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Abstract

Shrinkage methods have been commonly used in practice and studied, dating back

at least as far as the James-Stein shrinkage estimator. The issue of shrinkage arises,

albeit with additional complications, for functional data. In this paper we propose

an empirical Bayes method to analyze functional data contaminated with noise by

constructing posterior mean estimates of the true mean functions. We first reduce

the dimension of the functional data by projecting the curves into the finite dimen-

sional space spanned by some prechosen functional basis whose dimension can diverge

with sample size. This allows us to explicitly construct an empirical Bayes estimate

of the posterior mean by utilizing a multivariate version of Tweedie’s formula, con-

verting the original problem to one of estimation of the score function of the basis

coefficients resulting from the projection of the curves. For more flexible modeling and

efficient estimation, we impose the independent component analysis (ICA) assumption

on the projected basis coefficients. This ICA structure enables us to estimate the score

function efficiently without making any parametric distribution assumption, yielding

our final “Functional Empirical Bayes” (FEmBa) estimate. We formally investigate

the theoretical properties of FEmBa and show that it possesses desirable theoreti-

cal properties. Furthermore, we demonstrate through extensive simulations and real

data analyses that our approach can achieve the desired bias reduction with improved

accuracy relative to possible competitors.

Keywords— Tweedie’s Formula, Shrinkage Estimation, Functional Data Analysis

1 Introduction

In a Functional Data Analysis (FDA) approach one treats an entire curve, or function, X(t) as the

unit of observation. Over the last two decades FDA has become a widely used tool in many fields

∗The fourth author is supported by the U.S. National Science Foundation under grant DMS-2113671.
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ranging from medicine, to the physical and social sciences and even business. Standard statistical

tools such as principal components analysis (Silverman, 1996; Goldsmith et al., 2014), regression

(James et al., 2009; Fan et al., 2014, 2015), clustering (Abraham et al., 2003; James and Sugar,

2003) and classification (Alonso et al., 2012; Li and Yu, 2008), to mention just a few, have all been

extended to functional data settings. See Ramsay et al. (2005) for a more complete summary of

these various applications.

Indeed functional data is now becoming so ubiquitous that one often encounters some of the

“big data” problems that occur with more traditional scalar observations. In particular here we

are interested in the setting where one observes a large number of functions and wishes to select

a subset of the most extreme curves. As a concrete example, consider Figure 1 which plots the

magnitudes of filtered normalized light emissions from a given star during a fixed time period, with

the blue line representing a smoothed fit to the data. This curve is derived from what is called

a light curve, which records the apparent brightness of an object in the sky over time. If one is

observing a star with an orbiting exoplanet, the relative brightness of the star decreases slightly

when the planet passes in front of the host star. Detecting this slight decrease (i.e., dip in Figure

1) helps infer the existence of an exoplanet and derive its properties (such as its size). To date,

light curves from hundreds of thousands of stars have been observed, and the most extreme ones

(in the sense of having large dips) have been received special attention in the search for exoplanets.

One challenge in this application is that there is a substantial amount of preprocessing involved in

the process, leading to noisy data. This noise carries over into the process of detecting the most

extreme curves. Correcting for such noise can help increase the accuracy of exoplanet detection.

In this paper we investigate an empirical Bayes approach for correcting the bias that is introduced

in selecting the most extreme among a large number of observed functional curves.
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Figure 1: A preprocessed light curve. The transit event is evident.

To clarify this, let us briefly review the empirical Bayes approach for posterior mean estimation

in the scalar case. Suppose we have independent observations Xi, i = 1, . . . , n, where Xi|µi ∼
N(µi, σ

2) with µi unobservable and independently generated from some unknown prior distribution

G(µ) and σ2 > 0 the deterministic variance. The goal is to detect the most extreme µi’s based

on the observed Xi’s. Selection bias refers to the well known property that simply identifying
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the minimum/maximum values of Xi typically under/over estimates the corresponding values of

µi. This problem has been extensively studied and numerous approaches have been suggested

to address the issue. Most of these methods impose some form of shrinkage with the seminal

James-Stein estimator (James and Stein, 1961) being the most well known example. There are

several popular classes of methods including; linear shrinkage estimators (Efron and Morris, 1975;

Ikeda et al., 2016), non-linear approaches utilizing sparse priors (Abramovich et al., 2006; Bickel and

Levina, 2008; Ledoit and Wolf, 2012), Bayesian estimators (Gelman and Shalizi, 2012) and empirical

Bayes methods (Jiang and Zhang, 2009; Petrone et al., 2014). Tweedie’s formula (Robbins, 1956)

is a particularly elegant empirical Bayes approach, which works by directly estimating the marginal

distribution of Xi and makes few assumptions about the prior on µi. It has been shown to be an

effective non-parametric approach for addressing selection bias (Efron, 2011; Zhang, 1997).

