NP umbrella algorithm, the possibility of k∗ ≥ k∗

will reverse this effort and worsen the conservativeness. To solve this issue, we force the empirical

version of D to be non-negative by replacing D̂ with D̂+ in Algorithm 1.

4.2 Theoretical properties of Algorithm 1

In this subsection, we first formally establish that Algorithm 1 gives rise to valid classifiers (Lemma

2) and then show that these classifiers have the true type I errors controlled under α with high

probability (Theorem 1).

Lemma 2. Under Assumption 2, k∗ = min{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k)) ≤ α} in Algorithm 1

17

exists. Moreover, this label-noise-adjusted order is no larger than that chosen by the original NP

umbrella algorithm; that is k∗ ≤ k∗.

Lemma 2 implies that Algorithm 1 reduces the excessive conservativeness of the original NP

umbrella algorithm on the type I error by choosing a smaller order statistic as the threshold.

Moreover, if there is no label noise, i.e., when m0 = 1 and m1 = 0, we have k∗ = min{k ∈

{1, . . . , n} : αk,δ ≤ α} = k∗. That is, Algorithm 1 reduces to the original NP umbrella algorithm.

Another important question is whether Algorithm 1 can control the true type I error with high

probability. The following condition is assumed for the rest of this section.

Assumption 4. The scoring function T̂ is trained from a class of functions T such that the density

functions for both T̂ (X̃0) and T̂ (X̃1) exist for every T̂ ∈ T . Then, we denote these two densities

by f̃ T̂0 and f̃ T̂1 , respectively. Furthermore, supT̂∈T ‖f̃
T̂
0 ∨ f̃ T̂1 ‖∞ ≤ C and inf T̂∈T infz∈DT̂ f̃

T̂
0 (z) > c

for some positive c and C with probability 1− δ2(nb), where DT̂ is the support of f̃ T̂0 and is a closed

interval, and δ2(nb) converges to 0 as nb goes to infinity.

Note that Assumption 4 summarizes assumptions that we make for technical convenience in

establishing the next theorem. In particular, we assume the existence of densities f̃ T̂0 and f̃ T̂1 ,

which holds if X̃0 and X̃1 have densities and T̂ (·) is smooth. Moreover, we assume that with high

probability, both the densities are uniformly bounded from above and f̃ T̂0 (·) is bounded uniformly

from below.

Recall that in Algorithm 1, we set k∗ = min{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k∗)) ≤ α} without an

ε term. Setting ε = 0 intuitively seems reasonable since, when the sample size is small, the sets

{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k∗)) ≤ α− ε} and {k ∈ {1, . . . , n} : αk,δ − D̂+(t(k∗)) ≤ α} agree with

high probability, and, when the sample size is large, concentration of random variables takes effect

so there is little need for compensation for randomness. Our simulation results further reinforce

this intuition. However, we include an ε term in the next theorem as this is required in our proof

for the theory to hold.

Theorem 1. Under Assumptions 1, 2, 3 and 4, the classifier φ̂k∗(·), given by Algorithm 1 with

18

k∗ = min{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k)) ≤ α− ε}, satisfies

IP
(
R0(φ̂k∗) > α

)
≤ δ + δ1(nb) + δ2(nb) + 2e−8

−1nM−2C−2c2ε2 + 2e−8
−1n0

eM
−2ε2 + 2e−8

−1n1
eM
−2ε2 ,

in which nb = |S̃b|, n = |S̃0t |, n0e = |S̃0e |, and n1e = |S̃1e |.

Note that the upper bound of IP
(
R0(φ̂k∗) > α

)
is δ, our violation rate control target, plus a

few terms which converge to zero as the sample sizes increase. To establish this inequality, we first

exclude the complement of the events described in Assumption 3 and 4. Then, we further restrict

ourselves on the event constructed by a Glivenko-Cantelli type inequality where D̂ and D only

differ by 2−1ε. There, the order selection criterion can be written as k∗ = min{k ∈ {1, . . . , n} :

αk,δ − D(t(k)) ≤ α − 2−1ε}. The main difficulty of the proof is to handle the randomness of the

threshold t(k∗). Unlike the deterministic order k∗ in the original NP umbrella algorithm, the new

order k∗ is stochastic. As such, even when conditioning on T̂ , t(k∗) is sill random and cannot be

handled as a normal order statistic. Our solution is to find a high probability deterministic lower

bound for t(k∗). To do this, we introduce ck, the k/n quantile of F̃ T̂0 , which is a deterministic value if

we consider T̂ to be fixed. Then, we show that D(t(k)) only differs from D(ck) by 4−1ε for all k and

that αk∗,δ−D(ck∗) ≤ α−4−1ε. Then, we define k0 = min{k ∈ {1, . . . , n} : αk,δ−D(ck) ≤ α−4−1ε},

which is another deterministic value, given that T̂ is considered to be fixed. Then, we find that

k0 ≤ k∗ and αk0,δ −D(t(k0)) ≤ α with high probability. Therefore, t(k0) is a high probability lower

bound for t(k∗). Moreover, t(k0) is an order statistic with deterministic order (for fixed T̂) and thus

its distribution can be written as a binomial probability. The fact αk0,δ −D(t(k0)) ≤ α combined

with Proposition 1 yields that the violation rate of φ̂k0(·) is smaller than δ. The readers are referred

to Appendix F for a complete proof.

4.3 Theoretical properties of Algorithm 1#

In this subsection, we discuss the properties of Algorithm 1#. Recall that m#
0 ≥ m0 and m#

1 ≤ m1

in Assumption 1 mean that the corruption levels are “underestimated.” As such, Algorithm 1#

produces a more conservative result than Algorithm 1. To see this, note that the only difference

between two algorithms is that (1−m0)(m0−m1)
−1 in Algorithm 1 is replaced with (1−m#

0)(m#
0 −

m#
1)−1 in Algorithm 1#. The latter is no larger than the former, so we have a threshold in Algorithm

19

1# larger than or equal to that in Algorithm 1.

On the other hand, under Assumption 1, Algorithm 1# is still less conservative than the original

NP umbrella algorithm. To digest this, we first consider the case where the label noise is totally

“ignored”, i.e., m#
0 = 1 and m#

1 = 0. In this case, Algorithm 1# is equivalent to the original NP

umbrella algorithm. Then, since usually m#
0 < 1 and m#

1 > 0, Algorithm 1# produces a smaller

threshold than the NP original umbrella algorithm. Therefore, Algorithm 1# overcomes, at least

partially, the conservativeness issue of the original NP umbrella algorithm.

These insights are formalized in the following lemma.

Lemma 3. Under Assumptions 1 - 2, k∗# = min{k ∈ {1, . . . , n} : αk,δ−D̂+
#(t(k)) ≤ α} in Algorithm

1# exists. Moreover, the order k∗# is between k∗ and k∗, i.e., k∗ ≤ k∗# ≤ k∗.

Next we establish a high probability control on type I error for Algorithm 1#. Recall that a

high probability control on type I error for Algorithm 1 was established in Theorem 1. In view of

Lemma 3, φ̂k∗#(·) produced in Algorithm 1# has a larger threshold, and thus smaller true type I

error, than that of φ̂k∗(·) produced by Algorithm 1. Then, a high probability control on true type

I error of φ̂k∗#(·) naturally follows. This result is summarized in the following corollary.

Corollary 1. Under Assumptions 1 - 4, the classifier φ̂k∗#(·) given by Algorithm 1# with k∗# =

min{k ∈ {1, . . . , n} : αk,δ − D̂+
#(t(k)) ≤ α− ε}, satisfies

IP
(
R0(φ̂k∗#) > α

)
≤ δ + δ1(nb) + δ2(nb) + 2e−8

−1nM−2C−2c2ε2 + 2e−8
−1n0

eM
−2ε2 + 2e−8

−1n1
eM
−2ε2 .

in which nb = |S̃b|, n = |S̃0t |, n0e = |S̃0e |, and n1e = |S̃1e |.

5. NUMERICAL ANALYSIS

In this section, we apply Algorithms 1 (known corruption levels) and 1# (unknown corruption

levels) on simulated and real datasets, and compare with other methods in the literature. We

present the (approximate) type I error violation rates9 and the averages of (approximate) true type

9Strictly speaking, the observed type I error violation rate is only an approximation to the real violation rate.
The approximation is two-fold: i). in each repetition of an experiment, the population type I error is approximated
by empirical type I error on a large test set; ii). the violation rate should be calculated based on infinite repetitions
of the experiment, but we only calculate it based on a finite number of repetitions. However, such approximation is
unavoidable in numerical studies.

20

II errors. Besides the simulations in this section, we have additional simulations in Appendix D.1.

Furthermore, the violin plots associated with selected simulation are presented in Appendix D.3.

