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Abstract

The allocation of limited resources to a large number of potential candidates
presents a pervasive challenge. In the context of ranking and selecting top candidates
from heteroscedastic units, conventional methods often result in over-representations
of subpopulations, and this issue is further exacerbated in large-scale settings where
thousands of candidates are considered simultaneously. To address this challenge, we
propose a new multiple comparison framework that incorporates a modified power
notion to prioritize the selection of important effects and employs a novel ranking
metric to assess the relative importance of units. We develop both oracle and data-
driven algorithms, and demonstrate their effectiveness in controlling the error rates
and achieving optimality. We evaluate the numerical performance of our proposed
method using simulated and real data. The results show that our framework enables a
more balanced selection of effects that are both statistically significant and practically
important, and results in an objective and relevant ranking scheme that is well-suited
to practical scenarios.
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1 Introduction

Allocating limited resources among numerous potential candidates is a common problem

faced by both individuals and organizations. This dilemma is encountered by NBA bas-

ketball recruiters as they search for promising talent, public policy makers as they fund

educational programs, and internet users on platforms such as Yelp as they decide which

restaurants to visit. Such decision-making scenarios give rise to the ranking and selection

problem, a fundamental statistical issue that requires the comparison of multiple unknown

parameters.

Ranking and selection has been a classical topic in multiple comparisons (Mosteller,

1948; Paulson, 1949; Bechhofer, 1954; Gupta, 1965; Panchapakesan, 1971; Goel and Ru-

bin, 1977), and its integration into other branches of statistics, operations research, and

computing has made it a critical and constantly evolving area of study (Chen et al., 2000;

Boyd et al., 2012; Luo et al., 2015; Ni et al., 2017; Kamiński and Szufel, 2018; Zhong et al.,

2022). The decision process has two key components: first, establishing a meaningful cri-

terion for ordering a pool of potential candidates, and second, selecting a subset of “most

meritorious” candidates with a certain level of confidence. Properly accounting for the

heteroscedasticity across data from diverse study units is essential for producing effective,

sensible, and fair decisions in the ranking and selection process. In the following, we pro-

vide first an overview of conventional practices and identify relevant issues and then an

exposition of our new framework for addressing the challenge of heteroscedasticity. Finally,

we discuss related works and highlight the contributions of our approach.
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1.1 Conventional practices and issues

Ranking is essential in multiple comparisons to evaluate and identify top-performers from

a pool of potential candidates. While the importance of each candidate is linked to the

magnitude of its associated parameter, the decision-making process also takes into account

the associated uncertainties in order to ensure that the top candidates indeed belong to the

“most meritorious” group. The two perspectives, namely the parameter magnitude and

the confidence level in the assertions being made, are reflected by the estimated effect size

and its associated statistical significance, respectively. In homoscedastic models, these two

perspectives yield the same ranking. However, in cases where the data are heteroscedastic

across study units, the rankings based on these two perspectives may disagree. As demon-

strated shortly, the issue is further exacerbated in large-scale settings where thousands

of candidates are being considered at once. Developing a sensible ranking and selection

criterion that partially mitigates the conflict between the two perspectives poses a critical

challenge in large-scale multiple comparison problems.

To demonstrate the drawbacks of conventional practices, we analyze the 2005 Annual

Yearly Performance (AYP) data to identify K-12 schools with significant gaps in passing

rates between socioeconomically advantaged (SEA) and disadvantaged (SED) students.

The raw observations are the empirical differences in passing rates between the two groups,

with standard errors (SEs) linked to the number of students in the schools. More details

of the study are provided in Section F.7. We consider three selection strategies, which are

respectively based on statistical significance (p-value), observed gap in passing rates (raw

observation), and posterior mean (computed using Tweedie’s formula). The results of our

exploratory analysis are presented in Figure 1. Panel (a) shows the distribution of the SE.

Panels (b), (c) and (d) show the distribution of 20 selected schools according to p-value,
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Figure 1: Panel (a): overall distribution of SEs of the AYP data set. Panel (b): distribution
of SEs of the top 20 schools according to p-value. Panel (c): distribution of SEs of the
top 20 schools according to raw observation. Panel (d): distribution of SEs of the top 20
schools according to posterior mean.

observed gap and posterior mean, respectively. Figure 1 reveals that selecting schools based

on p-values and posterior means tends to result in an over-representation of schools with

low SEs, while selecting based on raw observations may lead to an over-representation

of those with high SEs. The design of this analysis draws on earlier works, including

Sun and McLain (2012) and Henderson and Newton (2016), which have identified and

provided initial insights into some perplexing phenomena that arise under heteroscedastic

models. For example, Sun and McLain (2012) found that the largest 1% of K-12 schools

are over-represented among the worst performing ten schools when the selection is based

on p-values.

Although all three selection criteria have their advantages in capturing either the effect

sizes or accounting for associated uncertainties, the over-representation of subgroups with

high/low SEs is undesirable and runs counter to practical wisdom. We aim to develop a

new ranking and selection framework that resides between the three polarized selection

criteria, striking a balance between their respective advantages and disadvantages. The

AYP data will be revisited under our new framework in Section F.7.
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1.2 False discovery rate analysis under heteroscedasticity

We begin by examining the use of the false discovery rate (FDR) framework (Benjamini and

Hochberg, 1995; Storey, 2002; Genovese and Wasserman, 2004) in the context of selecting

important candidates. Most FDR methods operate in two steps: ranking and thresholding,

where the building block of operation is the p-value (Benjamini and Hochberg, 1995) or

the local false discovery rate (lfdr; Efron et al., 2001; Sun and Cai, 2007). Both the p-value

and lfdr tend to prioritize the stability of data over effect sizes, which leads to the over-

selection of schools with low SEs in the AYP analysis. To comprehend the limitations of

the conventional formulation, we refer to the theory in Sun and Cai (2007), which shows

that thresholding lfdr is optimal in the sense that it maximizes the average power subject

to the constraint on the FDR. This perspective reveals two major issues that contribute to

the difficulties of utilizing the FDR framework in heteroscedastic models.

The first issue is that the concept of average power, which is defined as the expected

proportion of non-nulls that are correctly rejected, overlooks the severity of missed signals.

This gives rise to a significant limitation that is particularly concerning in situations with

substantial heteroscedasticity across units. Specifically, the identification of a large signal

should be rewarded more than that of a small signal, even if both study units have the same

level of statistical significance. However, this principle is not fulfilled by the conventional

FDR formulation. To correct the inherent bias in conventional FDR analyses, it is desirable

to modify the power concept such that selection of larger effects is prioritized with a higher

reward.

The second issue pertains to the conventional multiple testing framework, which employs

a thresholding procedure that is contingent on a fixed ordering determined by a predefined

significance index, such as the p-value or lfdr. Our optimality theory reveals that such
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an ordering to prioritize selections may not exist. The absence of a universally optimal

ordering poses a significant challenge in developing an objective ranking, as the rankings

can be inconsistent across users who may reasonably select different confidence or reference

levels.

1.3 A preview of the proposed method

Our proposal presents a new multiple comparison framework that addresses the two afore-

mentioned issues by incorporating a modified power notion to prioritize the selection of

important effects and employing a novel ranking index to assess the relative importance of

units.

We first study the prioritized selection problem by utilizing a constrained optimization

formulation. The goal is to control a user-specified FDR while maximizing a modified

power concept that assigns higher rewards to selections of larger effects. The solution

leads to a selection method that carefully weighs the candidate’s effect size against its

significance. The new formulation reduces the bias inherent in commonly used significance

indices that favor stability, ensuring that the effect size is more fairly represented in the

selection process.

We then turn to the ranking issue by introducing a novel concept called the “r-value,”

which provides a measure of the relative importance of study units in a list. The importance

of different units is captured by how early they are selected according to a varying target.

The earlier a unit is selected, the more important it is considered to be relative to the other

units. Thus an objective ranking of study units is generated.
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1.4 Our contributions

In scenarios where study units display substantial heteroscedasticity, the proposed ranking

and selection procedure offers a valuable alternative to conventional FDR analyses. Our

method enables a more balanced selection of effects that are both statistically significant

and practically important, resulting in a ranking that is objective and relevant for practical

scenarios. To tackle the complexity that arises from our revised notion of power, we have

devised an oracle procedure and developed theory to establish its optimality. The new

theory offers a significant advance in contrast to the weighted FDR theory in Basu et al.

(2018). Furthermore, we have developed a computational shortcut of the oracle procedure

and rigorously established the asymptotic properties of the corresponding data-driven algo-

rithm. Our work presents a unified framework that explicitly incorporates considerations of

effect size, statistical significance, error control, theoretical guarantees, and computational

efficiency for analyzing heteroscedastic data.

Previous studies have made progress in addressing some, but not all, of our challenges.

Sun and McLain (2012) proposed a decision-theoretic framework that incorporates infor-

mation about effect sizes, but their approach relies on standardization and does not resolve

the issue of over-representation of small variances. Henderson and Newton (2016) put forth

the maximal agreement method to avoid over-representation. However, their formulation

differs significantly from ours in two aspects: firstly, the question of error rate control

is left unaddressed, and secondly, the joint consideration of effect size and significance is

absent. Gu and Koenker (2023) devised a robust set of ranking and selection methods

within a compound decision-theoretic framework. Notably, they extended the maximal

agreement method to include false discovery control. However, the challenge of balancing

statistical significance and effect size has not been fully resolved. Finally, Fu et al. (2022)
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demonstrated that standardization can distort structural information about the alternative

distribution, but their analysis had focused on the conventional FDR framework.

1.5 Organization

The paper is structured as follows. Section 2 presents the problem formulation and an

oracle procedure for prioritized selection. Section 3 develops a data-driven procedure and

establishes its theoretical guarantees. Section 4 introduces the r-value and discusses its

agreeability property. Sections 5 and 6 present results to illustrate the numerical perfor-

mance of our proposed ranking and selection methods on both simulated and real data.

2 Prioritized Selection with FDR Control

This section first introduces the model, notation and problem formulation, and then pro-

poses an oracle procedure for prioritized selection of important effects.

2.1 Problem formulation

Suppose Xi, i ∈ [m] ≡ {1, · · · ,m} are independent observations from a random mixture

model with possibly heteroscedastic errors:

Xi = µi + εi, εi ∼ N(0, σ2
i ), (2.1)

where µi and σi are assumed to be mutually independent, and come from unspecified

distributions with bounded supports:

µi ∼ gµ(·), σ2
i ∼ gσ(·), i ∈ [m]. (2.2)

To focus on the central idea, we assume that σi are known, a common practice pursued,

for example, in Efron (2011), Xie et al. (2012), and Weinstein et al. (2018). The issue of
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estimating unknown and heterogeneous σi has been considered in Gu and Koenker (2017a),

Gu and Koenker (2017b), Banerjee et al. (2020), and Kwon and Zhao (2023).

Let Ai be a user-specified indifference region. Without loss of generality, suppose one

wishes to test whether the effect size µi surpasses a given threshold µ0, hence Ai = A =

{µ : µ ≤ µ0}. Upon observing (xi, σi), the null and alternative hypotheses are

H0,i : µi ∈ A vs. H1,i : µi /∈ A.

Denote θi = I(µi > µ0) the true state of the ith item, and δi ∈ {0, 1} the decision we make

about that item, where δi = 1 if the ith item is selected (or claimed as an important case)

and δi = 0 otherwise. Let δδδ = (δ1, . . . , δm).

In large-scale selection problems, a practical and effective goal is to control the false

discovery rate (Benjamini and Hochberg, 1995)

FDR(δ) = E
[∑

i(1− θi)δi
(
∑

i δi) ∨ 1

]
,

where a ∨ b = max(a, b). A closely related quantity is the marginal false discovery rate

mFDR(δ) =
E (
∑

i(1− θi)δi)
E (
∑

i δi ∨ 1)
.

Under certain first- and second-order conditions, the mFDR asymptotically equals the FDR

(Genovese and Wasserman, 2002; Cai et al., 2019). For theoretical convenience we adopt

the mFDR in our discussion.

In conventional FDR analysis, the goal is to find a decision rule δδδ that controls the error

rate at pre-specified level α with the largest power. A widely used metric for evaluating

the power of a multiple testing procedure is the expected number of true positives

ETP(δ) = E

(∑
i

θiδi

)
= E

{∑
i

I(µi > µ0)δi

}
. (2.3)

To prioritize the selection of large effects, we propose to modify the power concept as

ETP∗(δ) = E {
∑

i(Xi − µ0)δi} . (2.4)

The traditional power concept (2.3) has undergone two modifications: first, the indicator
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I(µi−µ0 > 0) is replaced by the actual difference (µi−µ0). Second, the unbiased estimate

Xi is substituted in place of µi, resulting in the revised power concept (2.4). The first

modification allows for the revised power metric to precisely capture the impact of signal

magnitude, while the subsequent alteration is crucial for avoiding technical intricacies, as

the unknown µi poses a significant difficulty in constructing the oracle rule in Section 2.2.