To the best of our knowledge, none of these shrinkage approaches have been extended to handle

functional data. This is a challenging problem, partly as a result of the infinite dimensional nature

of functional data, but also because there are many ways that functional data may be considered

“extreme.” For example, a curve may be selected based on its maximum value, its average value,

or some other functional of the curve. We propose a general approach called “Functional Empirical

Bayes” (FEmBa), which extends Tweedie’s formula to the functional setting, to reduce the selection

bias by denoising each functional curve.

To reduce the infinite dimensionality of functional curves, we propose to project them onto

the space spanned by some pre-chosen functional basis whose dimension K is finite but can slowly

diverge with the sample size. Then our working data become the basis coefficient vectors in RK ,

denoted as θ1, . . . ,θn, which result from the projection. The posterior means of the projected

true mean functions, conditional on the θi’s, can then be explicitly derived using the multivariate

version of Tweedie’s formula. However, despite the explicit form, empirically estimating such

posterior means is challenging because it requires estimating the multidimensional score function

v0(θi) of the nonparametric multivariate density of θi. We address this challenge by imposing

the independent component analysis (ICA) assumption on the θi’s, which reduces the original

problem to the estimation of the unmixing matrix W0 and the corresponding univariate score

functions u0k(Zk) of the unmixed independent components Zk, in an analogous fashion to multiple

index models for regression. This is particularly valuable in the functional data setting as the

dimensionality K of the working basis elements must increase with the sample size n to ensure that

all curves can be approximated uniformly well. Due to the complicated nature of our problem,

the practical estimations of W0 and u0 = (u01, . . . , u0K)⊤ are difficult. We further propose a joint

estimation approach for bothW0 and u0 by directly minimizing the risk function, where the geodesic

gradient descent method in Plumbley (2005) (for ICA estimation) is adapted for our purpose to

estimate W0 and u0. This allows us to construct the plug-in estimate of the original score function

v0(θi), leading to our final FEmBa estimate of the projected posterior mean function.

To theoretically justify the performance of FEmBa, we establish both in-sample and out-of-

sample risk bounds for the FEmBa estimate compared to the oracle posterior mean estimate,

under the assumption that the score function v0(θ) is known. Our theoretical analyses also provide

standalone contributions to the ICA literature. We prove, under a sub-Weibull tail assumption

on the θi’s and an m-degree smoothness assumption on the true score function, that the risk of

our score function estimator converges to 0 at a rate of O(K
3+ 1

m log2 K
n )2m/2m+3polylog(n). This
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result shows that we may choose K as high as nα for α < m
3m+1 and still consistently estimate

the optimal shrinkage function. To the best of our knowledge, this is the first rate of convergence

result for nonparametric estimation in an ICA model framework, as previous analyses of ICA either

only focus on parametric estimation of the unmixing matrix (Chen and Bickel, 2006) or only prove

consistency (Samworth and Yuan, 2012). Our proof uses techniques from empirical process theory

as well as a new analysis of the risk function showing that it is locally strongly convex around 0.

Our paper is laid out as follows. In Section 2 we present the FEmBa framework. Section 3

proposes a criterion for score function estimation under an ICA structure, resulting in an approach

for joint estimation of the needed unmixing matrix and the desired score function. We also provide

theoretical justification for the FEmBa estimator by establishing both in-sample and out-of-sample

risk bounds. Section 4 discusses the practical implementation of FEmBa. Finite sample simulation

comparisons of FEmBa with several other estimators are provided in Section 5 and an application

of FEmBa to the planetary data is discussed in Section 6. All technical proofs, detailed description

of algorithm and additional simulation results are included in a separate supplementary file.

2 FEmBa Model

In this paper we focus on fully observed curves. We examine the case of discretely but densely

observed curves in simulation studies in Section 5. Denote independent and identically distributed

(iid) curves observed at all time points as X1(t), . . . , Xn(t) where t ∈ [0, 1]. We model these

functions via

Xi(t) = m∗i(t) + gi(t), i = 1, . . . n, (1)

where the m∗i(t)’s are the underlying mean curves, generated from an unknown prior distribu-

tion, and the gi(t)’s represent noise curves, sampled from a mean zero Gaussian process, indepen-

dently from the m∗i’s. To simplify notation we assume the functional curves are demeaned so that

E[Xi(t)] = 0 for all t and all i = 1, . . . , n. However, in practice our method, and the theoretical

results, can be applied equally well without this assumption.