As a justification of the minor discrepancy between our theory and implementation, readers can

find in Appendix D.5 the results for a slightly different implementation of Algorithm 1, in which

k∗ = min{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k)) ≤ α− ε} and ε = 0.0001. In principle, it is possible that

setting ε > 0 will make k∗ larger than when ε = 0 as {k ∈ {1, 2, . . . , n}, αk,δ − D̂+(t(k)) ≤ αk,δ − ε}

is a subset of {k ∈ {1, 2, . . . , n}, αk,δ − D̂+(t(k)) ≤ αk,δ}. This will make the threshold larger and

the type I error and the violation rate smaller. However, since ε = 0.0001 is a very small value, its

effect on k∗ is very minor. In numerical studies, two implementations (ε = 0.0001 in the Appendix

vs. ε = 0 in this section) give nearly identical results for all examples. Both implementations

generate the same type I errors and type II errors for most (at least 95%) cases. Moreover, the

difference in violation rates of the two implementations is no larger than a very small number 0.1δ.

5.1 Simulation

5.1.1. Algorithm 1. We present three distributional settings for Algorithm 1 (known m0 and

m1). In each setting, 2N observations are generated as a training sample, of which half are from

the corrupted class 0 and half from the corrupted class 1. The number N varies from 200 to

2,000. To approximate the true type I and II errors, we generate 20,000 true class 0 observations

and 20,000 true class 1 observations as the evaluation set. For each distribution and sample size

combination, we repeat the procedure 1,000 times. Algorithm 1 (“adjusted”) and the original NP

umbrella algorithm (“original”) are both applied, paired with different base algorithms.

Simulation 1 (Gaussian Distribution). Let X0 ∼ N (µ0,Σ) and X1 ∼ N (µ1,Σ), where µ0 =

(0, 0, 0)>, µ1 = (1, 1, 1)> and

Σ =

2 −1 0

−1 2 −1

0 −1 2

 ,

and the base algorithm is linear discriminant analysis (LDA). For different (m0,m1, α, δ) combi-

nations, the (approximate) type I error violation rates and the averages of (approximate) true type

21

II errors generated by Algorithm 1 are reported in Tables 1 and 2, respectively.

Table 1: (Approximate) type I error violation rates over 1,000 repetitions for Simulation 1. Standard
errors (×10−3) in parentheses.

N
m0 = .95,m1 = .05
α = .05, δ = .05

m0 = .9,m1 = .1
α = .05, δ = .05

m0 = .95,m1 = .05
α = .1, δ = .1

m0 = .9,m1 = .1
α = .1, δ = .1

adjusted original adjusted original adjusted original adjusted original

200 .026 (5.03) .001 (1.00) .033 (5.65) 0 (0) .078 (8.84) .003 (1.73) .073 (8.23) 0 (0)

500 .031 (5.40) 0 (0) .046 (6.63) 0 (0) .090 (9.05) .001 (1.00) .085 (8.82) 0 (0)

1,000 .038 (5.97) 0 (0) .049 (6.83) 0 (0) .105 (9.70) 0 (0) .081 (8.63) 0 (0)

2,000 .053 (6.96) 0 (0) .046 (6.63) 0 (0) .087 (8.92) 0 (0) .099 (9.45) 0 (0)

Table 2: Averages of (approximate) true type II errors over 1,000 repetitions for Simulation 1.
Standard errors (×10−3) in parentheses.

N
m0 = .95,m1 = .05
α = .05, δ = .05

m0 = .9,m1 = .1
α = .05, δ = .05

m0 = .95,m1 = .05
α = .1, δ = .1

m0 = .9,m1 = .1
α = .1, δ = .1

adjusted original adjusted original adjusted original adjusted original

200 .685 (7.16) .706 (4.65) .697 (7.06) .826 (3.54) .333 (3.93) .403 (3.56) .369 (4.93) .537 (4.03)

500 .481 (4.08) .590 (2.99) .512 (4.92) .743 (2.79) .249 (1.94) .307 (1.83) .257 (2.21) .436 (2.48)

1,000 .396 (2.53) .534 (2.19) .387 (2.37) .663 (1.68) .218 (1.18) .287 (1.22) .213 (1.01) .381 (1.28)

2,000 .350 (1.51) .491 (1.45) .371 (1.99) .651 (1.45) .201 (.76) .268 (.77) .205 (.87) .375 (1.01)

Simulation 2 (Uniform Distribution within Circles). Let X0 and X1 be uniformly distributed

within unit circles respectively centered at (0, 0)> and (1, 1)>. The base algorithm is logistic regres-

sion. We only report (approximate) type I error violation rates and the averages of (approximate)

true type II errors generated by Algorithm 1 for one combination (m0 = .95, m1 = .05, α = .1 and

δ = .1) in Table 3.

Table 3: (Approximate) type I error violation rates, and averages of (approximate) true type II
errors over 1,000 repetitions for Simulation 2 (m0 = .95, m1 = .05, α = .1 and δ = .1). Standard
errors (×10−3) in parentheses.

N
(approximate)
violation rate

averages of
(approximate) true
type II errors

adjusted original adjusted original

200 .079 (8.53) .006 (2.44) .164 (2.77) .226 (3.35)

500 .086 (8.87) .001 (1.00) .123 (.92) .161 (.80)

1,000 .085 (8.82) 0 (0) .109 (.61) .151 (.58)

2,000 .085 (8.82) 0 (0) .101 (.44) .142 (.39)

Simulation 3 (T Distribution). Let X0 and X1 be t-distributed with shape matrix Σ, which was

specified in Simulation 1, 4 degrees of freedom, and centered at (0, 0, 0)> and (1, 1, 1)> respectively.

22

The base algorithm is LDA. Similar to the previous simulation, we only report (approximate) type

I error violation rates and the averages of (approximate) true type II errors generated by Algorithm

1 for one combination (m0 = .95, m1 = .05, α = .1 and δ = .1) in Table 4.

Table 4: (Approximate) type I error violation rates, and averages of (approximate) true type II
errors over 1,000 repetitions for Simulation 3 (m0 = .95, m1 = .05, α = .1 and δ = .1). Standard
errors (×10−3) in parentheses.

N
(approximate)
violation rate

average of
(approximate) true
type II errors

adjusted original adjusted original

200 .068 (7.96) .008 (2.82) .526 (5.67) .575 (4.32)

500 .085 (8.82) .002 (1.41) .398 (3.32) .472 (2.59)

1,000 .090 (9.05) 0 (0) .345 (2.07) .432 (1.78)

2,000 .093 (9.19) 0 (0) .314 (1.24) .401 (1.18)

The results from Simulations 1-3 confirm that the original NP umbrella algorithm is overly

conservative on type I error when there is label noise in the training data, resulting in type I error

violation rates (close to) 0 in all settings. In contrast, the label-noise-adjusted Algorithm 1 has

type I errors controlled at the specified level with high probability and achieves much better type

II errors.

5.1.2. Algorithm 1#. In this section, we show numerically that under the NP paradigm, the

“under-estimates” of corruption levels serve Algorithm 1# well, while ”over-estimates” do not.

Simulation 4. The distributional setting is the same as in Simulation 1. Different combinations

of m#
0 and m#

1 are used. the (approximate) type I error violation rates and the averages of (approx-

imate) true type II errors generated by Algorithm 1# for one combination (m0 = .95, m1 = .05,

α = .1 and δ = .1) are reported in Tables 5 and 6.

The second to the last column in Table 5 confirms that, using strict under-estimates of cor-

ruption levels (i.e., m#
0 > m0 and m#

1 < m1), the type I error control objective is satisfied. Note

that we also include the strict over-estimate scenarios in the second column (i.e., m#
0 < m0 and

m#
1 > m1), where we see that the type I violation rates exceed the target δ. Hence the under-

estimate requirement in the theory part is not merely for technical convenience. Table 6 confirms

23

Table 5: (Approximate) type I error violation rates over 1,000 repetitions for Simulation 4. Standard
errors (×10−3) in parentheses.

N
m#

0 = .93,

m#
1 = .07

m#
0 = .95,

m#
1 = .05

m#
0 = .97,

m#
1 = .03

original

200 .136(10.85) .078(8.48) .055(7.21) .003(1.73)

500 .218(13.06) .090(9.05) .038(6.05) .001(1.00)

1, 000 .324(14.81) .105(9.70) .012(3.44) 0(0)

2, 000 .462(15.77) .087(8.92) .005(2.23) 0(0)

Table 6: (Approximate) type II error violation rates over 1,000 repetitions for Simulation 4. Stan-
dard errors (×10−3) in parentheses.