The above considerations give rise to the following constrained optimization problem,

in which we aim to develop a selection rule δδδ ∈ {0, 1}m to

maximize ETP∗(δ) subject to mFDR(δ) ≤ α. (2.5)

Remark 1. Our formulation can be extended by replacing (Xi − µ0) with a more general

function hi(XXX,σσσ). If one only cares about detecting the true state of nature and ignores

the severity of missed signals, then we can take hi(XXX,σσσ) = I(Xi > µ0). The other possible

choice for hi(XXX,σσσ) is (Xi−µ0)+, which ensures that the weight is always positive. Moreover,

the choice of hi(XXX,σσσ) = (Xi − µ0)+ simplifies subsequent analyses. However, we prefer

(Xi − µ0) over (Xi − µ0)+, as the former penalizes the identification of small effects. This

preference is in line with the objective of our formulation, which aims to allocate a more

balanced representation to the effect size during the selection process. In Section 2.2, we

demonstrate the critical role of the sign of hi(XXX,σσσ). In contrast to the weighted FDR

problem discussed in Basu et al. (2018), where the weights wi are assumed to be non-

negative and independent of Xi, the “weights” hi(XXX,σσσ) in our formulation are allowed to

be negative and depend on (XXX,σσσ). The difference poses new challenges in developing both

oracle and data-driven procedures. We discuss related issues in subsequent sections.
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2.2 Oracle selection procedure

This section considers an ideal scenario where an oracle knows gµ and gσ in (2.2). The oracle

rule weighs the tradeoffs between α-investing and µ-investing processes, two concepts that

we shall elaborate on shortly, and assesses their impacts on the modified power and FDR

capacity, respectively. In what follows, we present a heuristic argument to explain how we

arrive at the oracle rule, and rigorously prove its optimality in Theorem 1.

The process of α-investing (Foster and Stine, 2008; Gang et al., 2023), which is used

to evaluate the gains and losses in making a discovery, relies on the conditional local false

discovery rate statistic (Clfdr, Cai and Sun (2009); Efron (2012); Sun and McLain (2012)).

The Clfdr statistic is defined as

Clfdri = P(µi ∈ A|xi, σi) =
f0i(xi)

fi(xi)
, (2.6)

where f0i(xi) =
∫
µ∈A φσi(xi−µ)gµ(µ)dµ and fi(xi) =

∫∞
−∞ φσi(xi−µ)gµ(µ)dµ. The ordered

values of Clfdr statistics are denoted Clfdr(1), . . . ,Clfdr(m). As shown by Sun and Cai

(2007), the following step-wise algorithm, which uses the Clfdr statistic as a basic operation

unit, is asymptotically optimal in the sense that it maximizes the ETP subject to the

constraint mFDR ≤ α.

Let k = max
{
j : 1

j

∑j
i=1 Clfdr(i) ≤ α

}
, then reject H(1), . . . , H(k). (2.7)

The Clfdr algorithm (2.7) can be interpreted as a varying-capacity knapsack process (Basu

et al., 2018; Gang et al., 2023). Specifically, (2.7) can be viewed as an iterative decision

process where the initial α-wealth is invested by rejecting hypotheses sequentially. The

process adheres to the following constraint:

Clfdrj − α ≤ Cj ≡ −
∑
Hi∈Rj

(Clfdri − α) , for j = 1, 2, . . .,

whereRj ⊂ {H1, H2, . . . , Hm} is the collection of rejected hypotheses at step j, and Cj may

be viewed as the capacity of the knapsack at step j, with the default choice C1 = 0. Under
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this view, the α-investing process corresponds to a knapsack problem whose capacity may

either expand or shrink over time. If Hj with Clfdrj < α (Clfdrj > α) is rejected, then Cj

increases (decreases) by |α− Clfdrj|.

The µ-investing process, on the other hand, is relatively straightforward. When a

hypothesis Hj with Xj > µ0 (Xj < µ0) is rejected, the return on investment increases

(decreases) empirically by |Xj − µ0|.

Jointly considering the gains and losses in the α-investing and µ-investing processes, we

divide the hypotheses into four groups:

0. Xi − µ0 ≥ 0 and Clfdri − α ≤ 0;

1. Xi − µ0 ≥ 0 and Clfdri − α > 0;

2. Xi − µ0 < 0 and Clfdri − α ≤ 0;

3. Xi − µ0 < 0 and Clfdri − α > 0.

Our problem formulation suggests that units in group 0 should always be selected, as

their selection results in an increase in both α-wealth and power. Conversely, units in

group 3 should never be selected, as their selection leads to decreases in both α-wealth

and power. The tradeoffs involved in selecting units from groups 1 and 2 are nuanced. In

the case of group 1, selecting units sacrifices capacity but also results in increased power.

We hypothesize that the optimal strategy involves selecting units with a high value-to-cost

ratio, defined as

Ti =
Xi − µ0

Clfdri − α
, (2.8)

By contrast, selecting units from group 2 involves trading power for increased capacity.

Consequently, the Ti statistic can be viewed as a cost-to-value ratio. Therefore, it is

desirable to select units with low values of Ti from group 2. We hypothesize that the
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optimal decision rule can be expressed in the following form:

δ(c1, c2)(Ti) =



1 if (Xi,Clfdri) belongs to group 0

1 if (Xi,Clfdri) belongs to group 1 and Ti > c1

1 if (Xi,Clfdri) belongs to group 2 and Ti < c2

0 otherwise

, (2.9)

where c1 and c2 are thresholds to be determined.

Consider a class of decision rules of the form (2.9), with mFDR and modified power

denoted as mFDR(c1, c2) and ETP∗(c1, c2), respectively. Define the oracle cutoffs

(cOR1 , cOR2 ) = arg max
(c1,c2)

{ETP∗(c1, c2) : mFDR(c1, c2) = α}. (2.10)

The next theorem shows that the decision rule given by (2.9) and (2.10) is optimal under

the formulation (2.5).

Theorem 1. The oracle procedure δδδOR = δδδ(cOR1 , cOR2 ) proposed above controls mFDR at

level α and is optimal in the sense that for any decision rule δδδ that controls mFDR at level

α, we always have ETP∗(cOR1 , cOR2 ) ≥ ETP∗δδδ.

2.3 Extension of the oracle procedure

We present an extension of the oracle procedure capable of solving the following problem

Maximize E

{
m∑
i=1

hi(XXX,σσσ)δi

}
subject to mFDR ≤ α. (2.11)

The previously stated formulation (2.5) may be recovered by setting hi(XXX,σσσ) = Xi − µ0.

In the Supplementary Material, we show that the previous oracle rule (2.9) is optimal

under the formulation (2.11) by following two adjustments. First, the group membership

is determined jointly based on the signs of the pair {hi(XXX,σσσ),Clfdri − α}. Second, the

ranking statistic is modified as T iOR = hi(XXX,σσσ)
Clfdri−α .

The proposed extension has several important implications. Firstly, it allows us to
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consider more general indifference regions Ai, such as general Borel sets instead of the

restricted one-sided regions A = {µ : µ ≤ µ0}. We can design modified functions that

reflect the distance of Xi from Ai, such as hi(XXX,σσσ) = min{‖Xi − µ‖, µ ∈ Ai}, where ‖ · ‖

represents some norm in a metric space. Secondly, alternative loss functions may be utilized

to increase the flexibility of our framework. Finally, the extension enables researchers to

use µ̂i, such as the James-Stein estimator and Tweedie’s estimator for µi (Efron, 2012), in

place of Xi to modify the ETP∗. However, one needs to proceed with caution as the use

of such estimates may introduce additional variability and uncertainty, which may lead to

unstable and counter-intuitive selections. The formulation hi(XXX,σσσ) = Xi−µ0 still remains

a straightforward, intuitive, and stable option.

2.4 ETP vs ETP∗: an illustrative example

In the setting with homoscedastic errors, higher statistical significance is typically asso-

ciated with larger effects. Consequently, selection procedures based on p-values or Clfdr

statistics tend to automatically choose large effects. In such cases, practitioners are advised

to follow conventional practice with the existing ETP notion (2.3). However, when units

demonstrate high levels of heteroscedasticity, conventional practice tends to over-represent

subgroups with lower variances. This outcome is undesirable as it may lead to the selection

of small effects with minimal practical value. In such settings, we strongly recommend

utilizing our modified power criterion ETP∗ as a preferred alternative. Next we provide an

example to show that by assigning a higher reward to the selection of larger effects, the new

formulation provides a more principled and balanced approach to the selection problem.

This illustrative example compares two oracle rules designed to maximize the conven-

tional power (2.3) and modified power (2.4), respectively. The fundamental operational
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Figure 2: Left: heat map for Clfdr values. Right: heat map for T values. In both panels,
the x-axis and y-axis represent raw observations X and Clfdr values, respectively. The
rejection regions of the oracle rules δδδC and δδδT are the areas under the corresponding black
lines.

units for the two oracle rules are Clfdr statistic and T , defined by (2.6) and (2.8), respec-

tively. Suppose we are interested in testing H0,i : µi ≤ 0, i ∈ [m] based on data generated

from the following model:

θi
i.i.d.∼ Bernoulli(0.2), µi

ind∼ (1−θi)U(−3,−1)+θiU(1, 2), σi
iid∼ U(0.5, 3), Xi

ind∼ N (µi, σ
2
i ).

The oracle rule that maximizes the ETP in (2.3) is defined as δδδC = (δCi : i ∈ [m]), where

δCi = I(Clfdri < cα) and cα is determined by the desired FDR level α. For the oracle rule

δδδT = (δTi : i ∈ [m]) that maximizes the ETP∗ in (2.4), Group 2 is empty, and the oracle

rule for units in Group 1 is δTi = I(Ti > tα). Assuming known distributional information,

we can determine cα = 0.32 and tα = 12.21 through numerical approximations such that

the FDR levels of both oracle rules are exactly controlled at α = 0.1.

Figure 2 illustrates the rejection regions of the oracle rules δδδC and δδδT , depicted by the

corresponding black lines. The left panel of the figure displays the Clfdr values via a heat

map, with the x-axis representing raw observations X, and the y-axis representing Clfdr

values. In the right panel, we present the heat map for T values, with the x-axis and
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y-axis representing X and Clfdr values, respectively. It is worth noting that the new oracle

rule δδδT yields a rejection region where the threshold for Clfdr increases as X increases,

which contrasts with the oracle rule δδδC that uses a fixed Clfdr threshold. This observation

indicates that the modified ETP∗ results in a selection rule that factors in both statistical

significance and effect size simultaneously.

3 Data-driven procedure

This section presents the development of our data-driven procedure, including a non-

parametric deconvoluting method (Section 3.1), a computational shortcut (Section 3.2),

and a theoretical analysis (Section 3.3).

3.1 Nonparametric deconvolution

We propose a non-parametric g-modeling approach to estimating gµ(·), which plays a crit-

ical role in computing the value of Ti. Although prior research by Efron (2016), Gu and

Koenker (2017b) and Gu and Koenker (2023) has tackled this issue, the theoretical proper-

ties of these methods remain largely unknown. Our new g-modeling method, which is based

on the density matching idea, offers a fast and stable algorithm that performs comparably

to competing methods, while having a form that greatly simplifies the theoretical analysis

of the data-driven procedure.

Assume supp(gµ) ⊂ [−M,M ], M < ∞. The g-modeling approach (Jiang and Zhang,

2009; Koenker and Mizera, 2014) involves approximating gµ(·) using a mixture of point

masses. We form a grid of size k evenly spaced between −M and M :

{s, s+ η, s+ 2η, ..., s+ (k − 1)η} ,

where η = 2M/(k − 1) and s = −M . Then gµ(·) can be approximated by ĝµ(·) =
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∑k
j=1wjIs+(j−1)η(·), where Ic(·) is the Dirac delta function centered at c. The task at

hand then boils down to determining the optimal weights www = (w1, w2, ..., wk), which can

be efficiently solved through a direct optimization approach.

We outline a “density matching” approach for formulating the optimization objective

function. Specifically, two different techniques are employed to derive the density estimate,

namely, f̂ , which is constructed based on a given ĝ, and f̂m, which is constructed using a

weighted bivariate kernel estimator. The objective function is designed to ensure a high

degree of similarity between the two density estimators.

First, upon obtaining ĝ, a natural estimate for fi(xi) is readily provided by

f̂i(x) =

∫ ∞
−∞

φσi(x− y)ĝµ(y)dy =
k∑
j=1

wjφσi {x− s− (j − 1)η} .

Also, fi can be estimated by employing a weighted bivariate kernel estimator:

f̂mi (x) =
m∑
j=1

φhσ(σi − σj)∑m
k=1 φhσ(σi − σk)

φhxj(x− xj),

where h = (hx, hσ) is a pair of bandwidths, φhσ(σ−σj)/{
∑m

j=1 φhσ(σ−σj)} that determine

the contribution of (xj, σj) based on σj, hxj = hxσj is a bandwidth that varies across

j, and φh(z) = (1/
√

2πh2) exp {−z2/(2h2)} is a Gaussian kernel. The motivation behind

this approach is to leverage the smooth variation of fi(xi) with respect to σi. The variable

bandwidth hxj is utilized to account for the heteroscedasticity inherent in the data, resulting

in data points with higher variation being associated with flatter kernels.

To minimize the discrepancy between f̂i and f̂mi , we aim to find www that solves the

following convex optimization problem:

Minimize
m∑
i=1

{f̂i(xi)− f̂mi (xi)}2 subject to wj ≥ 0 for 1 ≤ j ≤ k and
k∑
j=1

wj = 1. (3.12)
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Denote www∗ = (w∗1, . . . , w
∗
k) the optimizer of (3.12), then f̂0i and f̂i can be computed as

f̂0i(x) =

∫ µ0

−∞
φσi(x− µ)ĝµ(µ)dµ =

∑
s+(j−1)η≤µ0

w∗jφσi(x− s− jη) and

f̂i(x) =

∫ ∞
−∞

φσi(x− µ)ĝµ(µ)dµ =
k∑
j=1

w∗jφσi(x− s− (j − 1)η).

Finally, Ti can be estimated correspondingly using a plug-in method.

3.2 A computational shortcut and the step-wise algorithm

The oracle rule necessitates a search over a two-dimensional space for identifying the opti-

mal cutoffs (cOR1 , cOR2 ) defined in (2.10). This task can be computationally demanding. To

overcome this challenge, we propose in this section a computational shortcut that leads to

a considerable improvement in computational efficiency.