Our goal is to estimate the mean curves m∗i(t) using the observed curves Xi(t). Such a problem

is not always feasible because the m∗i(t)’s are not identifiable without additional assumptions.

However, in the case where the distribution of the noise is known, estimation of m∗i(t) is possible.

Here we discuss our proposed method assuming the covariance function of the gi(t)’s, denoted

Γ(s, t) = Cov(gi(s), gi(t)), is known. This assumption is inherited from Tweedie’s formula (Robbins,

1956), without which the estimation of m∗i(t) from Xi(t) is impossible. In applications such as

the exoplanet light curves discussed in Section 6, Γ(s, t) can be well estimated because repeated

measurements for a subset of curves are available.

We select our mean curve estimator by minimizing the loss function:

E∥m∗i −mi∥2, (2)

where mi = T (Xi) is some estimator for m∗i(t) constructed from the observed data Xi(t) through a

common operator T , ∥g∥2 =
∫
g(t)2dt for any square integrable function g(t), and the expectation

is taken with respect to both m∗i(t) and Xi(t). Here, both g and g(t) represent the same function

and we will use this convention throughout the paper. Under some mild conditions, it can be shown
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that the conditional expectation E(m∗i(t)|Xi(t)) minimizes (2) among the class of estimators T (Xi).

However, since the distribution of m∗i(t) is generally unavailable to us, E(m∗i(t)|Xi(t)) cannot be

directly calculated. Moreover, since the curves Xi(t) are infinite dimensional, we must impose some

kind of dimension reduction in order to estimate m∗i(t) efficiently.

2.1 Dimension Reduction through Projection

To reduce the dimensionality, we first project the curves Xi(t)’s onto a finite dimensional basis–a

standard approach in Functional Data Analysis. Let s(t) = (s1(t), . . . , sK(t))⊤ ∈ RK represent any

basis that we choose for representing our curves, where K can slowly diverge with sample size n.

We then approximate our curves with the following:

Xs
i (t) = s(t)⊤θsi , (3)

where θsi = (θsi1, . . . , θ
s
iK)⊤ = Σ−1

s

∫
Xi(t)s(t)dt with Σs =

∫
s(t)s(t)⊤dt is the basis coefficient

vector corresponding to s. With such dimension reduction, we can treat the θsi ’s as the working

data. Correspondingly, instead of minimizing (2) over the entire functional space, we propose

searching for the best estimate of m∗i(t) within the class of all functions in the space spanned by

s(t), that is, our final estimate will take the form s(t)⊤µ with µ ∈ RK . The problem in (2) is then

reduced to minimizing the following risk

E
∫
(m∗i(t)− s(t)⊤µ)2dt (4)

with respect to µ = t∗(θsi ), where t∗ : RK → RK is some Borel measurable function.

Standard calculations show that, for any µ ∈ RK ,

E
∫
(m∗i(t)− s(t)⊤µ)2dt = E

(
(µs

∗i − µ)⊤Σs(µ
s
∗i − µ)

)
+ E

∫
(m∗i(t)− s(t)⊤µs

∗i)
2dt, (5)

where µs
∗i := Σ−1

s

∫
m∗i(t)s(t)dt is the coefficient vector corresponding to m∗i(t)’s projection onto

the basis s(t), denoted ms
∗i(t) = s(t)⊤µs

∗i. Here, since K is allowed to diverge, under some mild

assumptions, the last term in (5) is expected to vanish as K diverges. Thus, for a given θsi , our

original loss criterion (2) can be approximately optimized by minimizing (5) with respect to µ.

The following proposition characterizes the minimizer of the risk function. To simplify the

notation, we suppress the dependence of various quantities on s whenever there is no confusion.

For example, below we write θsi as θi, and µ
s
∗i as µ∗i.

Proposition 1. The minimizer of (4) is µ̃θi = E[µ∗i|θi].