N
m#

0 = .93,

m#
1 = .07

m#
0 = .95,

m#
1 = .05

m#
0 = .97,

m#
1 = .03

original

200 .287(3.43) .333(3.92) .373(4.62) .403(3.56)

500 .215(1.61) .249(1.94) .285(2.22) .307(1.83)

1, 000 .189(1.02) .218(1.18) .250(1.37) .287(1.22)

2, 000 .174(.65) .201(.76) .230(.86) .268(.77)

that the using strict under-estimates would lead to higher type II errors than using the true cor-

ruption levels. This is a necessary price to pay for not knowing the exact levels, but still it is better

than totally ignoring the label corruption and applying the original NP umbrella algorithm.

We state again that in this work, we rely on domain experts to supply under-estimates of

corruption levels. In the literature, there are existing estimators. For example, we implement

estimators proposed by Liu and Tao (2016) in Simulations 6 and 7 in Appendix D.1. There,

we would see that those estimators do not help Algorithm 1# achieve the type I error control

objective. But this is not a problem with these estimators themselves. Even “oracle” consistent

and unbiased estimators that center at m0 and m1 do not serve the purpose either, as revealed

in Simulation 8 in Appendix D.1. As expected, given our discussion about the need for under-

estimates of the corruption levels (i.e., m#
0 ≥ m0 and m#

1 ≤ m1), Algorithm 1# performs poorly

using these unbiased estimates. It could be an interesting topic for future research to identify

an efficient method for producing biased estimates which will satisfy (with high probability) the

bounds necessary to ensure correct type 1 error control.

5.1.3. Benchmark Algorithms. In the next simulation, we apply existing state-of-the-art algo-

rithms that perform classification on data with label noise. In particular, we apply the backward

24

loss correction algorithm in Patrini et al. (2017) and the T-revision method in Xia et al. (2019).

Since we focus on the NP paradigm, we will report the same (approximate) type I error violation

rates and averages of (approximate) true type II errors as for our own methods.

Simulation 5. The distributional setting is the same as in Simulation 1. The (approximate) type

I error violation rates and averages of (approximate) true type II errors generated by benchmark

algorithms for one combination (m0 = .95, m1 = .05, α = .1 and δ = .1) are reported in Table 7 in

the main and Table 16 in Appendix D.4, respectively.

Table 7: (Approximate) type I error violation rates over 1,000 repetitions for Simulation 5 (m0 =
.95, m1 = .05, α = .1 and δ = .1). Standard errors (×10−3) in parentheses.

algorithms
N
200 500 1,000 2,000

T-revision .713(14.31) .675(14.82) .651(15.08) .621(15.35)

backward loss correction
(known corruption levels)

.994(2.44) .977(4.74) .770(13.31) .127(10.53)

backward loss correction
(unknown corruption levels)

.984(3.97) .793(5.20) .320(6.89) .131(3.60)

In Simulation 5, the benchmark algorithms fail to control the true type I error with the pre-

specified high probability. This is understandable, as none of the benchmark algorithms have α or

δ as inputs. As such, these algorithms, unlike Algorithms 1 or 1#, are not designed for the NP

paradigm.

5.2 Real Data Analysis

We analyze a canonical email spam dataset (Hopkins et al., 1999), which consists of 4,601 obser-

vations including 57 attributes describing characteristics of emails and a 0− 1 class label. Here, 1

represents spam email while 0 represents non-spam, and the type I/II error is defined accordingly.

The labels in the dataset are all assumed to be correct.

We create corrupted labels according to the class-conditional noise model. Concretely, we flip the

labels of true class 0 observations with probability r0 and flip the labels of true class 1 observations

with probability r1. Note that m0 and m1 are IP(Y = 0 | Ỹ = 0) and IP(Y = 0 | Ỹ = 1),

respectively, while r0 = IP(Ỹ = 1 | Y = 0) and r1 = IP(Ỹ = 0 | Y = 1). In our analysis, we choose

25

m0 = 0.95 and m1 = 0.05, which implies setting r0 = 0.032 and r1 = 0.078 10. For each training

and evaluation procedure, we split the data by stratified sampling into training and evaluation

sets. Specifically, 20% of the true class 0 observations and 20% of the true class 1 observations are

randomly selected to form the training dataset, and the rest of the observations form the evaluation

dataset. In total, the training set contains 921 observations and the evaluation set contains 3,680

observations. The larger evaluation set is reserved to better approximate (population-level) true

type I/II error. We leave the evaluation data untouched, but randomly flip the training data label

according to the calculated r0 and r1. Four base algorithms are coupled with the original and new

NP umbrella algorithms, with α = δ = 0.1. We repeat the procedure 1,000 times.

The (approximate) type I error violation rates and averages of (approximate) true type II

errors generated by Algorithm 1 and the original NP umbrella algorithm are summarized in Table

8. Similar to the simulation studies, we observe that Algorithm 1 correctly controls type I error at

the right level, while the original NP umbrella algorithm is significantly overly conservative on type

I error, and consequently has much higher type II error. We also summarize the results generated

by Algorithm 1# in Tables 9 and 10. Clearly, while strict under-estimates lead to higher type II

errors than using exact corruption levels, the type I error control objective is achieved, and the

type II error is better than just ignoring label corruption and applying the original NP umbrella

algorithm.

Table 8: (Approximate) type I error violation rates, and averages of (approximate) true type II
errors by Algorithm 1 and original NP umbrella algorithm over 1,000 repetitions for the email spam
data. Standard errors (×10−3) in parentheses.

(approximate)
violation rate

average of
(approximate) true
type II errors

adjusted original adjusted original

penalized logistic regression .082(8.68) 0(0) .205(2.65) .272(2.71)

linear discriminant analysis .096(9.32) 0(0) .226(3.05) .314(2.77)

support vector machine .093(9.19) .004(2.00) .183(3.15) .218(1.93)

random forests .080(8.58) 0(0) .120(1.13) .152(1.54)

To make a comparison, we also apply the loss correction algorithm in Patrini et al. (2017) and

the T-revision method in Xia et al. (2019) to the email spam data, with results summarized in Table

10This is an application of the Bayes theorem with IP(Y = 0) estimated to be 0.610, which is the proportion of
class 0 observations in the whole dataset.

26

Table 9: (Approximate) type I error violation rates by Algorithm 1# over 1,000 repetitions for the
email spam data. Standard errors (×10−3) in parentheses.

m#
0 = 0.93,

m#
1 = 0.07

m#
0 = 0.95,

m#
1 = 0.05

m#
0 = 0.97,

m#
1 = 0.03

original

penalized logistic regression .231(13.33) .082(8.68) .028(5.22) 0(0)

linear discriminant analysis .223(13.17) .096(9.32) .023(4.74) 0(0)

support vector machine .220(13.11) .093(9.19) .026(5.03) .004(2.00)

random forest .238(13.47) .080(8.58) .019(4.32) 0(0)

Table 10: Averages of (approximate) true type II errors by Algorithm 1# over 1,000 repetitions for
the email spam data. Standard errors (×10−3) in parentheses.

m#
0 = 0.93,

m#
1 = 0.07

m#
0 = 0.95,

m#
1 = 0.05

m#
0 = 0.97,

m#
1 = 0.03

original

penalized logistic regression .165(2.04) .205(2.65) .254(3.10) .272(2.71)

linear discriminant analysis .213(2.54) .226(3.05) .314(3.37) .314(2.77)

support vector machine .138(1.20) .183(3.15) .199(2.11) .218(1.93)

random forest .102(.78) .120(1.13) .143(1.41) .152(1.54)

17 in Appendix D.4. Since these benchmark algorithms are not designed for the NP paradigm, as

discussed in Section 5.1, none of the (approximate) true type I error violation rates are controlled as

we desire. In addition to the email spam data, we also apply Algorithm 1 to the CIFAR10 dataset

(Krizhevsky et al., 2009) and successfully have the type I error controlled (Appendix D.2).

6. DISCUSSION

Under the NP paradigm, we developed the first label-noise-adjusted umbrella algorithms. There

are several interesting directions for future research. First, we can consider a more complex noise

model in which the corruption levels depend on both the class and features. Another direction is to

consider data-driven “under-estimates” of the corruption levels in the class-conditional noise model

and develop (distributional) model-specific adjustment algorithms. For instance, we can adopt the

linear discriminant analysis model, i.e., X0 ∼ N (µ0,Σ) and X1 ∼ N (µ1,Σ).

27

Appendices

A. SUMMARY OF SAMPLING SCHEME

This section summarizes our sampling scheme and related notations for the readers’ convenience.

First, to review the NP paradigm and to make a contrast with the corrupted setting, we introduced

the notation for uncorrupted samples: let S0 = {X0
j }
M0
j=1 and S1 = {X1

j }
M1
j=1, respectively be the

uncorrupted observations in classes 0 and 1, where M0 and M1 are the number of observations

from each class. To construct the original NP umbrella algorithm (for uncorrupted data), S0 is

randomly split into S0 = S0b ∪ S0t , where the subscript b reinforces that this part is to train a base

algorithm (e.g., logistic regression, random forest), and the subscript t reinforces that this part of

the data is to find the threshold. For the uncorrupted scenario, we do not split S1. All S1 are used

together with S0b to train a base algorithm.