To maximize ETP∗(c1, c2) for a given c2, our strategy must reject as many hypotheses

as possible from group 1. This involves the selection of the smallest c1 that satisfies the

mFDR constraint. Consequently, the optimal solution (cOR1 , cOR2 ) must be located on the

one-dimensional curve L(c2) = {(c∗1(c2), c2)}, where c∗1(c2) = inf{c1 : mFDRδδδ(c1,c2) ≤ α}.

The problem boils down to determining the optimal c2 on L(c2) such that ETP∗(c2;L) ≡

ETP∗(c∗1(c2), c2) can be maximized. The following proposition establishes that if ETP∗(c2;L)

starts to decrease along the curve L(c2) in the direction of increasing c2, then it will continue

to decrease in the direction of increasing c2.

Proposition 1. Consider three decision rules δδδ = δδδ(c1, c2), δδδ′ = δδδ(c′1, c
′
2), δδδ′′ = δδδ(c′′1, c

′′
2)

with (c1, c2), (c′1, c
′
2), (c′′1, c

′′
2) all on L. If c1 ≥ c′1 ≥ c′′1 and ETP∗δδδ ≥ ETP∗δδδ′, then we must

have ETP∗δδδ′ ≥ ETP∗δδδ′′.

Proposition 1 inspires us to adopt the following strategy: search along the curve L in

the direction of increasing c2 and stop when ETP∗ begins to decrease. More precisely, we
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first select as many units as possible from group 1 and record the resulting ETP∗ (Step

3). Next, we select a single hypothesis from group 2 (Step 4), which decreases the ETP∗

but increases the FDR capacity. We then return to Step 3 and select as many units as

possible from group 1 using the additional FDR capacity and record the new ETP∗. We

compare the new ETP∗ with the previous ETP∗. If the ETP∗ increases after the iteration,

we repeat the aforementioned process (e.g. continue to Step 4 and return to Step 3),

otherwise we stop the procedure and output the thresholds. The operation of the step-wise

data-driven procedure is detailed in Algorithm 1. For the more general problem described

in (2.11) we need only replace T̂i with hi(XXX,σσσ)

Ĉlfdri−α
in Algorithm 1. More details are given in

the Supplementary Material A.4.

Algorithm 1: The data-driven procedure

Input: xxx, ĈlfdrClfdrClfdr, α.
Output: The estimated threshold for group 1 and group 2 (ĉ1 and ĉ2).

Step 1: Compute T̂i = (xi − µ0)/(Ĉlfdri − α). Form the 4 groups described in

the oracle procedure using ĈlfdrClfdrClfdr and T̂TT in place of ClfdrClfdrClfdr and TTT .

Step 2: Let R denote the rejection set. Put the indices of hypotheses from group
0 into R. Rank hypotheses in group 1 from largest to smallest according to T̂i.
Rank hypotheses in group 2 from smallest to largest according to T̂i.

Step 3: Denote the ranked hypotheses in group 1 by H1
(1), H

1
(2), ... and the

corresponding Clfdr values by Clfdr(1),Clfdr(2), .... Let

k = max{j :
∑j

i=1(Clfdr(i) − α) ≤ −
∑

i∈R(Clfdri − α)}, reject H(1), H(2), ...H(k)

and remove them from group 1. Compute and store ETP∗ =
∑

i∈R(xi − µ0).

Step 4: Denote the ranked hypotheses in group 2 by H2
(1), H

2
(2), .... Reject H2

(1)

and remove it from group 2.

Step 5: Repeat step 3 and step 4. Terminate when ETP∗ starts to decrease or
when either group 1 or group 2 is empty.

Step 6: Let (ĉ1, ĉ2) to be the pair that maximizes ETP∗ and set δδδDD = δδδ(ĉ1, ĉ2).
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3.3 Theoretical properties of the data-driven procedure

In Section 2.2, we demonstrated that the oracle rule δδδOR is both valid and optimal in

the sense that it satisfies the FDR constraint and has the largest ETP* among all valid

FDR rules. In this subsection, we aim to establish that the data-driven procedure δδδDD,

defined in Algorithm 1, asymptotically approaches the performance of the oracle rule δδδOR

and therefore is asymptotically valid and optimal. Before we proceed with our theoretical

analysis, we state the following regularity conditions.

(A1) supp(gµ) ⊂ [−M,M ] and supp(gσ) ∈ (M1,M2) for some M1 > 0, M2 <∞, M <∞.

(A2) The bandwidths h = (hx, hσ) satisfy hx ∼ m−ηx , hσ ∼ m−ηs where ηx and ηs are

small positive constants such that 0 < ηs + ηx < 1.

(A3) The grid size satisfies k ∼ m1/3 logm.

Remark 2. Assumption (A1) is a mild condition on boundedness of gµ and gσ, which is

reasonable for most practical scenarios. Assumption (A2) is satisfied by commonly used

bandwidth choices in Wand and Jones (1994). Assumption (A3) can be achieved by user’s

choice, and can be relaxed to k → ∞ as m → ∞. In theory, a larger k will not harm the

quality of the deconvolution estimate, but it may lead to longer computational times. In

Section C, we argue that the grid size k need not be of order greater than m1/3 logm.

We first state a crucial proposition that establishes the theoretical properties of the

proposed density estimator f̂0i.

Proposition 2. Suppose condition (A1), (A2), and (A3) hold, then Ĉlfdri
p→ Clfdri when

m→∞.

Now we present our theory on the asymptotic validity and optimality of the data-driven

procedure.
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Theorem 2. Under Conditions (A1), (A2), and (A3) the data-driven procedure δδδDD de-

scribed in Algorithm 1 controls mFDR at level α + o(1) and ETP∗δδδDD/ETP∗δδδOR = 1 + o(1)

as m→∞.

4 The R-Value in Multiple Comparisons

In this section, we investigate the integration of ranking and selection in a unified multiple

comparison framework. Our proposed approach involves generating a ranking based on a

suitable selection rule and utilizing a novel ranking metric called the r-value. This metric

reflects the relative order in which different units are selected, thereby providing a practical

criterion for assessing the relative importance of the units within a list.

We present two r-value notions. The first, presented in Section 4.1, assumes a fixed

reference level µ0, with the r-values generated by varying the confidence level α denoted

as rα. The second, presented in Section 4.2, assumes a fixed confidence level α, with the

r-values generated by varying the reference level µ0, denoted as rµ0 . Important properties

of the r-values are investigated in Section 4.4.

4.1 R-values generated by varying the confidence level

The conventional multiple testing framework relies on a thresholding procedure that as-

sumes the presence of a significance index, such as the p-value or local false discovery rate,

which provides a consistent ranking of study units that remains invariant across all FDR

levels. However, in the case of a heteroscedastic setup, such a ranking cannot be provided.

For instance, in the oracle rule (2.9), study units may be selected into the rejection set in

different orders at varying FDR levels since the optimal statistic T depends on α. As a

result, the ranking would be inconsistent across different users, who select different FDR
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levels in their analysis. Furthermore, there is no natural order for the subjects in group 0,

as all units in the whole group are selected simultaneously.

Next we propose the pivotal notion of the r-value, which has the ability to convert

any selection procedure that controls the error probability into a meaningful and coherent

ranking metric.

Definition 1. Let RDα denote the set of units selected by a pre-defined selection procedure

D that controls the error rate at level α. The rα-value of a unit i ∈ [m] linked with D is

defined as

ri,α = inf{α : i ∈ RDα }. (4.13)

Remark 3. In Supplementary Material D, we demonstrate that the r-value defined by

(4.13) encompasses the conventional p-value and q-value as special cases, provided that

meaningful error concepts and their corresponding selection procedures are appropriately

employed.

When combined with the novel prioritized selection procedure that solves (2.5), the

r-value corresponds to the minimum FDR level at which a study unit can be selected.

This ranking metric addresses the inconsistency issue that may arise from the subjective

specification of α values, offering an objective and consistent means of ranking across

different users.

4.2 R-values generated by varying the reference level

The specification of µ0 in practical scenarios hinges on prior domain expertise, which may

be subjective and vary among users. Since the oracle statistic T (2.8) and the corresponding

data-driven quantity are contingent on µ0, divergent selections of µ0 among analysts may

yield inconsistent rankings. Assuming a consensus on the choice of the confidence parameter
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α (e.g., 0.05), it is possible to generate r-values by varying the reference level µ0. Suppose

we vary µ0 from ∞ to −∞, then the earlier a unit is selected, the more important it is

considered to be relative to the other units – thus an objective ranking of study units is

generated.

Definition 2. Let RDµ0 denote the set of units selected by a pre-defined selection procedure

D that aims to select units with effect size larger than µ0. The rµ0-value of a unit i ∈ [m]

associated with D is defined as follows:

ri,µ0 = sup{µ0 : i ∈ RDµ0}, or r′i,µ0 =
1 +

∑
j 6=i I(rj > ri)

m
,

provided that no ties exist between ri’s.

Here, r′i,µ0 ∈ {i/m : i ∈ [m]} is the standardized rank taking values in (0, 1], which is

suitable in situations where only the relative position of the study units is relevant. The

non-standardized rµ0-value of a particular unit i corresponds to the largest predetermined

reference value µ0 at which unit i can be selected with confidence.

4.3 Which r-value to use

By integrating our r-value with the prioritized selection framework (2.5), we have developed

a solution that is both intuitive and logically coherent for the challenging problem of ranking

and selection under heteroscedastic setups. Both definitions of r-value attempt to strike a

balance between statistical significance and practical relevance. However, the two nuanced

concepts prioritize different aspects in the ranking process: rα primarily aims to select the

most prominent effects in terms of statistical significance, with a secondary objective of

ensuring the practical relevance of the selected effects. Conversely, rµ0 prioritizes selecting

the most prominent effects in terms of observed magnitudes, with a secondary objective of

ensuring reliable control over the uncertainty of the selection.
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The choice between the two r-values hinges primarily on the specific practical goals

of the study. For example, during the analysis of the AYP data (cf. Section 1.1 and

Section F.7 of the Supplementary Material), as we were aware of impacts from social

and economic discrepancies, we anticipated that there would always be some difference in

academic performance between the SEA and SED groups. Our main goal was to identify

schools where the observed gaps were most pronounced, while taking into consideration the

associated heterogeneous variabilities. Consequently, the objective of rµ0 was more closely

aligned with our practical needs, as it improves the ability to allocate limited resources

and budgets to schools that require the most assistance. By adopting rµ0 , we can also

obviate the need to establish a suitable µ0, which can be subjective in practice due to, say,

the variability in passing rates between schools and the absence of a clear or meaningful

benchmark difference. By contrast, in high-stakes situations where minimizing decision

risk or controlling the error probability is paramount, it may be appropriate to consider

using rα as it prioritizes making the safest choice.

4.4 Agreeability of ranking

The proposed framework of “selection to ranking” offers an appealing alternative to the

conventional approach of “rank and then select,” which is impractical in the presence of

heteroscedastic data. For example, Definition 1 first tackles the selection issue through

constrained optimization, resulting in an objective solution for any given α. Next, the

ranking issue is handled using the rα-value, which is determined by sequentially adjusting

the selection level α without any user input. Consequently, the needs for a universally

applicable test statistic and a potentially subjective choice of α can be eliminated, thus

preventing the issue of inconsistent rankings.
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To demonstrate the appropriateness of the ranking generated by r-values, we introduce

the concept of agreeability. As previously mentioned, the ranking in heteroscedastic sce-

narios must consider two factors: effect size (captured by X) and statistical significance

(captured by Clfdr statistic or its estimate Ĉlfdr). The following theorem asserts that if

unit i dominates unit j in terms of both effect size and statistical significance, then the use

of the r-value ensures that unit i will be ranked higher than unit j.

Theorem 3. Let ri and r̂i be the r-values produced by the oracle procedure (2.10) and the

data-driven procedure (Algorithm 1), respectively, for i ∈ [m]. Then both the oracle and

data-driven procedures are agreeable in the sense that if Xi > Xj and Clfdri < Clfdrj (or

Ĉlfdri < Ĉlfdrj), then ri < rj (or r̂i < r̂j). This assertion holds true for both Definition 1

and Definition 2 with r′i,µ0.

Remark 4. Agreeability can be seen as a less stringent version of the nestedness notion. Gu

and Koenker (2023) explore the notion of nestedness in ranking and selection, while Hender-

son and Newton (2016) suggest some potential issues regarding the nestedness requirement

in the presence of heteroscedasticity. In Section E of the Supplementary Material, we

precisely define the nestedness property and present counterexamples to demonstrate why

nested selection may be infeasible under heteroscedastic setups.

5 Numeric experiments

We begin by presenting the implementation details of the data-driven procedure in Section

5.1. In Section 5.2, we investigate the performance of the prioritized selection procedure

and compare it with competing methods in a scenario where both gσ(·) and gµ(·) are

continuous. In Section 5.3, we present additional results for the case where both gσ(·) and

gµ(·) are discrete, and where µi is correlated with σi. In all of our experiments, the FDR
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and mFDR levels are numerically close. Therefore, we report only the more commonly used

FDR levels. Simulation results in other scenarios, such as when σi must be estimated from

the data, when the number of test is small, when the observations are weakly dependent,

and when the target FDR levels vary, as well as a comparative analysis of the ETP* and

ETP, are presented in Section F of the online Supplementary Material.

5.1 Some implementation details

The nonparametric deconvolution method discussed in Section 3.1 requires the estimation

of f̂mi (xi), i ∈ [m], which involves specifying the tuning parameters hhh = (hx, hσ). In

our analysis, we have employed the rule of thumb in Silverman (1986), given by hx =

0.9 min{sd(xxx), IQR(xxx)}/(1.34m1/5) and hσ = 0.9 min{sd(σσσ), IQR(σσσ)}/(1.34m1/5), where

sd(·) and IQR(·) are the standard deviation and interquartile range of the input vector,

respectively. In all our simulation studies, we use a grid size k of 50.