Denote by m̃s
Xi
(t) = s(t)⊤µ̃θi the corresponding functional curve, which is indeed the population

target that FEmBa aims to estimate. Here, m̃s
Xi

only minimizes our objective function (4), but,

as we demonstrate in later sections, it also allows us to reduce the selection bias for extreme

functions. We observe from Proposition 1 that if m∗i(t) lies exactly in the space spanned by s(t)

then the term E∥m∗i(t)−s(t)⊤µ∗i∥2 in (5) disappears and the estimation error of m̃s
Xi

is completely

characterized by the estimation error between the posterior mean estimate µ̃θi , and µ∗i. The term

E∥m∗i(t)− s(t)⊤µ∗i∥2 can be viewed as the fixed cost of dimensionality reduction. Table 1 further

5



Observed Data True Mean Posterior Mean
Functional Space Xi(t) m∗i(t) m̃Xi

(t) = E[m∗i(t)|Xi(t)]
Basis Space Xs

i (t) = s(t)⊤θsi ms
∗i(t) = s(t)⊤µs

∗i m̃s
Xi
(t) = s(t)⊤µ̃s

θi

Basis Coefficients θsi µs
∗i µ̃s

θi
= E[µs

∗i|θsi ]

Table 1: Explanation of notation used for the observed data, true mean curve and corre-
sponding conditional expectation. The basis expansion is with respect to some prechosen
s(t).

explains our notation and the relationships among the various quantities discussed in this section.

For the rest of the paper, we discuss how to estimate m̃s
Xi
(t).

2.2 Tweedie’s Formula on Functional Data

We see from Proposition 1 that the key to constructing m̃s
Xi

is calculating the posterior mean µ̃θi ,

which generally requires knowledge of the joint distribution of µ∗i and θi. However, in some special

cases, the problem can be simplified. We next demonstrate that Tweedie’s formula can be extended

to our functional setting to help solve the problem.

Proposition 2. For data generated according to Model (1), it holds that

µ̃θi = E(µ∗i|θi) = θi +Σγv0(θi), (6)

m̃s
Xi
(t) = s(t)⊤µ̃θi , (7)

where v0(θ) = ∇θ log f(θ) and f(θ) are respectively the score function and marginal density of θ,

and Σγ =
∫ ∫

Γ(s, t)s(s)s(t)Tdtds.

Furthermore, Theorem 1 below provides an explicit formula for the reduction in risk from using

m̃s
Xi
(t) over the natural, but somewhat naive, estimator Xs

i (t) in (3).

Theorem 1. It holds that

E∥m∗i − m̃s
Xi
∥2 =E∥m∗i −Xs

i ∥2 − E∥Σ1/2
s Σγv0(θi)∥2.

Equations (6) and (7) suggest a two step approach, which FEmBa adopts for estimating the

projected posterior mean curves m̃s
Xi
. FEmBa first estimates the µ̃θi ’s according to (6), and then

constructs curve estimates via (7). The second step is trivial once the first step is completed. To

conclude this section, we note that the choice of basis is not unique. In fact, under some conditions,

all the theoretical results in Section 3 remain true for any basis constructed independently from

the training data.

2.3 Curve Estimation via Risk Minimization

Motivated by Proposition 2, we estimate m̃s
Xi
(t) via risk minimization. Let m̌s

Xi
(t) = s(t)⊤(θi +

Σγ v̌(θi)) be a candidate estimate for m̃s
Xi
(t) with v̌(θi) : RK → RK some multivariate multi-

6



response function. To derive the optimal estimator, we consider the following loss function:∫
(m̃s

Xi
(t)− m̌s

Xi
(t))2dt = (v̌(θi)− v0(θi))

⊤Σ̃(v̌(θi)− v0(θi)), (8)

where Σ̃ = Σγ

∫
s(t)s(t)⊤dtΣγ . Notice that the loss function is now written entirely in terms of

the score function we wish to estimate. Thus, deriving an estimator for m̃s
Xi
(t) is equivalent to

deriving an estimator for v0(θi). We thus wish to minimize the following risk function:

R(v̌) = E
(
(v̌(θi)− v0(θi))

⊤Σ̃(v̌(θi)− v0(θi))
)

∝ E
(
v̌(θi)

⊤Σ̃v̌(θi)
)
− 2E

(
v0(θi)

⊤Σ̃v̌(θi)
)

= E
(
v̌(θi)

⊤Σ̃v̌(θi)
)
− 2

∑
k,l

aklE (v̌k(θi)v0l(θi)) ,

(9)

where in the second step above we have dropped terms that do not depend on v0(θi). Here,

akl = Σ̃kl, and v̌k(θi) and v0l(θi) are the k-th and l-th components of v̌(θi) and v0(θi), respectively.