For the corrupted scenario, which is the focus of our paper, we assume the following sampling

scheme for methodology and theory development. Let S̃0 = {X̃0
j }
N0
j=1 be corrupted class 0 obser-

vations and S̃1 = {X̃1
j }
N1
j=1 be corrupted class 1 observations. The sample sizes N0 and N1 are

considered to be non-random numbers. The split for the corrupted scenario is more complicated

than the uncorrupted counterpart. Concretely, we split S̃0 into three parts: S̃0 = S̃0b ∪ S̃0t ∪ S̃0e ,

and split S̃1 into two parts S̃1 = S̃1b ∪ S̃1e . The subscripts b and t have the same meaning as the

uncorrupted case while the subscript e stands for estimation, and S̃0e and S̃1e are used to estimate

a correction term to account for the label noise.

Given the above decomposition of S̃0 and S̃1, we also used S̃b = S̃0b ∪S̃1b to denote all corrupted

class 0 and class 1 observations that are used to train the base algorithm in the label-noise-adjusted

NP umbrella algorithm. The sample size n is reserved for |S0t | in the uncorrupted scenario, or for

|S̃0t | in the corrupted scenario. The other sub-sample size notations are all for the corrupted

scenario. In particular, nb = |S̃b| = |S̃0b ∪ S̃1b|, n0e = |S̃0
e |, and n1e = |S̃1

e |.

B. BINARY SEARCH ALGORITHM

Here r is an error for stopping criterion of this binary search. That is, the algorithm stops when∣∣∣∑n
j=k

(
n
j

)
(1− αmiddle)

jαn−jmiddle − δ
∣∣∣ ≤ r.

28

Algorithm 2: Binary Search For αk,δ

Input : δ: a small tolerance level, 0 < δ < 1
k, n: two integers such that k ≤ n
r: a small number for error (we implement r = 10−5 in our numerical analysis)

1 αmin ← 0
2 αmax ← 1

3 δmax ←
∑n

j=k

(
n
j

)
(1− αmin)jαn−jmin

4 δmin ←
∑n

j=k

(
n
j

)
(1− αmax)jαn−jmax

5 E ← 2
6 while E > r do
7 αmiddle ← (αmin + αmax)/2

8 δmiddle ←
∑n

j=k

(
n
j

)
(1− αmiddle)

jαn−jmiddle

9 if δmiddle = δ then
Output: αmiddle

10 else if δmiddle > δ then
11 αmiddle ← αmin

12 else
13 αmiddle ← αmax

14 end
15 E ← |δmiddle − δ|
16 end

Output: αmiddle

C. AN EXAMPLE FOR ASSUMPTION 3

Example 3. Under the same distributional setting as in Example 1, let T̂ be trained by linear

discriminant analysis (LDA) on S̃b; that is T̂ (X) = ˆ̃σ−2(ˆ̃µ1 − ˆ̃µ0)X , in which ˆ̃µ0 and ˆ̃µ1 are the

sample means of corrupted class 0 and 1 observations, respectively, and ˆ̃σ2 is the pooled sample

variance. For any z ∈ IR, by Lemma 4 in the Appendix, we have

F̃ T̂0 (z)− F̃ T̂1 (z) = (m0 −m1)
(
F T̂0 (z)− F T̂1 (z)

)
.

Therefore, when m0 > m1 (as assumed in Assumption 1), F̃ T̂0 (z) > F̃ T̂1 (z) is equivalent to F T̂0 (z) >

F T̂1 (z). We first fix S̃b, then T̂ (X0) ∼ N (ˆ̃σ−2(ˆ̃µ1− ˆ̃µ0)µ0, ˆ̃σ
−4(ˆ̃µ1− ˆ̃µ0)

2σ2) and T̂ (X1) ∼ N (ˆ̃σ−2(ˆ̃µ1−

ˆ̃µ1)µ0, ˆ̃σ
−4(ˆ̃µ1 − ˆ̃µ0)

2σ2). Since these two distributions are two normal with the same variance

and different means, F T̂0 (z) > F T̂1 (z) as long as ˆ̃σ−2(ˆ̃µ1 − ˆ̃µ0)µ0 < ˆ̃σ−2(ˆ̃µ1 − ˆ̃µ0)µ1, or equiva-

lently, (ˆ̃µ1 − ˆ̃µ0)(µ1 − µ0) > 0. By Lemma 4 in the Appendix, this condition can be written as

(ˆ̃µ1 − ˆ̃µ0)(µ̃1 − µ̃0)/(m0 − m1) > 0, where µ̃0 and µ̃1 are the means of X̃0 and X̃1 respectively.

29

When m0 > m1, this is further equivalent to (ˆ̃µ1 − ˆ̃µ0)(µ̃1 − µ̃0) > 0. Then Assumption 3 follows

from the law of large numbers.

D. ADDITIONAL NUMERICAL RESULTS

D.1 Additional Simulations

We apply Algorithm 1# in Simulation 6. For m#
0 and m#

1 needed in Algorithm 1#, we use the

estimators proposed by Liu and Tao (2016). Technically, Liu and Tao (2016) estimates the “flip

rates” IP
(
Ỹ = 1 | Y = 0

)
and IP

(
Ỹ = 0 | Y = 1

)
. Our corruption levels can be derived from flip

rates by the Bayes theorem.

Simulation 6. The distributional setting is the same as in Simulation 2. For different (m0,m1, α, δ)

combinations, the (approximate) type I error violation rates and averages of (approximate) true type

II errors generated by Algorithm 1# are reported in Tables 11 and 12, respectively.

Table 11: (Approximate) type I error violation rates over 1,000 repetitions for Simulation 6. Stan-
dard errors (×10−3) in parentheses.

N
m0 = .95,m1 = .05
α = .05, δ = .05

m0 = .9,m1 = .1
α = .05, δ = .05

m0 = .95,m1 = .05
α = .1, δ = .1

m0 = .9,m1 = .1
α = .1, δ = .1

200 .067(7.91) .068(7.96) .131(10.67) .101(9.53)

500 .084(8.78) .083(8.73) .134(10.78) .115(10.09)

1,000 .463(15.78) .182(12.21) .497(15.82) .197(12.58)

2,000 .665(14.93) .190(12.41) .695(14.57) .209(12.86)

Table 12: Averages of (approximate) true type II errors over 1,000 repetitions for Simulation 6.
Standard errors (×10−3) in parentheses.

N
m0 = .95,m1 = .05
α = .05, δ = .05

m0 = .9,m1 = .1
α = .05, δ = .05

m0 = .95,m1 = .05
α = .1, δ = .1

m0 = .9,m1 = .1
α = .1, δ = .1

200 .431(9.36) .589(9.79) .150(2.44) .221(4.86)

500 .219(3.60) .391(7.25) .115(.95) .145(1.49)

1,000 .140(.99) .190(2.53) .082(.72) .107(1.01)

2,000 .128(.82) .175(1.75) .073(.65) .101(.88)

In this simulation, Algorithm 1# fails to control the type I error with pre-specified high proba-

bility. Similar results on additional distributional settings can be found in Simulation 7 of Appendix

D.1. One might wonder: if we were to use other estimators of m0 and m1, will the result be dif-

ferent? The answer is that the usually “good” estimators do not serve for the purpose of high

30

probability control on type I error. For example, Simulation 8 in Appendix D.1 uses consistent and

unbiased estimators of m0 and m1, but Algorithm 1# still fails to control the type I error.

Simulation 7. The distributional setting is the same as in Simulation 1. For different (m0,m1, α, δ)

combinations, the (approximate) true type I errors generated by Algorithm 1# are reported in Table

13.

Table 13: (Approximate) type I error violation rates over 1,000 repetitions for Simulation 6. Stan-
dard errors (×10−3) in parentheses.

N
m0 = .95,m1 = .05
α = .05, δ = .05

m0 = .9,m1 = .1
α = .05, δ = .05

m0 = .95,m1 = .05
α = .1, δ = .1

m0 = .9,m1 = .1
α = .1, δ = .1

200 .430(15.66) .512(15.81) .530(15.79) .504(15.82)

500 .694(14.58) .488(15.81) .758(13.55) .570(15.66)

1,000 .940(7.51) .788(13.47) .953(6.70) .805(12.54)

2,000 .950(6.90) .792(12.80) .957(6.42) .818(12.21)

Simulation 8. The distributional setting is the same as in Simulation 1. The m#
0 and m#

1 are

generated from N (m0, 1/N) and N (m1, 1/N), respectively. The (approximate) type I error violation

rates generated by Algorithm 1# for one combination (m0 = .95, m1 = .05, α = .1 and δ = .1) are

reported in Table 14.