To ensure numerical stability, we recommend selecting the support of the grid to be

[F̂−1(0.01), F̂−1(0.99)], where F̂−1(·) represents the empirical quantile function of Xi. We

solve the convex optimization problem (3.12) using the CVXR package in R (Fu et al., 2020).

The source code for reproducing all the numerical results in this paper is available on our

GitHub repository at https://github.com/bgang92/rankingselection.

5.2 Comparison for independent µi and σi

Next, we consider the following setting:

θi
iid∼ Ber(0.2), µi|θi ∼ (1− θi)U(−3,−1) + θiU(1, 2), σi

iid∼ U(0.5, σmax),

Xi|µi, σi ∼ N(µi, σ
2
i ), i ∈ [5000].

We aim to test the hypotheses H0,i : µi ≤ µ0 versus Ha,i : µi > µ0, with µ0 = 0. In
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addition to the three methods compared in Section F.1, we also incorporate the widely

used Benjamini-Hochberg procedure (BH) procedure in the comparison. The p-values are

computed as 1 − Φ{(Xi − µ0)/σi}, where Φ(·) is the cumulative distribution function of

a standard normal variable. The nominal FDR level is set to α = 0.1, while σmax varies

from 2 to 4 for different settings. The results are obtained by averaging the results in 100

replications and are presented in Fig 3. We can observe two important patterns. Firstly,

BH appears to be excessively conservative, suggesting that p-value based methods may

not be well-suited for testing composite hypotheses. Secondly, DD, OR, and Clfdr exhibit

comparable levels of FDR but display noticeable differences in their ETP* and ETP values.

A more detailed comparison of the hypotheses rejected by DD and Clfdr underscores

the marked differences between these two methods. In Fig 4 (a), we look at one particular

run with σmax = 4. The gray dots are hypotheses not rejected by either DD or Clfdr, green

dots are hypotheses rejected by both DD and Clfdr, red dots are hypotheses rejected by

DD but not Clfdr, and blue dots are hypotheses rejected by Clfdr but not DD.

Upon close examination, it is evident that DD is more likely to reject hypotheses with

higher xi values when compared to Clfdr. If we exclude the hypotheses that are rejected by

both DD and Clfdr and assess the ETP* for the remaining hypotheses, a distinct contrast

emerges, as depicted in Figure 4 (b). For the hypotheses that are rejected by only one

method, DD has a superior ETP* in comparison to Clfdr. Additionally, the difference in

ETP* becomes more pronounced as the degree of heteroscedasticity increases.

5.3 Comparison for correlated µi and σi

In this section, we present simulation results in a more complex scenario where σi and µi

are correlated. Let Ic be an indicator function that takes the value of 1 at c and 0 elsewhere.
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Figure 3: Comparison when σi and µi are uncorrelated and both are generated from a
uniform distribution. We vary σmax from 2 to 4. All methods control the FDR at the
nominal level with BH being overly conservative.
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Figure 4: (a): A scatter plot of the hypotheses when σmax = 4. The gray circles are
hypotheses rejected by neither DD or Clfdr, green dots are hypotheses rejected by both DD
and Clfdr, red dots are hypotheses rejected by DD but not Clfdr, blue dots are hypotheses
rejected by Clfdr but not DD. (b): ETP* comparison of hypotheses rejected by either DD
or Clfdr, but not both.

The model first generates σi from two groups and then generates µi in a manner that is

dependent on σi, as described below:

Xi|µi, σi ∼ N(µi, σ
2
i ), σi

iid∼ 1

2
I0.25σ(·) +

1

2
I1.25σ(·),

µi|σi = 0.25σ ∼ 0.9N(−0.5, 0.252) + 0.1N(1.5, 0.252),

µi|σi = 1.25σ ∼ 0.9N(−0.5, 0.252) + 0.1N(3, 0.252).

The hypotheses to be tested in our study are H0,i : µi ≤ µ0 vs Ha,i : µi > µ0, where

µ0 = 1, i ∈ [10000]. The value of σ varies between 1.5 to 2 for different settings. It is
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Figure 5: The comparison under the setting where σi and µi are correlated. Under the
ETP∗ metric, DD and OR outperform Clfdr. Conversely, under the ETP metric, Clfdr
exhibits a higher power than DD and OR.

important to note that in our design, µi is sampled from a mixture distribution, where

a vast majority of µi values are generated from N(−0.5, 0.252), corresponding to small

effects. However, there is a small fraction of µi values that correspond to large effects.

Furthermore, the effect sizes µi tend to increase as the variance becomes larger.

We conduct experiments on 100 datasets and apply DD, OR, Clfdr, and BH to select

important units at FDR level α = 0.1. The accuracy of the deconvolution method relies

on the independence between σi and µi. Therefore, we initially partitioned the data into

two groups based on whether σi = 0.25σ or σi = 1.25σ, and estimated gµ(·) separately for

each group. A summary of results for different values of µ is presented in Figure 5.

Our analysis reveals several patterns. Firstly, all methods maintain FDR control at the

nominal level. Secondly, BH is excessively conservative, resulting in ETP* and ETP values

that are significantly lower than the other three methods. Therefore, we exclude BH from

the ETP* and ETP plots. Thirdly, DD and OR outperform Clfdr in terms of the ETP*

criterion, whereas Clfdr outperforms DD and OR regarding the ETP criterion. To make a

further comparison between Clfdr and DD, we present a scatter plot of rejected hypotheses

when σ = 2 in Figure 6. In Figure 6 (a), the hypotheses rejected by DD but not Clfdr
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Figure 6: (a): A scatter plot of the hypotheses when σ = 2. The x-axis represents xi and
the y-axis represents σi. The gray circles are hypotheses rejected by neither DD or Clfdr,
green dots are hypotheses rejected by both DD and Clfdr, red dots are hypotheses rejected
by DD but not Clfdr, blue dots are hypotheses rejected by Clfdr but not DD. (b): ETP*
comparison on hypotheses not rejected by both DD and Clfdr.

all have σi = 2. This implies that DD is more sensitive to larger variances than Clfdr. In

Figure 6 (b), we observe that DD has a significantly higher ETP* on hypotheses where

Clfdr and DD disagree.

6 Real Data Applications

In this section, we analyze mutual fund data obtained from CRSP accessed via the Wharton

WRDS database at the University of Pennsylvania. The goal is to compare our ranking

and selection method against Clfdr and BH that are solely based on significance indices.

The analysis of the test performance data of K-12 schools from the 2005 Annual Yearly

Performance (AYP) study is provided in Section F.7 of the Supplementary Material.

We analyze the estimated returns of mutual funds, which are denoted as xi, over an

average of 31 months of performance from the end of April 2006 to the end of October

2008. These estimated returns are obtained from the intercept term of Carhart’s four-factor

model (Carhart, 1997). The standard error of the returns, denoted as si, is computed as
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Figure 7: Left: scatter plot of the CRSP data: x-axis is the observation, y-axis is the
standard error. Middle: histogram of the observations. Right: histogram of the standard
errors.

the estimated standard error of the intercept term in the model. The dataset comprises

2796 pairs of observations (xi, si). To ensure numerical stability, we exclude observations

with standard errors below the 0.1% and above the 99.9% percentiles. Figure 7 visually

depicts the distribution of the data.

Our objective is to identify mutual funds that exhibit positive returns. Therefore, we

consider the following hypotheses: H0,i : µi ≤ µ0 vs Ha,i : µi > µ0, with µ0 = 0. We set the

target FDR level at 0.1. The z-values and corresponding p-values are obtained as before.

The results, presented in Table 1, reveal that Clfdr rejects more hypotheses than DD.

However, Clfdr exhibits negative modified power, demonstrating its tendency to select

portfolios with negative returns. This phenomenon occurs because Clfdr does not consider

the value of the returns, leading it to select hypotheses with estimated returns (xi) slightly

lower than the null hypothesis (µ0), which corresponds to negative true returns. Clfdr

selects such units because they do not increase the overall FDR above the target level. In

practice, this type of “over-selection” is often undesirable, as demonstrated in this example.

We proceed by examining the units selected by DD but not Clfdr and vice versa. The
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Table 1: Summary of power by each method on the CRSP data.
DD Clfdr BH

Number of hypotheses rejected 491 546 46
Modified Power 1.307 1.060 0.024
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Figure 8: (a) The x-axis represents observations (x), while the y-axis corresponds to the
SEs. The gray circles denote funds that were not selected by either DD or Clfdr. The green
dots represent funds selected by both Clfdr and DD, while the blue dots are funds selected
by Clfdr but not DD and the red dots are funds selected by DD but not Clfdr. (b) The
scatter plot displays the top 20 mutual funds ranked according to the p-value and r-value
(Definition 2 with α = 0.1). The top 20 mutual funds ranked according to the r-value are
denoted by red dots, while the top 20 mutual funds ranked according to the p-value are
shown as blue dots.

results are presented in Figure 8 (a). We observe that the units selected by DD and Clfdr

differ significantly. DD selects units with both high estimated returns (xi) and high SEs,

indicating its tendency to trade high variability for potentially high returns. Figure 8 (b)

displays the top 20 mutual funds ranked according to p-values (blue dots) and rµ0-values

(red dots). The results indicate that the rµ0-value places higher priority on selecting funds

with higher returns, whereas the p-value favors the selection of funds with smaller SEs.
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Chen, C.-H., J. Lin, E. Yücesan, and S. E. Chick (2000, jul). Simulation budget allocation
for further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic
Systems 10 (3), 251–270.

Efron, B. (2011). Tweedie’s formula and selection bias. Journal of the American Statistical
Association 106 (496), 1602–1614.

Efron, B. (2012). Large-scale inference: empirical Bayes methods for estimation, testing,
and prediction, Volume 1. Cambridge University Press.

Efron, B. (2016). Empirical bayes deconvolution estimates. Biometrika 103 (1), 1–20.

Efron, B., R. Tibshirani, J. D. Storey, and V. Tusher (2001). Empirical bayes analysis
of a microarray experiment. Journal of the American statistical association 96 (456),
1151–1160.

Foster, D. P. and R. A. Stine (2008). α-investing: a procedure for sequential control of
expected false discoveries. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 70 (2), 429–444.

33



Fu, A., B. Narasimhan, and S. Boyd (2020). CVXR: An R package for disciplined convex
optimization. Journal of Statistical Software 94 (14), 1–34.

Fu, L., B. Gang, G. M. James, and W. Sun (2022). Heteroscedasticity-adjusted ranking
and thresholding for large-scale multiple testing. Journal of the American Statistical
Association 117 (538), 1028–1040.

Gang, B., W. Sun, and W. Wang (2023). Structure–adaptive sequential testing for online
false discovery rate control. Journal of the American Statistical Association 118 (541),
732–745.

Genovese, C. and L. Wasserman (2002). Operating characteristics and extensions of the
false discovery rate procedure. Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology) 64 (3), 499–517.

Genovese, C. and L. Wasserman (2004, 06). A stochastic process approach to false discovery
control. Ann. Statist. 32 (3), 1035–1061.

Goel, P. K. and H. Rubin (1977). On selecting a subset containing the best population-a
bayesian approach. The Annals of Statistics 5 (5), 969–983.

Gu, J. and R. Koenker (2017a). Empirical bayesball remixed: Empirical bayes methods
for longitudinal data. Journal of Applied Econometrics 32 (3), 575–599.

Gu, J. and R. Koenker (2017b). Unobserved heterogeneity in income dynamics: An em-
pirical bayes perspective. Journal of Business & Economic Statistics 35 (1), 1–16.

Gu, J. and R. Koenker (2023). Invidious comparisons: Ranking and selection as compound
decisions. Econometrica 91 (1), 1–41.

Gupta, S. S. (1965). On some multiple decision (selection and ranking) rules. Technomet-
rics 7 (2), 225–245.

Henderson, N. C. and M. A. Newton (2016). Making the cut: improved ranking and
selection for large-scale inference. Journal of the Royal Statistical Society. Series B,
Statistical methodology 78 (4), 781.

Jiang, W. and C.-H. Zhang (2009). General maximum likelihood empirical bayes estimation
of normal means. The Annals of Statistics 37 (4), 1647–1684.
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Online Supplementary Material for “Ranking and

Selection in Large-Scale Inference of Heteroscedastic

Units”

This Online Supplement contains the proofs of main theorems and propositions (Section

A), proofs of technical lemmas (Section B), a discussion on the grid size (Section C), a

discussion on special cases of the r-value notion (Section D), a discussion on the issues

related to the nested selection (Section E) and additional numerical results (Section F).

A Proof of main Theorems and Propositions

A.1 Proof of Theorem 1

We consider the more general problem

Maximize E

{
m∑
i=1

hi(XXX,σσσ)δi

}
subject to mFDR ≤ α. (A.14)

We divide the hypotheses into four groups:

0. hi(XXX,σσσ) ≥ 0 and Clfdri − α ≤ 0;

1. hi(XXX,σσσ) ≥ 0 and Clfdri − α > 0;

2. hi(XXX,σσσ) < 0 and Clfdri − α ≤ 0;

3. hi(XXX,σσσ) < 0 and Clfdri − α > 0.