Let us now analyze E (v̌k(θi)v0l(θi)), for a fixed k and l. We will confine ourselves to bounded v̌k’s.

Then under a mild condition on the density function of θi, where lim∥θi∥∞→∞ f(θi) = 0, we have

that

E [v̌k(θi)vl(θi)] =

∫
v̌k(θi)∂lf(θi)dθi = −

∫
f(θi)∂lv̌k(θi)dθi = −E[∂lv̌k(θi)].

Plugging the above expression into (9), we have that

R(v̌) ∝ E
(
v̌(θi)

⊤Σ̃v̌(θi)
)
+ 2E

(
1⊤(Σ̃ ◦ J v̌(θi))1

)
, (10)

where J v̌(θi) is the Jacobian matrix of v̌ at value θi and where Σ̃◦J v̌(θi) denotes the element-wise

(Hadamard) product of these two matrices.

Minimizing (10) directly with respect to v̌ can be challenging, especially when K is large. Next,

we present an ICA framework for θi which can help simply both the theoretical derivations and

the development of the estimation algorithm.

2.4 A Functional ICA Assumption

To motivate utilizing the ICA model framework, we present the following lemma.

Lemma 1. Suppose there exists a functional basis {s∗j (t)}∞j=1 such that the functional representation

of Xi(t) =
∑∞

j=1 s
∗
j (t)θ

s∗
ij satisfies that θs

∗
ij ⊥⊥ θs

∗
il for all j ̸= l. Assume that limK→∞

∑
j>K |θs

∗
ij | = 0

almost surely, and that supj≥1

∫
s∗j (t)

2dt < ∞. For the chosen K-dimensional working basis s(t),

assume that max1≤i≤K e⊤i Σ
−1
s ei is uniformly bounded for all K large enough, where recall Σs =∫

s(t)s(t)⊤dt. Then the basis coefficient vector θi corresponding to s(t) satisfies that

θi =
K∑
k=1

θs
∗

ikΣ
−1
s

∫
s(t)s∗k(t)dt+ oo.s.(1), (11)
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for all K sufficiently large.

Since θs
∗

ik ’s are independent of each other across k, it is seen that θi has an approximate ICA

structure. This motivates us making the following assumptions on θi.

Condition 1. Assume that the basis coefficient θi follows the following ICA structure

θi = W−1
0 zi, (12)

where zi = (Zi1, . . . , ZiK)⊤ is a K dimensional vector with independent mean-zero components,

and W0 ∈ RK×K is the invertible unmixing matrix. We also assume without loss of generality that

Zik has unit variance for all k.

Condition 1 imposes a stronger assumption (12) than the result in Lemma 1. In particular, the

oa.s.(1) term therein is ignored. Since K is allowed to diverge with sample size n, Condition 1 is

not overly stringent; in fact, by imposing the exact ICA structure, the theory and algorithm can be

greatly simplified. The robustness of our method with respect to misspecified ICA structure will

be investigated in the numerical sections.

To simplify the presentation, we use θ and z = (Z1, . . . , ZK)⊤ to denote generic random vari-

ables which are identically distributed to the θi’s and zi’s, respectively. The ICA structure ensures

that v0(θ) = W⊤
0 u0(W0θ), where u0(·) : RK → RK is the score function of random vector z. Since

z has independent components, it follows that the ith coordinate of u0(·) is a univariate function

depending only on Zk for k = 1, . . . ,K. Denote by u0(z) = (u0,1(Z1), . . . , u0,K(ZK))⊤. The ICA

assumption reduces the estimation of v0 to those of W0 and u0.

In general, ICA models are identifiable only up to a signed permutation. Indeed, since θ =

W−1
0 z, we can apply the same signed permutation to the components of z and to W0 without

changing the distribution of θ. This is the only source of non-identifiability if and only if at

most one component of z is Gaussian. Since any isotropic Gaussian distribution is rotationally

invariant, it is easy to see that the condition is necessary. That the condition is also sufficient

follows from the fact that the isotropic Gaussian is the only multivariate product distribution that

is also rotationally invariant; this result, often called Maxwell’s Theorem, originates from James

Clerk Maxwell’s investigation of gas particles in R3, see (Feller, 1966, Chapter III.4).

Identifiability is not essential for curve estimation since we are only interested in estimating the

score function v0 = W⊤
0 u0(W0θ), but it plays an important role in our theoretical analysis.