D.2 CIFAR10 data analysis

In this section we apply Algorithm 1 to the CIFAR10 dataset (Krizhevsky et al., 2009). As we

focus on binary classification problems, we merge the ten categories of the CIFAR10 dataset into

two: “vehicles” and “non-vehicles.” The class “vehicles,” encoded as 0, contains the original

“automobile” and “truck” classes, and the class “non-vehicles,” encoded as 1, contains the other

eight original classes. Then type I/II errors are defined accordingly. We employ the NP paradigm

to this modified dataset to prioritize control over the chance of failing to detect vehicles.

The original CIFAR10 dataset has pre-specified training and test sets, but the number of class

0 observations in the test set is too small (2,000 in total) to produce a reliable approximation to

population-level type I error. Furthermore, given that the train-test procedure has to be repeated

multiple times to approximate the type I error violation rate, a fixed train-test split throughout all

repetitions does not serve our purpose. As such, we perform stratified splits to the whole modified

CIFAR10 dataset (with the newly assigned labels). In particular, 20% true class 0 observations and

31

Table 14: (Approximate) type I error violation rates over 1,000 repetitions for Simulation 8. Stan-
dard errors (×10−2) in parentheses.

N (approximate) violation rate

200 .193(1.25)

500 .208(1.28)

1,000 .186(1.23)

2,000 .203(1.27)

20% true class 1 observations are randomly selected to form the new training set and the remaining

observations form the evaluation set. The training and evaluation sets contain 12,000 and 48,000

observations, respectively. Moreover, the labels of all training observations are artificially corrupted

by the same method as in Section 5.2 with m0 = 0.95 and m1 = 0.05. By Bayes theorem, the flip

rates r0 = IP
(
Ỹ = 1 | Y = 0

)
and r1 = IP

(
Ỹ = 0 | Y = 1

)
are 0.2083 and 0.0104, respectively.

We apply Algorithm 1 (with the parameter choice α = δ = 0.1 and CNN as the base algorithm) to

the training set with corrupted labels and obtain a classifier. Then, the classifier is applied to the

untouched evaluation set to calculate the (approximate) true type I and II errors. This procedure

is repeated 1,000 times.

In the main text, we have shown that Algorithm 1# with under-estimates of corruption levels

fulfills the goal of high-probability control over the type I error, while other benchmark algorithms

do not. To avoid delivering redundant messages, we only apply Algorithm 1 to the modified

CIFAR10 dataset since our primary interest is the type I error control. The (approximate) type

I error violation rate and average of (approximate) true type II errors are presented in Table 15.

Clearly, Algorithm 1 is able to achieve high probability control of the true type I error under the

specified level.

Table 15: (Approximate) type I error violation rate, and average of (approximate) true type II
errors by Algorithm 1 over 1,000 repetitions for the modified CIFAR10 dataset. Standard errors
(×10−3) in parentheses.

(approximate)
violation rate

average of
(approximate) true
type II errors

Algorithm 1 with
CNN as base algorithm

.099(9.45) .150(.87)

32

adjusted original

200 500 1000 2000 200 500 1000 2000

0.000

0.025

0.050

0.075

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .95 m1 = .05 α = .05 δ = .05

adjusted original

200 500 1000 2000 200 500 1000 2000
0.00

0.05

0.10

0.15

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .95 m1 = .05 α = .1 δ = .1

adjusted original

200 500 1500 2000 200 500 1500 2000

0.000

0.025

0.050

0.075

0.100

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .90 m1 = .10 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000
0.00

0.05

0.10

0.15

0.20

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .90 m1 = .10 α = .1 δ = .1

Figure 5: Violin plots for (approximate) true type I errors of Simulation 1.

D.3 Violin plots for Section 5

In this section, we present the violin plots (Figures 5 - 10) for Simulations 1-3 in Section 5. The

violin plots for the (approximate) true type I and type II errors over these 1,000 repetitions are

plotted for each (m0,m1, α, δ) combination. Take Figures 5 and 6 as an example, the two rows in

each figure respectively correspond to the m1 = 0.95,m1 = 0.05 and m0 = 0.85,m1 = 0.15 settings,

while the two columns respectively correspond to α = 0.05, δ = 0.05 and α = 0.10, δ = 0.10. The

area of every plot with lighter color represents true type I errors above the 1 − δ quantile while

the area with darker color represents true type I errors below the 1 − δ quantile. The black dots

represent the average of true type I/II errors and the bars above and below the dots represent

standard deviations.

D.4 Tables for Section 5

In this section, we present Table 16 for in Simulation 5 in Section 5.1 and Table 17 for the email

spam data analysis in Section 5.2.

33

adjusted original

200 500 1000 2000 200 500 1000 2000

0.25

0.50

0.75

1.00

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .95 m1 = .05 α = .05 δ = .05

adjusted original

200 500 1000 2000 200 500 1000 2000

0.25

0.50

0.75

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .95 m1 = .05 α = .1 δ = .1

adjusted original

200 500 1500 2000 200 500 1500 2000

0.25

0.50

0.75

1.00

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .90 m1 = .10 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000

0.25

0.50

0.75

training sample size (N)
tr

ue
 ty

pe
 II

 e
rr

or
s

m0 = .90 m1 = .10 α = .1 δ = .1

Figure 6: Violin plots for (approximate) true type II errors of Simulation 1.

adjusted original

200 500 1000 2000 200 500 1000 2000

0.000

0.025

0.050

0.075

0.100

training sample size (N)

tr
u

e
 t

yp
e

 I
 e

rr
o

rs

m0 = .95 m1 = .05 α = .05 δ = .05

adjusted original

200 500 1000 2000 200 500 1000 2000
0.00

0.05

0.10

0.15

training sample size (N)

tr
u

e
 t

yp
e

 I
 e

rr
o

rs

m0 = .95 m1 = .05 α = .1 δ = .1

adjusted original

200 500 1500 2000 200 500 1500 2000

0.000

0.025

0.050

0.075

0.100

training sample size (N)

tr
u

e
 t

yp
e

 I
 e

rr
o

rs

m0 = .90 m1 = .10 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000

0.00

0.05

0.10

0.15

0.20

training sample size (N)

tr
u

e
 t

yp
e

 I
 e

rr
o

rs

m0 = .90 m1 = .10 α = .1 δ = .1

Figure 7: Violin plots for (approximate) true type I errors of Simulation 2.

34

adjusted original

200 500 1000 2000 200 500 1000 2000

0.25

0.50

0.75

1.00

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .95 m1 = .05 α = .05 δ = .05

adjusted original

200 500 1000 2000 200 500 1000 2000
0.0

0.2

0.4

0.6

0.8

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .95 m1 = .05 α = .1 δ = .1

adjusted original

200 500 1500 2000 200 500 1500 2000

0.25

0.50

0.75

1.00

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .90 m1 = .10 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000
0.00

0.25

0.50

0.75

training sample size (N)
tr

ue
 ty

pe
 II

 e
rr

or
s

m0 = .90 m1 = .10 α = .1 δ = .1

Figure 8: Violin plots for (approximate) true type II errors of Simulation 2.

adjusted original

200 500 1000 2000 200 500 1000 2000

0.000

0.025

0.050

0.075

0.100

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .95 m1 = .05 α = .05 δ = .05

adjusted original

200 500 1000 2000 200 500 1000 2000
0.00

0.05

0.10

0.15

0.20

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .95 m1 = .05 α = .1 δ = .1

adjusted original

200 500 1500 2000 200 500 1500 2000

0.00

0.05

0.10

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .90 m1 = .10 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000
0.00

0.05

0.10

0.15

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .90 m1 = .10 α = .1 δ = .1

Figure 9: Violin plots for (approximate) true type I errors of Simulation 3.

35

adjusted original

200 500 1000 2000 200 500 1000 2000

0.4

0.6

0.8

1.0

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s
m0 = .95 m1 = .05 α = .05 δ = .05

adjusted original

200 500 1000 2000 200 500 1000 2000

0.25

0.50

0.75

1.00

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .95 m1 = .05 α = .1 δ = .1

adjusted original

200 500 1500 2000 200 500 1500 2000
0.2

0.4

0.6

0.8

1.0

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .90 m1 = .10 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000

0.25

0.50

0.75

1.00

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .90 m1 = .10 α = .1 δ = .1

Figure 10: Violin plots for (approximate) true type II errors of Simulation 3.

Table 16: Averages of (approximate) true type II errors over 1,000 repetitions for Simulation 5
(m0 = .95, m1 = .05, α = .1 and δ = .1). Standard errors (×10−3) in parentheses.

algorithms
N
200 500 1,000 2,000

T-revision .165(4.32) .153(4.08) .146(3.52) .147(4.27)

backward loss correction
(known corruption level)

.151(.77) .139(.70) .161(.71) .199(.69)

backward loss correction
(unknown corruption level)

.158(.02) .163(.02) .186(.01) .192(.01)

D.5 Alternative implementation with a positive ε

In this section, we repeat the numerical studies for Simulations 1-3 in Section 5 but replace k∗ in

Algorithm 1 by min{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k)) ≤ α − ε} where ε = 0.0001. The results are

presented in Figures 11 - 16. Numerical evidence shows that whether to have a small positive ε

in selection of k∗ does not actually affect much the performance of label-noise-adjusted umbrella

algorithm. Thus, as a simpler algorithm is always preferred, we recommend taking ε = 0.