1



Define Ti = hi(XXX,σσσ)

Clfdri−α
, we then consider decision rules of the following form

δ(c1, c2)(Ti) =



1 if (hi(XXX,σσσ),Clfdri) belongs to group 0

1 if (hi(XXX,σσσ),Clfdri) belongs to group 1 and Ti > c1

1 if (hi(XXX,σσσ),Clfdri) belongs to group 2 and Ti < c2

0 otherwise

. (A.15)

To simplify the proof, we consider a bounded, continuous and monotone transformation

ξ(·) of Ti. Let Si = ξ(Ti). An example of such a transformation could be the hyperbolic

tangent function ξ(x) ≡ tanh(x) = (ex − e−x)/(ex + e−x). Then the following set of rules

are equivalent to the set of rules described in (A.15).

δ(c1, c2)(Si) =



1 if (hi(XXX,σσσ),Clfdri) belongs to group 0

1 if (hi(XXX,σσσ),Clfdri) belongs to group 1 and Si > c1

1 if (hi(XXX,σσσ),Clfdri) belongs to group 2 and Si < c2

0 otherwise

, (A.16)

Define

c−1 = inf
(h(XXX,σσσ),Clfdr)∈group 1

ξ(T ), c+
1 = sup

(h(XXX,σσσ),Clfdr)∈group 1
ξ(T ),

c−2 = inf
(h(XXX,σσσ),Clfdr)∈group 2

ξ(T ), c+
2 = sup

(h(XXX,σσσ),Clfdr)∈group 2
ξ(T ).

For a decision rule of the form (A.16), we denotes its mFDR and modified power by

mFDR(c1, c2) and ETP∗(c1, c2) respectively. Note that mFDR(c1, c2) and ETP∗(c1, c2) are

both continuous and bounded functions of (c1, c2). Moreover, both are constant outside of

the rectangle
[
c−1 , c

+
1

]
×
[
c−2 , c

+
2

]
. Hence, without loss of generality, we restrict mFDR(c1, c2)
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and ETP∗δδδ(c1, c2) to the compact set
[
c−1 , c

+
1

]
×
[
c−2 , c

+
2

]
. Define

(cOR1 , cOR2 ) = arg max
(c1,c2)∈[c−1 ,c

+
1 ]×[c−2 ,c

+
2 ]
{ETP∗(c1, c2) : mFDR(c1, c2) = α}. (A.17)

Then the following theorem implies Theorem 1

Theorem 4. The oracle procedure δδδOR = δδδ(cOR1 , cOR2 ) where δδδOR is as defined in (A.16)

and (A.17) controls mFDR at level α and is optimal in the sense that for any decision rule

δδδ that controls mFDR at level α, we always have ETP∗(cOR1 , cOR2 ) ≥ ETP∗δδδ.

We will prove the more general Theorem 4. Observe that solving the constrained

optimization problem (A.14) is equivalent to solving the subsequent problem:

maximize E

{∑
i

(hi(XXX,σσσ)− µ0)δi

}
subject to E

{∑
i

δi(Clfdri − α)

}
≤ 0.

We divide the discussion into the following scenarios.

1. Decisions for units in group 0.

Let δδδ be a decision rule satisfying E {
∑

i δi(Clfdri − α)} ≤ 0. Denote by R(δδδ) the set

of hypotheses rejected by δδδ. Suppose that the null hypothesis H0,j from group 0 is not

rejected by δδδ. Consider another decision rule δδδ′ with R(δδδ′) = R(δδδ) ∪ {j}. It is clear that

E {
∑

i δ
′
i(Clfdri − α)} ≤ 0 and

∑
i hi(xxx,σσσ)δ′i ≥

∑
i hi(xxx,σσσ)δi.

Hence, the optimal procedure must reject all hypotheses from group 0.

2. Decisions for units in group 3.

Next, suppose δδδ rejects the null hypothesis H0,j from group 3. Consider a new decision

3



rule δδδ′ with R(δδδ′) = R(δδδ)\{j}. It is clear that

E {
∑

i δ
′
i(Clfdri − α)} ≤ 0 and

∑
i hi(XXX,σσσ)δ′i >

∑
i hi(XXX,σσσ)δi.

Hence, the optimal procedure does not reject any hypothesis from group 3.

3. Decisions for units in group 1 and group 2.

Let R+
δδδ = {i ∈ R(δδδ) : Clfdri − α > 0}, and R−δδδ = {i ∈ R(δδδ) : Clfdri − α ≤ 0}. Then

R+
δδδ and R+

δδδ respectively correspond to the decisions for units in group 1 and group 2.

Remark 5. We pause momentarily to offer clarification on the key concepts that will be

presented in the remainder of the proof. It is important to note that the α-investing and

µ-investing processes are interdependent, which means that the optimal cutoff in group 1

is contingent on the cutoff chosen in group 2. As a result, the derivation of the optimal

decision rule can be challenging. However, an important observation is that if any decision

procedure deviates from the oracle rule for group 1, it can be uniformly enhanced by ranking

hypotheses in group 1 based on the ordering of Ti in descending order and then selecting

a suitable threshold. This argument applies similarly in the opposite direction for selection

of units in group 2. Therefore, although the process of determining the optimal pairs of

(c1, c2) may be complex, the format of the optimal decision rule can be determined.

Subsequently, we will demonstrate separately that both R+
δδδOR

and R−δδδOR , when holding

the part fixed, correspond to optimal rejection sets that cannot be further improved.

Suppose δδδ satisfies E {
∑

i δi(Clfdri − α)} ≤ 0 and R−
δδδOR

= R−δδδ . The oracle rule on

4



group 1 can be expressed as

δORi =


0 if hi(XXX,σσσ) ≤ ξ−1(cOR1 )(Clfdri − α)

1 if hi(XXX,σσσ) > ξ−1(cOR1 )(Clfdri − α).

(A.18)

Let I+ = {i : E(δORi − δi) > 0} and I− = {i : E(δORi − δi) < 0}. For i ∈ I+, we have

δORi = 1 and hence hi(XXX,σσσ) > ξ−1(cOR1 )(Clfdri−α). Similarly for i ∈ I−, we have δORi = 0

and hi(XXX,σσσ) < ξ−1(cOR1 )(Clfdri − α). Thus,

∑
i∈I+∪I−

E{δORi − δi}{hi(XXX,σσσ)− ξ−1(cOR1 )(Clfdri − α)} ≥ 0. (A.19)

GivenR−
δδδOR

= R−δδδ , cOR1 is chosen as small as possible such thatE
{∑

i δ
OR
i (Clfdri − α)

}
=

0 or until the entire group 1 is rejected. Such cOR1 exists because E
{∑

i δ
OR
i (Clfdri − α)

}
is

a continuous and monotone function of cOR1 when ignoring the decisions in the other group.

The argument follows from that in (Cai et al., 2019). In particular, this implies

E

{∑
i

δi(Clfdri − α)

}
≤ E

{∑
i

δORi (Clfdri − α)

}
. (A.20)

Recall the definition of the power function

ETP ∗δδδ = E

{
m∑
i=1

hi(XXX,σσσ)δi

}
.

Using (A.19) and (A.20), we conclude that ETP ∗δδδOR ≥ ETP ∗δδδ .

By employing a similar line of reasoning as described above, it can be shown that the

optimal procedure involves ranking hypotheses in group 2 in ascending order of Ti and

selecting an appropriate threshold.
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Finally, we combine the claims from the four groups, and claim that the oracle rule is

optimal in the sense of (A.15).

A.2 Proof of Proposition 1

It is worth noting that if (a, b) and (c, d) are points on L and a ≥ c, then we must have

c ≤ d. Additionally, if b ≤ c, then we must have ETP∗δδδ(a,b) ≥ ETP∗δδδ(a,c).

Suppose mFDRδδδ > mFDRδδδ′ , the we can find another point (r′1, r̃
′
2) ∈ l such that

r̃′2 ∈ [r2, r
′
2), mFDRδδδ = mFDRδδδ(r′1,r̃

′
2) and ETP∗δδδ′ ≤ ETP∗δδδ(r′1,r̃′2) ≤ ETP∗δδδ . Similarly, suppose

mFDRδδδ′ > mFDRδδδ′′ , the we can find another point (c′′1, c̃
′′
2) ∈ l such that c̃′′2 ∈ [c′2, c

′′
2),

mFDRδδδ′ = mFDRδδδ(c′′1 ,c̃
′′
2 ) and

ETP∗δδδ′′ ≤ ETP∗δδδ(c′′1 ,c̃′′2 ) ≤ ETP∗δδδ′ .

Thus, if we can show the claim holds under the assumption that mFDRδδδ = mFDRδδδ′ =

mFDRδδδ′′ , then the desired result follows.

We introduce some notations:

• CLfdrCLfdrCLfdr = (CLfdr1,CLfdr2, ...,CLfdrm).

• TTT = (T1, T2, ..., Tm).

• xxxIk is the vector xxx restricted to group k.

• xxx|yyy is the vector xxx restricted to the non-zero entries in yyy.

• 1 = (1, 1, .., 1) a vector of 1’s.

• ave(xxx/yyy) = xxx1t/yyy1t.

• if aaa = (a1, . . . , an) is a vector and b is a number, then aaa− b = (a1 − b, . . . , an − b).

6



By our ranking strategy for the units in group 1 and group 2 in the oracle rule, we have

ave{(xxx− µ0)I2|δδδ′′−δδδ′/(CLfdrCLfdrCLfdr− α)I2|δδδ′′−δδδ′} ≥ ave{(xxx− µ0)I2|δδδ′−δδδ/(CLfdrCLfdrCLfdr− α)I2|δδδ′−δδδ},(A.21)

ave{(xxx− µ0)I1|δδδ′′−δδδ′/(CLfdrCLfdrCLfdr− α)I1 |δδδ′′−δδδ′} ≤ ave{(xxx− µ0)I1|δδδ′−δδδ/(CLfdrCLfdrCLfdr− α)I1|δδδ′−δδδ}.(A.22)

Next, note that ETP∗δδδ ≥ ETP∗δδδ′ implies

(δδδ′ − δδδ)I1(xxx− µ01)tI1 ≤ −(δδδ′ − δδδ)I2(E(µµµ)− µ01)tI2 ,

which can be re-written as

ave{(xxx− µ0)I1 |δδδ′−δδδ/(CLfdrCLfdrCLfdr− α)I1 |δδδ′−δδδ} × (δδδ′ − δδδ)I1(CLfdrCLfdrCLfdr− α1)tI1 (A.23)

≤− ave{(xxx− µ0)I2|δδδ′−δδδ/(CLfdrCLfdrCLfdr− α)I2|δδδ′−δδδ} × (δδδ′ − δδδ)I2(CLfdrCLfdrCLfdr− α1)tI2 .

The condition mFDRδδδ = mFDRδδδ′ implies that

(δδδ′ − δδδ)I1(CLfdrCLfdrCLfdr− α1)tI1 = −(δδδ′ − δδδ)I2(CLfdrCLfdrCLfdr− α1)tI2 .

According to (A.23), we have

ave{(xxx− µ0)I2|δδδ′−δδδ/(CLfdrCLfdrCLfdr− α)I2|δδδ′−δδδ} ≥ ave{(xxx− µ0)I1|δδδ′−δδδ/(CLfdrCLfdrCLfdr− α)I1|δδδ′−δδδ}.

Combining (A.21) with (A.22), we have

ave{(xxx− µ0)I2|δδδ′′−δδδ′/(CLfdrCLfdrCLfdr− α)I2 |δδδ′′−δδδ′} ≥ ave{(xxx− µ0)I1 |δδδ′′−δδδ′/(CLfdrCLfdrCLfdr− α)I1|δδδ′′−δδδ′}.
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Similarly the condition mFDR∗δδδ′′ = mFDR∗δδδ′ implies that

(δδδ′′ − δδδ′)I1(CLfdrCLfdrCLfdr− α1)tI1 = (δδδ′′ − δδδ′)I2(CLfdrCLfdrCLfdr− α1)tI2 .

Hence we have

(δδδ′′ − δδδ′)I2(xxx− µ01)tI2

=ave{(xxx− µ0)I2|δδδ′′−δδδ′/(CLfdrCLfdrCLfdr− α)I2|δδδ′′−δδδ′} × (δδδ′′ − δδδ′)I2(CLfdrCLfdrCLfdr− α1)tI2

≤− ave{(xxx− µ0)I1|δδδ′′−δδδ′/(CLfdrCLfdrCLfdr− α)I1|δδδ′′−δδδ′} × (δδδ′′ − δδδ′)I1(CLfdrCLfdrCLfdr− α1)tI1

=− (δδδ′′ − δδδ′)I1(xxx− µ01)tI1 .

Now we can see that

(δδδ′′ − δδδ′)I2(xxx− µ01)tI2 + (δδδ′′ − δδδ′)I1(xxx− µ01)tI1 ≤ 0,

which implies that ETP∗δδδ′ ≥ ETP∗δδδ′′ and the desired result follows.

A.3 Proof of Proposition 2

We first state a useful lemma:

Lemma 1. Suppose µi
iid∼ g(·), for i = 1, ...,m. Let ĝ be the empirical density function∑n

i=1 δµi(·). Let f(x) =
∫∞
−∞ φσ(µ− x)g(µ)dµ and f̂(x) =

∫∞
−∞ φσ(µ− x)ĝ(µ)dµ. Then for

every x, Eµµµ|f(x)− f̂(x)|2 → 0 as m→∞.

Lemma 1 implies it is possible to find a set {µ1, . . . , µm} and f̂σ(x) = 1
m

∑m
i=1 φσ(x−µi)

8



such that for all x, |fσ(x)− f̂σ(x)|2 → 0. Consider the following set of functions

{
k−1∑
i=0

wiφσ(x− s− iη)|
k−1∑
i=0

wi = 1, wi ≥ 0 ∀i

}
.