Under the assumption that Cov(z) = IK , we see that W0ΣθW
⊤
0 = IK where Σθ = Eθθ⊤ is

the covariance of θ, or, equivalently, W0 = U0Σ
−1/2
θ for some orthogonal matrix U0. Since z has

independent components, we can write z 7→ p(z) =
∏K

k=1 pj(Zj) as the density of z. Recall that

u0 and v0 are the score functions of θ and z, respectively. By a change of variables, we have that

v0(θ) = W⊤
0 u0(W0θ) (13)

Jv0(θ) = W⊤
0 Ju0(W

⊤
0 θ)W0, (14)

where Jv0 and Ju0 are the Jacobian matrices of v0 and u0, respectively.
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The risk function to minimize (c.f. (10)) then can be reparametrized as

R(W,u) = E
(
W⊤u(Wθ)−W⊤

0 u0(W0θ)
)⊤

Σ̃
(
W⊤u(Wθ)−W⊤

0 u0(W0θ)
)

∝ E(u(Wθ)⊤W Σ̃W⊤u(Wθ)) + 2
K∑
k=1

c(Wk·)E(u′k(W⊤
k·θ)) (15)

where W ∈ RK×K satisfies WΣθW
⊤ = IK (or, equivalently, W = UΣ

−1/2
θ for some orthogonal

matrix U), u(z) = (u1(z1), . . . , uK(ZK))⊤ is the score function of some product density on RK ,

Wk· denotes the k-th row of the matrix W , and c(Wk·) = W⊤
k· Σ̃Wk· ≥ 0.

Given n curves and their basis coefficient vectors θ1, . . . ,θn, we estimate W0 and u0 by mini-

mizing the empirical counterpart of (15). To avoid overfitting, we impose constraints on the higher

derivatives of the component functions of u1(·), . . . , uK(·). This yields the following empirical risk

minimization problem: for m ≥ 2,

min
u,W

1

n

n∑
i=1

{
u(Wθi)

⊤W Σ̃W⊤u(Wθi) + 2
K∑
k=1

c(Wk·)u
′
k(W

⊤
k·θi)

}
(16)

s.t. max
1≤k≤K

∫
|u(m)

k (t)|2 dt ≤ B,

where B ≥ 0 measures the amount of regularization we impose to avoid overfitting.

Our estimator is a solution to (16) over univariate functions u1, . . . , uK as well as matrix W

which can be written as W = UΣ
−1/2
θ for an orthogonal matrix U . An orthogonal matrix U has

determinant of either 1 or −1; as we will see, it is convenient to restrict our attention to U such

that det(U) = 1. We refer to this class of matrices as special orthogonal matrices and denote it

SO(K) := {U ∈ RK×K : U orthogonal and det(U) = 1}.

We can restrict U to SO(K) without loss of generality as, for any U with a −1 determinant, we

can flip the sign of any of its columns to obtain an orthogonal matrix in SO(K). For simplicity

of presentation, we hitherto use the term orthogonal matrix to refer to SO(K) unless otherwise

stated. The objective function in (16) is not convex, but in Section 4, we provide an alternating

descent optimization algorithm which works well in practice.

Given the solution of optimization problem (16), the score function v0 in (13) can be estimated

as v̂(θ) = Ŵ⊤û(Ŵθ). Consequently, our final FEmBa estimate for m̃s
Xi

takes the form

m̂Xi(t) = s(t)⊤(θi +Σγ v̂(θi)). (17)

3 Finite sample properties of the FEmBa Estimator

We analyze the finite sample properties of the estimator proposed in the last section. As a short-

hand, for any vector v ∈ RK , we write ∥v∥2
Σ̃

:= v⊤Σ̃v as the Mahalanobis squared norm with
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respect to Σ̃. Using this notation, the risk function (15) has the simplified form

R(W,u) = E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥2Σ̃ (18)

= E∥W⊤u(Wθ)∥2
Σ̃
+ 2

K∑
k=1

∥Wk·∥2Σ̃ Eu′k(W⊤
k·θ) + E∥W⊤

0 u0(W0θ)∥2Σ̃. (19)

Define the empirical risk as

F̂ (W,u) =
1

n

n∑
i=1

∥W⊤u(Wθi)∥2Σ̃ + 2
K∑
k=1

∥Wk·∥2Σ̃
1

n

n∑
i=1

u′k(W
⊤
k·θi).