36

adjusted original

200 500 1500 2000 200 500 1500 2000

0.00

0.04

0.08

0.12

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .95 m1 = .05 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000
0.00

0.05

0.10

0.15

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .95 m1 = .05 α = .1 δ = .1

adjusted original

200 500 1500 2000 200 500 1500 2000

0.000

0.025

0.050

0.075

0.100

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .90 m1 = .10 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000
0.00

0.05

0.10

0.15

0.20

training sample size (N)
tr

ue
 ty

pe
 I

er
ro

rs

m0 = .90 m1 = .10 α = .1 δ = .1

Figure 11: Violin plots for (approximate) true type I errors of Simulation 1.

adjusted original

200 500 1500 2000 200 500 1500 2000

0.25

0.50

0.75

1.00

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .95 m1 = .05 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000

0.2

0.4

0.6

0.8

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .95 m1 = .05 α = .1 δ = .1

adjusted original

200 500 1500 2000 200 500 1500 2000

0.25

0.50

0.75

1.00

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .90 m1 = .10 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000

0.25

0.50

0.75

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .90 m1 = .10 α = .1 δ = .1

Figure 12: Violin plots for (approximate) true type II errors of Simulation 1.

37

adjusted original

200 500 1500 2000 200 500 1500 2000

0.00

0.04

0.08

0.12

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .95 m1 = .05 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000
0.00

0.05

0.10

0.15

0.20

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .95 m1 = .05 α = .1 δ = .1

adjusted original

200 500 1500 2000 200 500 1500 2000

0.000

0.025

0.050

0.075

0.100

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .90 m1 = .10 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000

0.00

0.05

0.10

0.15

0.20

training sample size (N)
tr

ue
 ty

pe
 I

er
ro

rs

m0 = .90 m1 = .10 α = .1 δ = .1

Figure 13: Violin plots for (approximate) true type I errors of Simulation 2.

adjusted original

200 500 1500 2000 200 500 1500 2000

0.25

0.50

0.75

1.00

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .95 m1 = .05 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000
0.0

0.2

0.4

0.6

0.8

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .95 m1 = .05 α = .1 δ = .1

adjusted original

200 500 1500 2000 200 500 1500 2000

0.25

0.50

0.75

1.00

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .90 m1 = .10 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000
0.00

0.25

0.50

0.75

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .90 m1 = .10 α = .1 δ = .1

Figure 14: Violin plots for (approximate) true type II errors of Simulation 2.

38

adjusted original

200 500 1500 2000 200 500 1500 2000

0.000

0.025

0.050

0.075

0.100

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .95 m1 = .05 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000
0.00

0.05

0.10

0.15

0.20

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .95 m1 = .05 α = .1 δ = .1

adjusted original

200 500 1500 2000 200 500 1500 2000

0.00

0.05

0.10

training sample size (N)

tr
ue

 ty
pe

 I
er

ro
rs

m0 = .90 m1 = .10 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000
0.00

0.05

0.10

0.15

training sample size (N)
tr

ue
 ty

pe
 I

er
ro

rs

m0 = .90 m1 = .10 α = .1 δ = .1

Figure 15: Violin plots for (approximate) true type I errors of Simulation 3.

adjusted original

200 500 1500 2000 200 500 1500 2000

0.4

0.6

0.8

1.0

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .95 m1 = .05 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000

0.25

0.50

0.75

1.00

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .95 m1 = .05 α = .1 δ = .1

adjusted original

200 500 1500 2000 200 500 1500 2000
0.2

0.4

0.6

0.8

1.0

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .90 m1 = .10 α = .05 δ = .05

adjusted original

200 500 1500 2000 200 500 1500 2000

0.25

0.50

0.75

1.00

training sample size (N)

tr
ue

 ty
pe

 II
 e

rr
or

s

m0 = .90 m1 = .10 α = .1 δ = .1

Figure 16: Violin plots for (approximate) true type II errors of Simulation 3.

39

Table 17: (Approximate) type I error violation rates, and averages of (approximate) true type II
error by benchmark algorithms over 1,000 repetitions for the email spam data. Standard errors
(×10−3) in parentheses.

(approximate)
violation rate

average of
(approximate) true
type II errors

T-revision .829(11.91) .414(7.01)

backward loss correction
(known corruption level)

.831(11.86) .573(5.49)

backward loss correction
(unknown corruption level)

.750(13.70) .631(5.51)

E. EXTRA LEMMAS

Lemma 4. Under Assumption 1, for any measurable function T : IRd → IR and arbitrary number

z ∈ IR, we have

F̃ T0 (z) = m0F
T
0 (z) + (1−m0)F

T
1 (z) and F̃ T1 (z) = m1F

T
0 (z) + (1−m1)F

T
1 (z) .

Furthermore,

IEX̃0 = m0IEX
0 + (1−m0)IEX

1 and IEX̃1 = m1IEX
0 + (1−m1)IEX

1 .

Proof. The first two equations can be proved in the similar way. So we will only show the first

equation. By Assumption 1, for any Borel set A,

P̃0(T
−1(A)) = m0P0(T

−1(A)) + (1−m0)P1(T
−1(A)) .

Then, select A = (−∞, z] and the result follows.

Similarly, the proof of last two equations are similar in nature. So we are going to show

40

IEX̃0 = m0IEX
0 + (1−m0)IEX

1. Note that by Assumption 1,

IEX̃0 =

∫ ∞
0

(1− P̃0(X ≤ x))dx−
∫ 0

−∞
P̃0(X ≤ x)dx

= m0

(∫ ∞
0

(1− P0(X ≤ x))dx−
∫ 0

−∞
P0(X ≤ x)dx

)
+ (1−m0)

(∫ ∞
0

(1− P1(X ≤ x))dx−
∫ 0

−∞
P1(X ≤ x)dx

)
= m0IEX

0 + (1−m0)IEX
1 .

Lemma 5. For any k ∈ {1, . . . , n} and δ ∈ (0, 1), a unique αk,δ exists. Moreover, under Assump-

tion 2, k∗ = min{k ∈ {1, . . . , n} : αk,δ ≤ α}.

Proof. Let hk(x) =
∑n

j=k

(
n
k

)
xn−j(1−x)j for any k ∈ {1, . . . , n}. Then, one can show, for k ≤ n−1

and x ∈ (0, 1),

h′k(x) =
n−1∑
j=k

(n− j)
(
n

j

)
xn−j−1(1− x)j −

n∑
j=k

j

(
n

j

)
xn−j(1− x)j−1

= n

n∑
i=k+1

(
n

i− 1

)
xn−i(1− x)i−1 − n

n∑
j=k

(
n

j − 1

)
xn−j(1− x)j−1

= −n
(

n

k − 1

)
xn−k(1− x)k−1 ,

which is negative. Thus, hk(x) is strictly decreasing on (0, 1) for k ≤ n− 1. Furthermore, hn(x) =

(1− x)n which is also strictly decreasing on (0, 1). Since for any k, hk(0) = 1 and hk(1) = 0, there

exists a unique αk,δ such that hk(αk,δ) = δ.

Recall that k∗ is defined as the smallest k such that hk(α) ≤ δ. Meanwhile, by monotonicity, for

any k, the inequality hk(α) ≤ δ is equivalent to αk,δ ≤ α. Assumption 2 guarantees the existence

of k such that hk(α). Therefore it also guarantees the existence of k such that αk,δ ≤ α. Then, for

any δ, {k ∈ {1, . . . , n} : hk(α) ≤ δ} = {k ∈ {1, . . . , n} : αk,δ ≤ α}. Then, k∗ = min{k ∈ {1, . . . , n} :

αk,δ ≤ α}.

Lemma 6. Given a random variable X ∈ IRd with probability measure P and a deterministic

41

measurable function T : IRd → IR, define probability measure P T (B) = P (T (X) ∈ B) for any Borel

set B. Furthermore, denote the distribution functions of P and P T as F and F T , respectively. Let

X1, X2, . . . , Xn ∼ X be i.i.d. random variables. Moreover, let F̂ T (z) = 1
n

∑n
j=1 1I{T (Xj) ≤ z} for

any z ∈ IR. Then, for any ξ > 0

P

(
sup
z∈IR

∣∣∣F̂ T (z)− F T (z)
∣∣∣ > ξ

)
≤ 2e−2nξ

2
.

Proof. Note that X1, X2, . . . , Xn are i.i.d. random variables, then so are T (X1), T (X2), . . . , T (Xn).