We can make the grid fine enough so that for any ε > 0 and i, there exists si ∈ {s, s +

η, ..., s+ (k − 1)η} such that |µi − si| < ε. Hence

∣∣ 1

m

m∑
i=1

φσ(x− µi)−
1

m

m∑
i=1

φσ(x− si)
∣∣2 =

1

m2

∣∣ m∑
i=1

φσ(x− µi)−
m∑
i=1

φσ(x− si)
∣∣2

≤ 1

m

m∑
i=1

|φσ(x− sj)− φσ(x− µi)|2.

If we let ε → 0, then |φσ(x − si) − φσ(x − µi)|2 → 0 for i = 1, ...,m. It follows that there

exists

ψσ ∈ {
k−1∑
i=0

wiφσ(x− s− iη)|
k−1∑
i=0

wi = 1, wi ≥ 0 ∀i}

such that |fσ(x)− ψσ(x)|2 → 0.

Using standard arguments in density estimation theory (e.g. Wand and Jones (1994)),

we have

E‖f̂mσ − fσ‖2
2 = O{(mhxhσ)−1 + h4

x + h4
σ}.

By assumption (A2) (mhxhσ)−1 + h4
x + h4

σ → 0. It follows that

1

m

m∑
i=1

{f̂i(xi)− f̂mi (xi)}2 p→ 1

m

m∑
i=1

{f̂i(xi)− fσi(xi)}2.

By definition of the minimization problem, we have 1
m

∑m
i=1{f̂i(xi)− fσi(xi)}2 p→ 0. Thus,

Exxx,σσσEσ,x|f̂σ(x)−fσ(x)|2 → 0 and Exxx,σσσEσ,x|f̂0,σ(x)−f0,σ(x)|2 → 0, where f̂0,σ(x) =
∑

si<µ0
wiφσ(x−

si) and f0,σ(x) =
∫ µ0
−∞ φσ(x− µ)g(µ)dµ. Here Eσ,x is taken with respect to σ and x, Exxx,σσσ is

9



taken with respect to the data that are used to construct f̂ .

Note that fσ is continuous, then there exists K1 = [−M,M ] such that P (x ∈ Kc
1)→ 0

as M →∞. Let infx∈K1 fσ(x) = l0 and Al0 = {x : |f̂σ(x)− fσ(x)| ≥ l0/2}. Since

Exxx,σσσEσ,x|f̂0,σ(x)− f0,σ(x)|2 ≥ (l0/2)2P (Afε ),

it follows that P (Al0) → 0. Thus f̂σ and fσ are bounded below by a positive number for

large n,m except for an event that has a low probability. Similar arguments can be applied

to the upper bound of f̂σ and fσ, as well as to the upper and lower bounds for f̂0,σ and f0,σ.

Therefore, we conclude that f̂0,σ, f̂σ, f0,σ and fσ. are all bounded in the interval [la, lb],

0 < la < lb < ∞ for large n,m except for an event, say Al0 that has low probability. Let

Ĉlfdr(x, σ) = f̂0,σ(x)/f̂σ(x) and Clfdr(x, σ) = f0,σ(x)/fσ(x). We have

Ĉlfdr(x, σ)− Clfdr(x, σ) =
f̂0,σ(x)fσ(x)− f0,σ(x)f̂σ(x)

f̂σ(x)fσ(x)
.

Since |Ĉlfdr− Clfdr|2 is bounded by 1, we have

Exxx,σσσEσ,x{Ĉlfdr(x, σ)− Clfdr(x, σ)}2

≤ P (Al0) + c1Exxx,σσσEσ,x{f̂0,σ(x)− f0,σ(x)}2 + Exxx,σσσEσ,x{f̂σ(x)− fσ(x)}2.

Thus, Exxx,σσσEσ,x{Ĉlfdr(x, σ)−Clfdr(x, σ)}2 → 0. LetBδ = {x, σ : |Ĉlfdr(x, σ)|−Clfdr(x, σ)| >

δ}. Then we have

δ2P (Bδ) ≤ Exxx,σσσEσ,x{Ĉlfdr(x, σ)− Clfdr(x, σ)}2 → 0,

and the desired result follows.
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A.4 Proof of Theorem 2

We consider the following data-driven algorithm for solving the more general problem

(A.14)

Algorithm 2: The data-driven procedure for problem (A.14)

Input: {hi(xxx,σσσ)}mi=1, ĈlfdrClfdrClfdr, α.
Output: The estimated threshold for group 1 and group 2 (ĉ1 and ĉ2).

Step 1: Compute T̂i = hi(xxx,σσσ)/(Ĉlfdri − α), set Ŝi = ξ(T̂i). Form the 4 groups

described in the oracle procedure (A.16) using ĈlfdrClfdrClfdr and ŜSS in place of ClfdrClfdrClfdr and
SSS.

Step 2: Let R denote the rejection set. Put the indices of hypotheses from group
0 into R. Rank hypotheses in group 1 from largest to smallest according to Ŝi.
Rank hypotheses in group 2 from smallest to largest according to Ŝi.

Step 3: Denote the ranked hypotheses in group 1 by H1
(1), H

1
(2), ... and the

corresponding Clfdr by Clfdr(1),Clfdr(2), .... Let

k = max{j :
∑j

i=1(Clfdr(i) − α) ≤ −
∑

i∈R(Clfdri − α)}, reject H(1), H(2), ...H(k)

and remove them from group 1. Compute and store ETP∗ =
∑

i∈R hi(xxx,σσσ).

Step 4: Denote the ranked hypotheses in group 2 by H2
(1), H

2
(2), .... Reject H2

(1)

and remove it from group 2.

Step 5: Repeat step 3 and step 4. Terminate when ETP∗ starts to decrease or
when either group 1 or group 2 is empty.

Step 6: Let (ĉ1, ĉ2) to be the pair that maximizes ETP∗ and set δδδDD = δδδ(ĉ1, ĉ2).

We show that the above algorithm is asymptotically optimal for the problem (A.14).

We begin with a summary of notation used throughout the proof:

• Qm(c1, c2) = m−1
∑m

i=1(Clfdri − α)δδδ(c1, c2)(Si).

• Q̂m(c1, c2) = m−1
∑m

i=1(Ĉlfdri − α)δδδ(c1, c2)(Ŝi).

• Q∞(c1, c2) = E{(Clfdr− α)δδδ(c1, c2)(S)}.

• Ĥm(c1, c2) = m−1
∑m

i=1 hi(XXX,σσσ)δδδ(c1, c2)(Ŝi).

• H∞(c1, c2) = E{m−1
∑m

i=1 hi(xxx,σσσ)δδδ(c1, c2)(Si)}.

11



• (cOR1 , cOR2 ) = arg max(c1,c2):Q∞(c1,c2)≤0 {H∞(c1, c2)} .

• (ĉ1, ĉ2) = arg max(c1,c2):Q̂(c1,c2)≤0

{
Ĥ(c1, c2)

}
.

Here δδδ(c1, c2)(Si) is as defined in (A.16). We first show Q̂m(c1.c2)
p→ Q∞(c1, c2). Note that

Qm(c1, c2)
p→ Q∞(c1, c2) by the WLLN, so that we only need to establish Q̂m(c1, c2)

p→

Qm(c1, c2). We state a lemma that will be useful for the proof:

Lemma 2. Let Ui = (Clfdri−α)δ(c1, c2)(Si) and Ûi = (Ĉlfdri−α)δ(c1, c2)(Ŝi) then E(Ui−

Ûi)
2 = o(1).

By Lemma 2 and Cauchy-Schwartz inequality, we have

E
{(
Ûi − Ui

)(
Ûj − Uj

)}
= o(1).

Let Lm =
∑m

i=1

(
Ûi − Ui

)
. It follows that

Var
(
m−1Lm

)
≤ m−2

m∑
i=1

E

{(
Ûi − Ui

)2
}

+O

(
1

m2

∑
i,j:i 6=j

E
{(
Ûi − Ui

)(
Ûj − Uj

)})
= o(1).

By Lemma 2, E(m−1Lm)→ 0, applying Chebyshev’s inequality, we obtain

m−1Lm = Q̂(c1, c2)−Q(c1, c2)
p→ 0.

Next we show Q̂m(c1.c2) → Q∞(c1, c2) uniformly. Since Q̂m(c1, c2)
p→ Q∞(c1, c2) for

all (c1, c2) on the rectangle
[
c−1 , c

+
1

]
×
[
c−2 , c

+
2

]
, where c−1 , c

+
1 , c

−
2 , c

+
2 are as defined in the

beginning of Section A. Given any ε > 0 the Lebesgue measure of the set

{(c1, c2) ∈
[
c−1 , c

+
1

]
×
[
c−2 , c

+
2

]
: |Q̂m(c1, c2)−Q∞(c1, c2)| > ε}
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approaches 0. Suppose there exists ε > 0 such that for any M there is m > M and (c1, c2)

with Q̂m(c1, c2) − Q∞(c1, c2) > 2ε, since Q∞ is smooth, there exists a square Sδ(c1, c2)

centered at (c1, c2) with side length δ such that

Q̂m(c1, c2)−Q∞(c′1, c
′
2) > ε, ∀(c′1, c′2) ∈ Sδ(c1, c2).

Consider the triangle with vertices at {(c1, c2), (c1−δ/2, c2), (c1, c2−δ/2)}, call this triangle

∆. It is clear that by definition of Q̂ we have

min{Q̂m(c1, c2), Q̂m(c1 − δ/2, c2), Q̂m(c1, c2 − δ/2)} ≤ inf
(a,b)∈∆

Q̂m(a, b),

max{Q̂m(c1, c2), Q̂m(c1 − δ/2, c2), Q̂m(c1, c2 − δ/2)} ≥ sup
(a,b)∈∆

Q̂m(a, b).

Since Q̂m(c1 − δ/2, c2) ≥ Q̂m(c1, c2) and Q̂m(c1, c2 − δ/2) ≥ Q̂m(c1, c2). It follows that

Q̂m(a, b)−Q∞(a, b) > ε, ∀(a, b) ∈ ∆. Note that δ only depends on ε, hence the area of ∆

does not go to 0 as m→∞, a contradiction. Similarly, there is no (c1, c2) and ε > 0 such

that for any M , there exists m > M with

Q̂m(c1, c2)−Q∞(c1, c2) < −2ε.

Hence, for all (c1, c2) and ε > 0, there exists M such that if m > M then

|Q̂m(c1, c2)−Q∞(c1, c2)| < ε.
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Use similar arguments, we can also show Ĥm(c1, c2)→ H∞(c1, c2) uniformly. Define

l̂ =

{
(c1, Ŝi) : Ŝi ∈ group 2, c1 = max{k : Ŝ(k) ∈ group 1 and

m∑
j=1

(Ĉlfdri − α)δ(Ŝ(k), Ŝi)(Ŝj) ≤ 0}

}
.

It is clear that the data-driven algorithm only searches among the points on l̂. By uniform

convergence, given any ε > 0, we can find M such that for all m > M |Q̂m(c1, c2) →

Q∞(c1, c2)| < ε for all (c1, c2) ∈ l̂. This shows mFDRδδδDD = α + o(1).

Next we show δδδDD is asymptotically optimal. By uniform continuity of H∞, given any

ε > 0, there exists δ > 0 such that |H∞(a, b)−H∞(c, d)| < ε for all ‖(a, b)−(c, d)‖ ≤ δ. With

probability goes to 1, there exists a point (a, b) ∈ Dδ(c
OR
1 , cOR2 ). By uniform convergence

of Ĥm to H∞, we can choose m big enough so that |Ĥm(a, b)−H∞(a, b)| < ε, thus

|Ĥ(a, b)−H∞(cOR1 , cOR2 )| ≤ |Ĥm(a, b)−H∞(a, b)|+ |H∞(a, b)−H∞(cOR1 , cOR2 )| < 2ε.

Again by uniform convergence we have |Ĥm(ĉ1, ĉ2)−H∞(ĉ1, ĉ2)| < ε for all m big enough.

By definition Ĥm(ĉ1, ĉ2) > Ĥm(a, b), thus

H∞(ĉ1, ĉ2) > Ĥm(a, b)− ε > H∞(cOR1 , cOR2 )− 3ε.

It follows that ETP∗δδδDD/ETP∗δδδOR ≥ 1 + o(1), proving the desired result.

A.5 Proof of Theorem 3

Since the two definitions of r-value share the same selection procedure, it suffices to show

that if Xi > Xj and Clfdri < Clfdrj then the rejection of hypothesis j implies the rejection

of hypothesis i. We break the proof into several cases:
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case 1 : If hypothesis j belongs to group 0, then by definition hypothesis i also belongs to

group 0, hence it is also rejected.

case 2 : If hypothesis j belongs to group 1, then hypothesis i is either in group 0 or in group

1 with Ti > Tj. By definition of the oracle procedure, hypothesis i is rejected.

case 3 : If hypothesis j belongs to group 2, then hypothesis i is either in group 0 or in group

2 with Ti < Tj. By definition of the oracle procedure, hypothesis i is rejected.

The proof for the data-driven procedure with Clfdr substituted by Ĉlfdr and T replaced

by T̂ can be derived using the same argument.

B Proof of Lemmas

B.1 Proof of Lemma 1

We use the bias-variance decomposition:

E{f(x)− f̂(x)}2 = {Ef̂(x)− f(x)}2 + Varf̂(x).

Write ĝ =
∑m

i=1
1
m
δµi(·) as a mixture of point mass where µi

iid∼ g. By definition,

Ef̂(x) = E

m∑
i=1

1

m
φσ(x− µi) = Eφσ(x− µ) =

∫ ∞
−∞

φσ(x− µ)g(µ)dµ = f(x).
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{Ef̂(x) − f(x)}2 = 0. Also since φ is bounded, it follows that Var{φσ(x − µi)} < ∞.