With these definitions, our optimization (16) can be written as:

(Ŵ , û) := argmin
W,u1,...uK

F̂ (W,u)

s.t. W ∈ W and u1, . . . , uK ∈ Fb,B,m, (20)

where we move the higher derivative constraint to the constraint set

Fb,B,m :=

{
f : f = 0 on [−b, b]c, f (m) exists on R and

∫ b

−b
|f (m)|2 ≤ B

}
, (21)

W := {W ∈ RK×K : W = UΣ
1/2
θ , U ∈ SO(K)}.

Here, the restriction that uk(·) be zero outside of an interval [−b, b] is not severe since we can let

uk(·) take on any value outside of the range of the data points without affecting the objective.

When the unmixed components Z1, . . . , ZK have sub-Weibull tails, we take b to be some power of

log n (the large deviation bound of maxi |Zi|).
Informally speaking, our main result for this section (Theorem 2) states that, under tail as-

sumptions on z = W0θ, the risk of our estimator R(Ŵ , û) tends to 0 at a rate of (K
3+ 1

m log2 K
n )

2m
2m+3

ignoring additional poly-log terms.

Remark 1. The estimator defined in (20) assumes knowledge of the true covariance matrix Σθ.

In the more realistic scenario where Σθ is estimated using the empirical covariance matrix Σ̂θ, our

estimation procedure would be to minimize F̂ (W,u) over W = V Σ̂
−1/2
θ for V ∈ SO(K) where we

use the empirical covariance Σ̂
−1/2
θ instead of the true covariance Σ

−1/2
θ .

Provided that ∥Σ̂θ − Σθ∥22 = Op(K/n), our estimator would still attain the rate given in The-

orem 2. To avoid introducing complicated new notation, we omit a formal proof in the estimated

Σ̂θ case and instead give a detailed description how to adapt the proof for the known Σθ case in

Section S4.8.

3.1 Assumptions

Theoretical analysis of nonparametric density estimation typically assumes that the true underlying

density is compactly supported. Since this is unrealistic in a functional data analysis setting, we use

a truncation argument to allow the density of θ to be supported on RK . Most of our assumptions
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relate to the tail behavior of the unmixed coefficients z = W0θ (and thus also of θ) and are used

only in the truncation argument.

Before stating the assumptions, we need the following definition.

Definition 1. Let α, C̃, σ > 0. We say that a random variable X with mean-zero and unit variance

is (α, C̃, σ)-sub-Weibull if for all t > 0, we have

P(|X| ≥ t) ≤ C̃ exp
(
−(t/σ)α

)
.

We note that if b = 2σ(3 log n)1/α and if X is (α, C̃, σ)-sub-Weibull, then P(|X| > b
2) ≤

C̃
n3 .

Condition 2. We make the following assumptions, which are stated in terms of non-negative

quantities c0, R0, R1, δ0, c1,M .

A1 Write c0 := maxk∈[K], j∈[m] |u
(j)
0k (0)|. We assume that B is chosen large enough so that

c0 ≤ B1/2

2m+1 and that
∫ b
−b |u

(m)
0k |

2 ≤ B
22(m+1)c2m

where cm is a constant depending only on m.

A2 Assume there exists δ0 ≥ 1
2 such that R0 := {E∥W⊤

0 u0(W0θ)∥2+2δ0
Σ̃

}
1

2+2δ0 < ∞ and that

R1 := maxk∈[K]{E|u′0k(W⊤
0k·θ)|1+δ0}

1
1+δ0 <∞.

A3 Assume that the distributions of Z1, . . . , ZK are (α, C̃, σ)-sub-Weibull. Write c1 := maxk∈[K] EZ4
k <

∞.

A4 Write pk(·) as the density of Zk and assume M := maxk∈[K] supx∈R |pk(x)| <∞.

A5 Write C∗ := ∥Σ−1/2
θ Σ̃1/2∥2 and c∗ := smin(Σ

−1/2
θ Σ̃1/2) where smin(·) denotes the minimum

singular value of a matrix. Assume that 0 < c∗ < C∗ <∞.

We give a brief discussion of these assumptions. Condition A1 states that the parameter B in

the estimation procedure is chosen to be large enough so that the true score functions in u0 lie in

our constraint set Fb,B,m (or, more precisely, a version of u0 truncated to have support [−b, b]).
For instance, if u

(m)
0k is bounded, then we may choose B to be of the same order as b. Conditions

A2 and A3 are used in the truncation argument. The quantity 1
2 in the condition on δ0 has no

significance; it can be set to any value in (0, 1) at the cost of inflating the constants in the risk

bound. The Weibull tail decay parameter α is also allowed to take on any value greater than 0,

but a smaller α increases the power of the poly-log term in the risk bound. Conditions A4 and A5

are very mild.