Denote Tj = T (Xj), then Tj has the probability measure P T . Note that the Dvoretsky-Kiefer-

Wolfowitz inequality says,

P T

sup
z∈IR

∣∣∣∣∣∣ 1n
n∑
j=1

1I{Tj ≤ z} − F T (z)

∣∣∣∣∣∣ > ξ

 ≤ 2e−2nξ
2
.

Then, it suffices to show the left hand side of above inequality equals P
(

supz∈IR

∣∣∣F̂ T (z)− F T (z)
∣∣∣ > ξ

)
.

Towards that, denote

fn(x1, x2, . . . , xn) = 1I

sup
z∈IR

∣∣∣∣∣∣ 1n
n∑
j=1

1I{T (xj) ≤ z} − F T (z)

∣∣∣∣∣∣ > ξ

 ,

and

f0(t1, t2, . . . , tn) = 1I

sup
z∈IR

∣∣∣∣∣∣ 1n
n∑
j=1

1I{tj ≤ z} − F T (z)

∣∣∣∣∣∣ > ξ

 .

By Fubini’s theorem, it holds that

P

(
sup
z∈IR

∣∣∣F̂ T (z)− F T (z)
∣∣∣ > ξ

)
= IE1IE2 . . . IEnfn(X1, X2, . . . , Xn) ,

and

P T

sup
z∈IR

∣∣∣∣∣∣ 1n
n∑
j=1

1I{Tj ≤ z} − F T (z)

∣∣∣∣∣∣ > ξ

 = IET1 IET2 . . . IE
T
nf0(T1, T2, . . . , Tn) ,

42

where IEj and IETj are the expectations taken with respect to Xj and Tj under the probability

measures P and P T , respectively. Thus, it suffices to show

IE1IE2 . . . IEnfn(X1, X2, . . . , Xn) = IET1 IET2 . . . IE
T
nf0(T1, T2, . . . , Tn) ,

and we will show this by induction. Denote

fl(x1, x2, . . . , xl, tl+1, tl+2, . . . , tn) = 1I

sup
z∈IR

∣∣∣∣∣∣ 1n
 l∑
j=1

1I{T (xj) ≤ z}+
n∑

j=l+1

1I{tj ≤ z}

− F T (z)

∣∣∣∣∣∣ > ξ

 ,

for any l ∈ {1, 2, . . . , n − 1} and An−1(x1, x2, . . . , xn−1) = {tn : fn−1(x1, x2, . . . , xn−1, tn) = 1}.

Then, for any fixed values of x1, x2, . . . , xn−1,

IEnfn(x1, x2, . . . , xn−1, Xn) = P (T (Xn) ∈ An−1(x1, x2, . . . , xn−1))

= P T (An−1(x1, x2, . . . , xn−1))

= IETnfn−1(x1, x2, . . . , xn−1, Tn) ,

and thus,

IE1IE2 . . . IEnfn(X1, X2, . . . , Xn) = IET1 IET2 . . . IEn−1IE
T
nfn−1(X1, X2, . . . , Xn−1, Tn) .

Now, assume that for some l ∈ {2, 3, . . . , n},

IE1IE2 . . . IEnfn(X1, X2, . . . , Xn)

= IE1IE2 . . . IEl−1IE
T
l IETl+1 . . . IE

T
nfl−1(X1, X2, . . . , Xl−1, Tl, Tl+1, . . . , Tn) .

Therefore, for any fixed values of x1, x2, . . . , xl−2, denote

Al−2(x1, x2, . . . , xl−2) = {tl−1 : IETl IETl+1 . . . IE
T
nfl−2(x1, x2, . . . , xt−2, tl−1, Tl, . . . , Tn) = 1} ,

43

we can have

IEl−1IE
T
l IETl+1 . . . IE

T
nfl−1(x1, x2, . . . , xl−2, Xl−1, Tl, Tl+1, . . . , Tn)

= P (T (Xl−1) ∈ Al−2(x1, x2, . . . , xl−2)) = P T (Al−2(x1, x2, . . . , xl−2)) ,

and thus,

IEl−1IE
T
l IETl+1 . . . IE

T
nfl−1(x1, x2, . . . , xl−2, Xl−1, Tl, Tl+1, . . . , Tn)

= IETl−1IE
T
l . . . IE

T
nfl−2(x1, x2, . . . , xt−2, Tl−1, . . . , Tn) .

Therefore, by the assumption, we have

IE1IE2 . . . IEnfn(X1, X2, . . . , Xn)

= IE1IE2 . . . IEl−2IE
T
l−1IE

T
l . . . IE

T
nfl−2(X1, X2, . . . , Xl−2, Tl−1, Tl, . . . , Tn) .

We conclude the proof by induction.

F. PROOFS

Lemma 1. Let’s focus on the event of the statement of Assumption 3, whose complement holds

with probability at most δ1(nb). Meanwhile, by Lemma 4, for any z ∈ IR,

F̃ T̂0 (z)− F̃ T̂1 (z) =
[
m0F

T̂
0 (z) + (1−m0)F

T̂
1 (z)

]
−
[
m1F

T̂
0 (z) + (1−m1)F

T̂
1 (z)

]
= (m0 −m1)

(
F T̂0 (z)− F T̂1 (z)

)
.

Furthermore, for any classifier φ(X) = 1I{T̂ (X) > z}

R̃0(φ)−R0(φ) =
(

1− F̃ T̂0 (z)
)
−
(

1− F T̂0 (z)
)

= F T̂0 (z)−m0F
T̂
0 (z)− (1−m0)F

T̂
1 (z)

= (1−m0)
(
F T̂0 (z)− F T̂1 (z)

)
,

44

which is positive by Assumption 3. Now, let D(z) = R̃0(φ) − R0(φ) > 0 and therefore R0(φ̂k∗) >

α−D(t(k∗)) is equivalent to R̃0(φ̂k∗) > α, whose probability is δ by Proposition 1. To this end, we

have shown

IP
(
R0(φ̂k∗) > α−D(t(k∗))

)
≤ δ + δ1(nb) .

Proof of Lemma 2. By Lemma 5, the set {k ∈ {1, . . . , n} : αk,δ ≤ α} is non-empty. Then, the set

{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k)) ≤ α} is non-empty since D̂+(t(k)) is non-negative. Then k∗ =

min{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k)) ≤ α} exists. Note that k∗ = min{k ∈ {1, . . . , n} : αk,δ ≤ α}

by Lemma 5. Since {k ∈ {1, . . . , n} : αk,δ ≤ α} is a subset of {k ∈ {1, . . . , n} : αk,δ− D̂+(t(k)) ≤ α}

by the non-negativeness of D̂+, it can be concluded that k∗ ≤ k∗.

Proof of Lemma 3. Assumption 1 implies 0 ≤ M# :=
1−m#

0

m#
0 −m

#
1

≤ M = 1−m0
m0−m1

, and thus, 0 ≤

D̂+
#(c) ≤ D̂+(c). Then, {k ∈ {1, . . . , n} : αk,δ ≤ α}, which is non-empty by Assumption 2,

is a subset of {k ∈ {1, . . . , n} : αk,δ − D̂+
#(t(k)) ≤ α}. This implies k∗# exists and is smaller

than or equal to k∗. Furthermore, {k ∈ {1, . . . , n} : αk,δ − D̂+
#(t(k)) ≤ α} is also a subset of

{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k)) ≤ α} and thus, k∗# = min{k ∈ {1, . . . , n} : αk,δ − D̂+
#(t(k)) ≤ α} is

larger than or equal to k∗.

Proof of Theorem 1. Let’s focus on the event where statement of both Assumption 3 and 4 hold,

whose complement has probability less that δ1(nb) + δ2(nb). Then, let

Be =

{
sup
z∈IR

∣∣∣D̂(z)−D(z)
∣∣∣ ≤ 2−1ε

}
.

It follows from Lemma 6 that

IP(Bce) ≤ IP

(
sup
z∈IR

∣∣∣ ˆ̃F T̂0 (z)− F̃ T̂0 (z)
∣∣∣ > ε

4

)
+ IP

(
sup
z∈IR

∣∣∣ ˆ̃F T̂1 (z)− F̃ T̂1 (z)
∣∣∣ > ε

4

)
≤ 2e−8

−1n0
eM
−2ε2 + 2e−8

−1n1
eM
−2ε2 .

Note that since D(z) is non-negative by Lemma 1,
∣∣∣D̂+(z)−D(z)

∣∣∣ ≤ ∣∣∣D̂(z)−D(z)
∣∣∣ ≤ 2−1ε on Be.

45

So, one can conclude that on the event Be, k∗ is chosen from all k such that αk,δ−D(t(k)) ≤ α−2−1ε.