Therefore

Varf̂(x) = Var

{∫ ∞
−∞

φσ(µ− x)ĝ(µ)dµ

}
= Var

{
1

m

m∑
i=1

φσ(x− µi)

}

=
1

m
Var{φσ(x− µi)} → 0.

B.2 Proof of Lemma 2

We state a fact that will be helpful:

Lemma 3. Ŝi
P→ Si.

Lemma 3 is proved in section B.3. By definition of Ui and Ûi we have the following:

(Ui − Ûi)2 = (Clfdri − Ĉlfdri)
2I{δ(c1, c2)(Si) = δ(c1, c2)(Ŝi) = 1}

+ (Clfdri − α)2I{δ(c1, c2)(Si) = 1, δ(c1, c2)(Ŝi) = 0}

+ (Ĉlfdri − α)2I{δ(c1, c2)(Si) = 0, δ(c1, c2)(Ŝi) = 1}

Denote the three sums on the RHS as I, II, and III respectively. By Proposition 2, E(I) =

o(1). To show E(II + III) = o(1) we only need to show P{δ(c1, c2)(Si) 6= δ(c1, c2)(Ŝi)} =

o(1). We say Si or Ŝi is from group a if (Xi,Clfdri) is from group a. δ(c1, c2)(Si) 6=

δ(c1, c2)(Ŝi) can only happen when at least one of the following holds:

1. Si and Ŝi are not from the same group.

2. Si and Ŝi both from group 1 but Ŝi > c1 and Si ≤ c1.

3. Si and Ŝi both from group 1 but Ŝi ≤ c1 and Si > c1.
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4. Si and Ŝi both from group 2 but Ŝi < c2 and Si ≥ c1.

5. Si and Ŝi both from group 2 but Ŝi ≥ c1 and Si < c2.

Since P (Clfdri = α) = P (Ĉlfdri = α) = 0 The probability that Si and Ŝi are not from the

same group is bounded by

P (Clfdri < α, Ĉlfdri > α) + P (Clfdri > α, Ĉlfdri < α). (B.24)

Note that

P
(

Clfdri < α, Ĉlfdri > α
)
≤ P

(
Clfdri < α, Ĉlfdri ∈ (α, α + ε)

)
+ P

(
Clfdri < α, Ĉlfdri ≥ α + ε

)
≤ P

(
Ĉlfdri ∈ (α, α + ε)

)
+ P

(∣∣∣Clfdri − Ĉlfdri

∣∣∣ > ε
)
.

The first term on the right hand is vanishingly small as ε→ 0 because Ĉlfdri is a continuous

random variable. The second term converges to 0 by Proposition 2. We conclude that

P (Clfdri < α, Ĉlfdri > α) = o(1).

Use similar argument, the remaining terms in (B.24) are o(1), the probability of the first

situation occurs is o(1).

For situation 2, we have

P
(
Ŝi > c1, Si ≤ c1

)
≤ P

(
Si ≤ c1, Ŝi ∈ (c1, c1 + ε)

)
+ P

(
Si ≤ c1, Ŝi ≥ +ε

)
≤ P

(
Ŝi ∈ (c1, c1 + ε)

)
+ P

(∣∣∣Ŝi − Si∣∣∣ > ε
)
.

The first term on the right hand is vanishingly small as ε → 0 because Ŝi is a continuous
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random variable. The second term converges to 0 by Lemma 3. we conclude that

P
(
Ŝi > c1, Si ≤ c1

)
= o(1).

In a similar fashion, we can show that situation 3-5 are all o(1). The lemma follows.

B.3 Proof of Lemma 3

Let Aε = {x : |Clfdri − α| < ε}. Then P (Aε) → 0 as ε → 0. Let l0 = infxi∈Acε |Clfdri − α|

and Bl0 = {xi : |Ĉlfdri − Clfdri| > l0/2}. Since Ĉlfdri
P→ Clfdri. We have P (Bl0) → 0.

Thus |Clfdri − α| and |Ĉlfdri − Clfdri| are bounded below by a positive number for large

m except for an event that has a low probability. Note that

T̂i − Ti =
(Clfdri − Ĉlfdri)hi(xxx,σσσ)

(Ĉlfdri − α)(Clfdri − α)
.

It follows that (T̂i − Ti)2 = O
{

(Ĉlfdri − Lfdri)
2(hi(xxx,σσσ))2

}
on Acε ∩Bc

l0
. Note that

(Ĉlfdri − Lfdri)
2 = OP (Lfdr2

i ).

And since gµ(·) has bounded support and the noise is Gaussian, it follows that

lim
xi→±∞

Lfdr2
i (hi(xxx,σσσ))2 = 0.

Hence (T̂i − Ti)2 = OP

{
(Ĉlfdri − Lfdri)

2
}

. Since Si and Ŝi are continuous function of Ti

and T̂i respectively and ‖Si− Ŝi‖2 is bounded it follows that E‖Si− Ŝi‖2 → 0 and Ŝi
P→ Si.
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C Grid Size

In the proof of Proposition 2, we have used the fact that

E‖f̂mσ − fσ‖2
2 = O{(mhxhσ)−1 + h4

x + h4
σ}.

The optimal rate of (mhxhσ)−1 + h4
x + h4

σ is m−2/3 and is achieved when hx ∼ hσ ∼ m−1/6.

Since gµ has bounded support, for any µj we can always find ui(j) ∈ {u1, . . . , uk} such that

|ui(j) − µj| = O(1/k). Let ε = |ui(j) − µj|, then

|φτ (x− µj)− φτ (x− ui(j))|2 =
1

2πτ 2
e−

x2

τ2 |1− e
2xε−ε2

2τ2 |2. (C.25)

We want the above to be of order O(m−2/3) uniformly for any x. If x has order greater

than
√

logm then it is clear that the RHS of (C.25) is O(m−2/3). When x has order less

than
√

logm, since e−
x2

τ2 = O(1) we focus on |1− e
2xε−ε2

2τ2 |2. By Taylor’s expansion, we have

|1− e
2xε−ε2

2τ2 |2 = O

{(
2xε− ε2

2τ 2

)2
}
.

It is clear that if ε = O{1/(m1/3 logm)} then the above is O(m−2/3), it follows that the a

grid size of k = O(m1/3 logm) is sufficient.

D R-value, p-value and q-value

This section presents two examples that illustrate how to transform a selection procedure

into an informative ranking metric using Definition 1 for the rα-value.

Example 1. Suppose that our objective is to identify significant cases among multiple
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candidate units while controlling the per-comparison error rate (PCER). To achieve this,

we can employ a simple selection rule, denoted by I(|Ti| > α), i ∈ [m], where Ti represents

either a t-statistic or a z-statistic. By sequentially varying the PCER level α from 0 to

1, the study units can be selected in an ordered order. If we consider a scenario where

the global null hypothesis is valid, and hypotheses are selected at a PCER level of α, then

the minimum α required for a case to be chosen is equivalent to the familiar p-value. The

p-value can subsequently be used as a ranking variable to signify a unit’s position in the list.

Example 2. In the second example, let us consider the application of the adaptive p-value

procedure (Benjamini and Hochberg, 2000) to select units while controlling the positive false

discovery rate (pFDR) at a given level of α. By gradually increasing α, an informative

ranking of the units can be obtained. The minimum pFDR level α required for a unit to be

selected is known as the q-value (Storey, 2002), which can be employed as a ranking variable

to indicate the unit’s relative position in the list. The earlier a unit is selected, the more

crucial it is deemed to be in comparison to the remaining units.

The rα-value is a versatile concept that can be applied to a broad range of selection

procedures, as illustrated by the two examples presented above. Specifically, we have shown

that the p-value and q-value can be regarded as particular cases of the rα-value.

Finally, our rα-value draws inspiration from and is closely linked to the r-value presented

in Henderson and Newton (2016). Nonetheless, the two definitions diverge significantly with

regards to the optimization criterion and the intended goal of analysis.

E The Nestedness Property in Sequential Selection

The topic of nested selection has been previously addressed in Gu and Koenker (2023) and

Henderson and Newton (2016). In an ideal scenario, if we relax the constraint by reducing
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µ0 or increasing α, we would expect that hypotheses rejected under the stricter condition

would remain rejected under the relaxed constraint. However, the oracle procedure outlined

in Section 2.2 may not satisfy the nestedness property defined in Definitions 3 or 4.

Section 4 introduced two notions of r-value, leading to the definition of two types of

nestedness that will be discussed in the next two subsections respectively.

E.1 Nestedness induced by varying α

Definition 3. Consider RDα and RDα as defined in Definition 1. A testing procedure D is

nested if the rejection regions RDα′ and RDα satisfy the inclusion property RDα′ ⊆ RDα for all

α′ < α.

To illustrate why the oracle selection procedure is not nested according to Definition

3, consider the following example. Recall that Ti =
Xi − µ0

Clfdri − α
. Suppose we have T1 ≈

T2 ≈ . . . ≈ Tk, with T1 being slightly larger than T2, . . . , Tk. Additionally, assume that

Clfdr1 − α > 0 and X1 − µ0 > 0 are both relatively large, while Clfdrj − α > 0 and

Xj − µ0 > 0 are relatively small for j = 2, . . . , k. It is worth noting that there are more

than k hypotheses in total, but we are focusing on these particular hypotheses for the sake

of clarity and simlicity.

It is possible to select a value of α such that T1 is rejected, while T2, . . . , Tk are not.

However, if we slightly increase the target FDR level to β, then T2, . . . , Tk will exceed T1

(assuming Clfdri ≥ β for i = 1, . . . , k). Consequently, it is possible for hypothesis 1 to be

rejected at FDR level α, but not at level β, violating the nestedness property.
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E.2 Nestedness induced by varying µ0

Definition 4. Consider RDµ′0 and RDµ0 as defined in Definition 2. A testing procedure D is

nested if for all µ0 < µ′0 we have RDµ′0 ⊆ R
D
µ0

.

To further illustrate this point, consider the following example, where the observations

are generated from the following model:

µi
iid∼ U(0, 10), Xi|µi, σi ∼ N(µi, σ

2
i ).

Consider the scenario in which we have two data points, z1 = (x1, σ1) = (7.33, 1) and

z2 = (x2, σ2) = (6.71, 0.5). We fix α = 0.1 and set µ0 = 6. Numerical calculations reveal

that both z1 and z2 belong to group 1, with T1 > T2. Consequently, it is possible that H01

is rejected while H02 is not. However, if we lower µ0 to 5.9, z1 still belongs to group 1, but

z2 now belongs to group 0. As a result, H02 is rejected, but H01 may not be. Therefore,

the oracle selection procedure is not nested, as per Definition 4.

E.3 Conclusion

In summary, agreeability appears to be a more appropriate criterion for ranking procedures

in the presence of heteroscedasticity. Our analysis has demonstrated that the r-values

derived from Definitions 1 and 2 both meet the requirement of agreeability, which in turn

results in ranking rules that are meaningful and valid.

F Supplementary Numerical Results

This section provides additional numerical results.
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F.1 A comparative analysis of ETP* and ETP

In this section, we conduct numerical studies to demonstrate that maximizing ETP and

ETP* are two distinct objectives. We generate m = 10000 observations that follow the

hierarchical model described below.

µi ∼ N(5, 0.52), σi = 1, X|µi, σi ∼ N(µi, σ
2
i ), 1 ≤ i ≤ 5000,

µi ∼ N(7, 0.52), σi = σ, X|µi, σi ∼ N(µi, σ
2
i ), 5001 ≤ i ≤ 10000.

We aim to test the hypotheses H0,i : µi ≤ µ0 versus Ha,i : µi > µ0, for i ∈ [m], where

µ0 = 6. We compare the performance of the following three methods:

(a) the oracle procedure derived in Section 2.2, denoted as OR;

(b) the data-driven method proposed in Section 3, denoted as DD;

(c) The oracle procedure designed to maximize the conventional ETP while controlling

the FDR, denoted as Clfdr (see Fu et al. (2022) for further details).

We repeat the experiment on 100 datasets, and set the nominal FDR level to α = 0.1,

and report the results based on the average of the 100 replications. The data-driven method

requires the independence between σi and µi. To ensure the validity of the data-driven

approach, we first partition the data into two groups based on whether σi = 1 or σi 6= 1.

We then estimate gµ(·) separately for each of the two groups.

We calculate the FDR as the average of the FDPs over 100 replications. The FDP is

defined as FDP(δδδ) =
∑m

i=1{(1− θi)δi}/(
∑m

i=1 δi ∨ 1). Similarly, we compute the ETP and

ETP* as the averages of
∑m

i=1 θiδi and
∑m

i=1(xi− µ0)δi, respectively, over 100 replications.

The value of σ varies from 1.5 to 2.5 across different settings. We present the results in Fig

9.
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Figure 9: An example where ETP* and ETP are very different. DD and OR have much
higher ETP* than Clfdr while Clfdr has much higher ETP than DD and OR.

The results indicate that all three methods effectively control the FDR at the nominal

level. However, there are significant differences in their power performance. In particular,

the ETP* values of the OR and DD methods are substantially higher than that of Clfdr,

while Clfdr exhibits a significantly higher ETP than OR and DD. This observation aligns

with the fact that the Clfdr method is designed to optimize traditional power, whereas OR

and DD are developed with the objective of optimizing modified power.

F.2 Comparison when gµ is uniform

We consider the following setting.

µi
iid∼ U(0, 10), σi

iid∼ U(0.5, σmax), Xi ∼ N(µi, σ
2
i ), i ∈ [5000].

We aim to test the hypotheses H0,i : µi ≤ µ0 versus Ha,i : µi > µ0, with µ0 = 6. The

nominal FDR level is set to 0.1, while σmax varies from 2 to 4 for different settings. The

final results are obtained by averaging the results in 100 replications and are presented in

Figure 10. We can see that the data driven procedure performs reasonably well.