Furthermore, denote ck = inf{y : F̃ T̂0 (y) ≥ kn−1} and k0 = min{k ∈ {1, . . . , n} : αk,δ − D(ck) ≤

α− 4−1ε}. Note that since DT is a closed interval, thus ck is well-defined. Let F̃ T̂n be the empirical

distribution induced by Tt, i.e., for any z ∈ IR,

F̃ T̂n (z) =
1

n

∑
t∈Tt

1I{t ≤ z} .

Denote Bt = {supz∈IR |F̃ T̂n (z)−F̃ T̂0 (z)| ≤ 4−1M−1C−1cε}. Then, by Lemma 6, IP(Bct) ≤ 2e−8
−1nM−2C−2c2ε2 .

So, it remains to show the probability of true type I error exceeding α is bounded by δ on the set

Bt ∩ Be. Thus, till the end of the proof, we will focus on the intersection of both sets. Note that

we have F̃ T̂n (t(k)) = kn−1. Then, Taylor expansion implies

F̃ T̂n (t(k))− F̃ T̂0 (t(k)) = F̃ T̂n (t(k))− F̃ T̂0 (ck)− f̃ T̂0 (c∗k)(t(k) − ck) = −f̃ T̂0 (c∗k)(t(k) − ck) ,

where c∗k is bounded by ck and t(k). Then the above equation implies
∣∣t(k) − ck∣∣ ≤ 4−1M−1C−1ε

for any k according to the lower bound provided by Assumption 2. Furthermore, D(t(k))−D(ck) =

M(f̃ T̂0 (c∗∗k) − f̃ T̂1 (c∗∗k))(t(k) − ck) for some c∗∗k bounded by ck and t(k). Therefore, Assumption 2

implies |D(t(k))−D(ck)| ≤ 4−1ε. Suppose k∗ = k′, then,

αk′,δ −D(ck′) ≤ αk′,δ −D(t(k′)) + 4−1ε ≤ α− 4−1ε ,

and thus k∗ ≥ k0. Furthermore, we also have

αk0,δ −D(t(k0)) ≤ αk0,δ −D(ck0) + 4−1ε ≤ α .

Recall that D(t(k0)) = R̃0(φ̂k0) − R0(φ̂k0). Therefore, R0(φ̂k0) > α implies R̃0(φ̂k0) > αk0,δ whose

probability is bounded by δ by Proposition 1.

Proof of Corollary 1. By Lemma 3, k∗# ≥ k∗ and thus, t(k∗) ≤ t(k∗#). Therefore, R0(φ̂(k∗)) ≥

46

R0(φ̂(k∗#)). Combined with Theorem 1, the previous result yields

IP
(
R0(φ̂(k∗#)) > α

)
≤ IP

(
R0(φ̂(k∗)) > α

)
≤ δ + δ1(nb) + δ2(nb) + 2e−8

−1nM−2C−2c2ε2 + 2e−8
−1n0

eM
−2ε2 + 2e−8

−1n1
eM
−2ε2 .

47

REFERENCES

Blanchard, G., Flaska, M., Handy, G., Pozzi, S., and Scott, C. (2016), “Classification with

asymmetric label noise: Consistency and maximal denoising,” Electronic Journal of Statistics,

10(2), 2780–2824.

Brazdil, P., and Konolige, K. (1990), “Machine Learning, Meta-Reasoning and Logics,” Springer, .

Brodley, C. E., and Friedl, M. A. (1999a), “Identifying mislabeled training data,” Journal of

Artificial Intelligence Research, 11, 131–167.

Brodley, C., and Friedl, M. (1999b), “Identifying mislabeled training data,” Journal of Artificial

Intelligence Research, 11, 131–167.

Cannings, T. I., Fan, Y., and Samworth, R. J. (2020), “Classification with imperfect training

labels,” Biometrika, 107(2), 311–330.

Cannon, A., Howse, J., Hush, D., and Scovel, C. (2002), “Learning with the Neyman-Pearson and

min-max criteria,” Los Alamos National Laboratory, Tech. Rep. LA-UR, pp. 02–2951.

Cao, J., Kwong, S., and Wang, R. (2012), “A noise-detection based AdaBoost algorithm for misla-

beled data,” Pattern Recognition, 45(12), 4451–4465.

Ghosh, A., Manwani, N., and Sastry, P. (2015), “Making risk minimization tolerant to label noise,”

Neurocomputing, 160, 93–107.

Guyon, I., Matic, N., Vapnik, V. et al. (1996), “Discovering Informative Patterns and Data Clean-

ing.,”.

Hickey, R. J. (1996), “Noise modelling and evaluating learning from examples,” Artificial Intelli-

gence, 82(1-2), 157–179.

Hopkins, M., Reeber, E., Forman, G., and Suermondt, J. (1999), “Spambase data set,” Hewlett-

Packard Labs, 1(7).

Khardon, R., and Wachman, G. (2007), “Noise tolerant variants of the perceptron algorithm,”

Journal of Machine Learning Research, 8(Feb), 227–248.

48

Krizhevsky, A., Hinton, G. et al. (2009), “Learning multiple layers of features from tiny images,” ,

.

Lachenbruch, P. A. (1966), “Discriminant analysis when the initial samples are misclassified,”

Technometrics, 8(4), 657–662.

Lachenbruch, P. A. (1979), “Note on initial misclassification effects on the quadratic discriminant

function,” Technometrics, 21(1), 129–132.

Liu, T., and Tao, D. (2016), “Classification with noisy labels by importance reweighting,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 38(3), 447–461.

MacDonald, O. (2011), “Physician Perspectives on Preventing Diagnostic Errors,”

https://www.kff.org/wp-content/uploads/sites/2/2013/05/quantiamd preventingdiagnosticerrors whitepaper 1.pdf,

.

Manwani, N., and Sastry, P. (2013), “Noise tolerance under risk minimization,” IEEE Transactions

on Cybernetics, 43(3), 1146–1151.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari, A. (2013), Learning with noisy labels,,

in Advances in Neural Information Processing Systems, pp. 1196–1204.

Okamoto, S., and Yugami, N. (1997), An average-case analysis of the k-nearest neighbor classifier

for noisy domains,, in IJCAI (1), pp. 238–245.

Orr, K. (1998), “Data quality and systems theory,” Communications of the ACM, 41(2), 66–71.

Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., and Qu, L. (2017), Making deep neural

networks robust to label noise: A loss correction approach,, in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 1944–1952.

Redman, T. (1998), “The impact of poor data quality on the typical enterprise,” Communications

of the ACM, 2(2), 79–82.

Rigollet, P., and Tong, X. (2011), “Neyman-pearson classification, convexity and stochastic con-

straints,” Journal of Machine Learning Research, 12(Oct), 2831–2855.

49

Scott, C., and Nowak, R. (2005), “A Neyman-Pearson approach to statistical learning,” IEEE

Transactions on Information Theory, 51(11), 3806–3819.

Sukhbaatar, S., and Fergus, R. (2014), “Learning from noisy labels with deep neural networks,”

arXiv preprint arXiv:1406.2080, 2(3), 4.

Tong, X. (2013), “A plug-in approach to Neyman-Pearson classification,” Journal of Machine

Learning Research, 14(1), 3011–3040.

Tong, X., Feng, Y., and Li, J. J. (2018), “Neyman-Pearson classification algorithms and NP receiver

operating characteristics,” Science Advances, 4(2), eaao1659.

Tong, X., Xia, L., Wang, J., and Feng, Y. (2020), “Neyman-Pearson classification: parametrics and

sample size requirement,” Journal of Machine Learning Research, 21, 1–18.

Xia, X., Liu, T., Wang, N., Han, B., Gong, C., Niu, G., and Sugiyama, M. (2019), “Are anchor

points really indispensable in label-noise learning?,” Advances in Neural Information Processing

Systems, 32, 6838–6849.

Zhao, A., Feng, Y., Wang, L., and Tong, X. (2016), “Neyman-Pearson classification under high-

dimensional settings,” Journal of Machine Learning Research, 17(213), 1–39.

50

	Introduction
	Notation and Corruption Model
	Methodology
	The NP umbrella algorithm without label noise
	Algorithm 1: label-noise-adjusted NP umbrella algorithm with known corruption levels
	Algorithm 1#: label-noise-adjusted NP umbrella algorithm with unknown corruption levels

	Theory
	Rationale behind Algorithm 1
	Theoretical properties of Algorithm 1
	Theoretical properties of Algorithm 1#
	Numerical Analysis
	Simulation
	Algorithm 1.
	Algorithm 1#.
	Benchmark Algorithms.

	Real Data Analysis

	Discussion
	Summary of sampling scheme
	BINARY SEARCH Algorithm
	An example for assumption 3
	Additional Numerical Results
	Additional Simulations
	CIFAR10 data analysis
	Violin plots for Section 5
	Tables for Section 5
	Alternative implementation with a positive
	Extra Lemmas
	Proofs