In Figure 11 (a), we look at one particular run with σmax = 4. We can see that even

though the ETP* and ETP of DD and Clfdr are close the rejection pattern is similar as

before. Compare to Clfdr, DD still prefers hypotheses with larger Xi. In Figure 11 (b) we
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Figure 10: We vary σmax from 2.0 to 4.0. The FDRs for DD are are close to the target
level.
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Figure 11: (a): A scatter plot of the hypotheses when σmax = 4. The gray circles are
hypotheses rejected by neither DD or Clfdr, green dots are hypotheses rejected by both DD
and Clfdr, red dots are hypotheses rejected by DD but not Clfdr, blue dots are hypotheses
rejected by Clfdr but not DD. (b): ETP* comparison of hypotheses rejected by either DD
or Clfdr, but not both.

see that for the hypotheses that are rejected by only one method, DD has a superior ETP*

in comparison to Clfdr when σmax is large.

F.3 Comparison when σi are unknown

In the main text we assumed σi are known. However, in some applications σi is unknown

and must be estimated from the data. In this subsection, we conduct experiments to study

the effect of estimated σi of the performance of the data-driven method. The experiment

considers the following hierarchical model to generate data:

µi
iid∼ U(0, 10), σi

iid∼
√
nU(0.5, 4), Xi,1, . . . , Xi,n|µi, σi

iid∼ N(µi, σ
2
i ), i ∈ [5000].
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Figure 12: We vary n from10 to 110. The FDRs for DD are are close to the target level.

Our objective is to test the hypotheses

H0,i : µi ≤ µ0 versus Ha,i : µi > µ0, i ∈ [5000],

where we choose µ0 = 6. The nominal FDR level is set to 0.1, while n varies from 10

to 110 for different settings. When implementing DD, we use X̄i =
∑n

j=1 Xi,j as the raw

observation, and si/
√
n as the standard deviation for X̄i. Here si is the sample standard

deviation of Xi,1, . . . , Xi,n. The p-values are computed as 1−Φ{(X̄i−µ0)/(si/
√
n)}, where

Φ is the distribution function of N(0, 1). When implementing OR and Clfdr we use X̄i as

the raw observation and σi/
√
n as the standard deviation. The final results are obtained

by averaging the results in 100 replications and are presented in Figure 12. We can see

that the FDR control for DD is reasonably good when n is of moderate size.

In Figure 13 (a), we look at one particular run with n = 10. We can see that the

rejection pattern is similar as before, compare to Clfdr, DD still prefers hypotheses with

larger Xi. In Figure 13 (b) we see that for the hypotheses that are rejected by only one

method, DD still has a superior ETP* in comparison to Clfdr.
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Figure 13: (a): A scatter plot of the hypotheses when n = 0.5. The gray circles are
hypotheses rejected by neither DD or Clfdr, green dots are hypotheses rejected by both DD
and Clfdr, red dots are hypotheses rejected by DD but not Clfdr, blue dots are hypotheses
rejected by Clfdr but not DD. (b): ETP* comparison of hypotheses rejected by either DD
or Clfdr, but not both.

F.4 Comparison when the number of hypotheses is small

Using a nonparametric method to estimate the distribution for µ is a challenging task. In

this subsection we examine the performance of the data-driven method when the number

of hypotheses is small.

We consider the following setting.

θi
iid∼ Ber(0.2), µi|θi ∼ (1− θi)U(−3,−1) + θiU(1, 2),

σi
iid∼ U(0.5, 4), Xi|µi, σi ∼ N(µi, σ

2
i ), i ∈ [m].

We aim to test the hypotheses H0,i : µi ≤ µ0 versus Ha,i : µi > µ0, with µ0 = 0. The

nominal FDR level is set to 0.1, while m varies from 200 to 2000 for different settings. The

final results are obtained by averaging the results in 100 replications and are presented in

Fig. 14. We can see that the data driven procedure performs well even when m is small,

the FDRs only inflate slightly.

A plot of the hypotheses rejected by DD and Clfdr when m = 200 shows the same
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Figure 14: We vary m from 200 to 2000. The FDRs for DD are slightly inflated when m
is small.
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Figure 15: (a) A scatter plot of the hypotheses when m = 200. The gray circles are
hypotheses rejected by neither DD or Clfdr, green dots are hypotheses rejected by both DD
and Clfdr, red dots are hypotheses rejected by DD but not Clfdr, blue dots are hypotheses
rejected by Clfdr but not DD. (b): ETP* comparison of hypotheses rejected by either DD
or Clfdr, but not both.

pattern as before. In Figure 15 (a), we look at one particular run with m = 200. The gray

dots are hypotheses not rejected by either DD or Clfdr, green dots are hypotheses rejected

by both DD and Clfdr, red dots are hypotheses rejected by DD but not Clfdr, and blue

dots are hypotheses rejected by Clfdr but not DD. It can be seen that DD is more likely to

reject hypotheses with higher xi values when compared to Clfdr. In Figure 15 (b) we see

that for the hypotheses that are rejected by only one method, DD has a superior ETP* in

comparison to Clfdr even when m is relatively small.
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Figure 16: We vary ρ from 0.01 to 0.5. The FDRs for DD are are close to the target level.

F.5 Comparison when Xi are dependent

In this subsection we examine the performance of the data-driven procedure when Xi are

dependent. We consider the following setting.

θi
iid∼ Ber(0.2), µi|θi ∼ (1−θi)U(−3,−1)+θiU(1, 2), σi

iid∼ U(0.5, 4), XXX = µµµ+εεε i ∈ [5000],

Here, Σ is a 5000×5000 block diagonal matrix, where the kth diagonal block Ak is a 10×10

matrix with its (i, j)th entry equals to σ10k+iσ10k+jρ
|i−j|. We aim to test the hypotheses

H0,i : µi ≤ µ0 versus Ha,i : µi > µ0, with µ0 = 0. The nominal FDR level is set to 0.1, while

we set ρ to 0.01, 0.02, 0.05, 0.1, 0.5. When implementing OR and Clfdr the Clfdr statistic

is still computed as

Clfdri =
f0i(xi)

fi(xi)
,

where f0i(xi) =
∫
µ≤µ0 φσi(xi − µ)gµ(µ)dµ and fi(xi) =

∫∞
−∞ φσi(xi − µ)gµ(µ)dµ, φσi(·) is

the density function of N(0, σ2
i ), gµ(·) is the density function of the mixture distribution

0.8U(−3,−1) + 0.2U(1, 2).

The final results are obtained by averaging the results in 100 replications and are pre-

sented in Figure 16, note that the x-axis is in logarithmic scale. We can see that the

data-driven method still controls FDR reasonably well under weak dependence.
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Figure 17: (a) A scatter plot of the hypotheses when ρ = 0.5. The gray circles are
hypotheses rejected by neither DD or Clfdr, green dots are hypotheses rejected by both DD
and Clfdr, red dots are hypotheses rejected by DD but not Clfdr, blue dots are hypotheses
rejected by Clfdr but not DD. (b): ETP* comparison of hypotheses rejected by either DD
or Clfdr, but not both.

In Figure 17 (a), we look at one particular run with ρ = 0.5. We can see that the

rejection pattern is similar as before, compare to Clfdr, DD still prefers hypotheses with

larger Xi. In Figure 17 (b) we see that for the hypotheses that are rejected by only one

method, DD has a superior ETP* in comparison to Clfdr under weak dependence.

F.6 Comparison at various FDR levels

We consider the following setting.

θi
iid∼ Ber(0.2), µi|θi ∼ (1− θi)U(−3,−1) + θiU(1, 2),

σi
iid∼ U(0.5, 4), Xi|µi, σi ∼ N(µi, σ

2
i ), i ∈ [5000].

We aim to test the hypotheses H0,i : µi ≤ µ0 versus Ha,i : µi > µ0, with µ0 = 0. The

nominal FDR level varies from 0.01 to 0.1 for different settings. The final results are

obtained by averaging the results in 100 replications and are presented in Figure 18.

In Figure 19(a) we look at one particular run with nominal FDR= 0.01. We can see

that the rejection pattern is similar as before, compare to Clfdr, DD still prefers hypotheses
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Figure 18: We vary nominal FDR from 0.01 to 0.1. The FDRs for DD are are close to the
target level.
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Figure 19: (a): A scatter plot of the hypotheses when nominal FDR is 0.01. The gray
circles are hypotheses rejected by neither DD or Clfdr, green dots are hypotheses rejected
by both DD and Clfdr, red dots are hypotheses rejected by DD but not Clfdr, blue dots are
hypotheses rejected by Clfdr but not DD. (b): ETP* comparison of hypotheses rejected by
either DD or Clfdr, but not both.

with larger Xi. In Figure 19 (b) we see that for the hypotheses that are rejected by only one

method, DD has a superior ETP* in comparison to Clfdr across all nominal FDR levels.

F.7 The analysis of the AYP data

The unprocessed data sets for the AYP study are available at https://www.cde.ca.gov/

re/pr/api-Bdatarecordlayouts.asp. We begin by defining Y and Y ′ as the passing

rates of students from socially-economically advantaged backgrounds (SEA) and socially-

economically disadvantaged backgrounds (SED), respectively Our objective is to identify

significant differences in the passing rates Xi = Yi−Y ′i for each school i, where i ∈ [m] and
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m = 6, 398. The standard error of Xi is calculated as

si =
√
Yi(1− Yi)/ni + Y ′(1− Y ′i )/ni′ ,

where ni and ni′ are the number of SEA and SED students tested, respectively. To ensure

numerical stability, we remove observations that have a standard error below the 1% per-

centile or above the 99% percentile. Figure 20 presents the scatter plot and histograms of

the observed data.

We aim to test the following hypotheses: H0,i : µi ≤ µ0 vs Ha,i : µi > µ0, with µ0 = 0.2

being the cutoff of the indifference region and FDR level set at α = 0.01. We calculate the

z-values as zi = (xi − µ0)/si, and the p-values as pi = 1 − Φ(zi), where Φ is the standard

normal cumulative distribution function.

Our primary focus is to compare our approach against analyses that solely rely on

statistical significance indices (Clfdr and BH). In this context, the Clfdr method refers to

the data-driven HART procedure (Fu et al., 2022). We summarize the results in Table 2,

which reports the total number of rejections (a proxy for traditional power) and weighted

number of rejections based on Equation (2.5) (a proxy for modified power).

We can see that DD and Clfdr outperform BH in terms of both the traditional and

modified powers. Although DD and Clfdr exhibit similar performances, the hypotheses

rejected by the two methods exhibit different patterns. Figure 21 (a) displays a scatter

plot of hypotheses rejected by Clfdr and DD. The gray circles represent hypotheses that

were not rejected by either method, the green dots represent hypotheses rejected by both

Clfdr and DD, the red dots represent hypotheses rejected by DD but not Clfdr, and the

blue dots represent hypotheses rejected by Clfdr but not DD. It is clear that DD displays

a predilection for rejecting hypotheses with larger effect sizes, while Clfdr has a preference
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for rejecting hypotheses with low standard error. Figure 21 (b) presents the top 20 schools

ranked according to both p-values (indicated by blue dots) and rµ0-values (represented by

red dots). Notably, the rµ0-value demonstrates a distinct inclination towards schools with

larger effect sizes as compared to the p-value.
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Figure 20: Left: scatter plot of the AYP data: x-axis is the observation, y-axis is the
standard error. Middle: histogram of the observations. Right: histogram of the standard
errors.
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Figure 21: (a) The scatter plot displays the school data. The x-axis represents the raw
observations (x), while the y-axis corresponds to the SEs. The gray circles represent schools
that were not selected by either DD or Clfdr. The green dots denote schools selected by
both Clfdr and DD, while the blue dots represent schools selected by Clfdr but not DD.
The hypotheses selected by DD but not Clfdr are shown as red dots. (b) The scatter plot
displays the top 20 schools ranked according to p-value and rµ0-value (Definition 2 with
α = 0.01). The top 20 schools ranked according to the rµ0-value are depicted as red dots,
while the top 20 schools ranked according to the p-value are shown as blue dots. The
schools ranked as top 20 by both p-value and rµ0-value are represented by green dots.
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Table 2: Summary of power by each method on the AYP data.
DD Clfdr BH

Number of hypotheses rejected 388 398 158
Modified Power 69.5 67.7 34.3

F.8 Comparison of r-values

We have introduced two notions of r-values. rα is obtained by fixing µ0 and vary α, rµ0

is obtained by fixing α and vary µ0. In Figure 22 we illustrate the difference between the

two r-values on the CRSP and AYP data. As shown by the blue dots in Figure 22, we can

see that the selection process using rα, favors units with small standard errors. This issue

can be ameliorated using rµ0 , as shown by the red dots in Figure 22. In both the AYP and

CRSP datasets, which are marked by considerable heteroscedasticity, we recommend using

rµ0 to identify units with the greatest effect sizes.
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Figure 22: (a) The scatter plot displays the top 20 mutual funds ranked according to the
two definitions of r-value. The top 20 mutual funds ranked according to rα (fix µ0 = 0 and
vary α) are depicted as blue dots (the dots represent the top 20 mutual funds are on top
of each other so they appear as one blue dot in the graph), while the top 20 mutual funds
ranked according to rµ0 (fix α = 0.1 and vary µ0) are shown as red dots. (b) The scatter
plot displays the top 20 schools ranked according to the two definitions of r-value. The
top 20 schools ranked according to rα (fix µ0 = 0.2 and vary α) are depicted as blue dots,
while the top 20 schools ranked according to rµ0 (fix α = 0.01 and vary µ0) are shown as
red dots. The schools ranked as top 20 by both methods are represented by green dots.
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