Our model is identifiable up to a signed permutation if and only if at most one component of

z is Gaussian. Therefore, the rate of convergence in estimating W0 and u0 depends on a quantity

that measures the extent to which the distribution of z deviates from having at least two Gaussian

components. We define this quantity below:

Definition 2. We say that a matrix H ∈ RK×K is skew-symmetric if H = −H⊤ (note that if a

matrix is skew-symmetric, then its diagonals must be zero). Define

κ := inf
H

E∥ −Hu0(z) + (Ju0)(z)Hz∥22,

where the infimum is over all skew-symmetric H satisfying ∥H∥F = 1.
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It is not obvious that κ should relate to deviation from Gaussianity, but the next Lemma makes

the connection clear.

Lemma 2. Let z = (Z1, . . . , ZK)⊤ be independent random variables with mean-zero, unit variance,

and score function u0(t) = (u01(t), . . . , u0K(t))⊤. It holds that κ > 0 if and only if at most one Zj

is Gaussian.

To understand the definition of κ, we first review a characterization of special orthogonal

matrices from differential geometry. For any orthogonal matrix V ∈ SO(K), we can write V = eH

for some skew-symmetric matrix H; conversely, eH is always an orthogonal matrix in SO(K). In

particular, the identity matrix is the exponential of the zero matrix (every entry is zero). This

correspondence is not unique in that we may have V = eH = eH
′
for two different skew-symmetric

matrices H,H ′. However, using the definition of the matrix exponential, it is easy to show that if

V = eH for some skew-symmetric matrix H such that ∥H∥F is small, then ∥V − I∥F must also be

small (see Lemma 9). This characterization of SO(K) also plays a crucial role in our optimization

algorithm, as we discuss in Section S1.2.

If u0 is the score function of random vector z, then the score function of the rotated random

vector eHz is z 7→ e−Hu0(e
Hz). Using the fact that the derivative of r 7→ erH is HerH for r ∈ R,

we can differentiate e−rHu0(e
rHz)−u0(z) with respect to the scalar r to see that the derivative at

r = 0 is exactly −Hu0(z) + (Ju0)(z)Hz. Therefore, κ can be interpreted as how much the score

function changes if we apply an infinitesimally small rotation to z in the direction of eH .

3.2 Main Result

Let X(t) = m∗(t) + g(t) be a new functional curve that is independent and identically distributed

to the training data Xi(t), i = 1, . . . , n. Denote by θ the basis coefficient vector of X(t) defined

analogously to the θi’s when a working basis s(t) is used. Then θ is independent and identically

distributed to the θi’s. We have the following result on the estimation accuracy of the FEmBa

estimate m̂s
X(t) as defined in (7) compared to the oracle Tweedie estimate m̃s

X(t).

Theorem 2. Let Ŵ and û be estimators defined as (20) where we choose b = 2σ(3 log n)1/α and

B and m ≥ 3 to satisfy A1 in Condition 2. Assume also A2, A3, and A4 in Condition 2.

There exists universal constants C,C ′ > 0 and a constant ξ > 0 possibly depending on u0 such

that if n
3

2m+3 ≥ CKR2
0R1C̃, that n

1
2m+3 ≥ C log n, and that

n
m−1
2m−1 log−1 n ≥ C

C6
∗

c∗
b8mB2K2(logK)

(
K2c1
κ2
∨ 1

ξκc2∗

)
, (22)

then, with probability at least 1− C′C̃
n ,

Eθ∥Ŵ⊤û(Ŵθ)−W⊤
0 u0(W0θ)∥2Σ̃ ≤

(
K3+ 1

m log2K

n

) 2m
2m+3 C8

∗
c4∗κ

2
M226mb6m

2
B2m+4,

where the expectation above is taken with respect to θ.
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As a direct consequence, we have with probability at least 1− C′C̃
n , the FEmBa estimate m̂X(t) =

s(t)⊤(θ + Ŵ⊤û(Ŵθ)) satisfies that

Eθ[∥m̂s
X − m̃s

X∥2] ≤
(
K3+ 1

m log2K

n

) 2m
2m+3 C8

∗
c4∗κ

2
M226mb6m

2
B2m+4.

We relegate the full proof of Theorem 2 to Section S4.3 of the appendix and sketch the main

ideas in Section 3.2.1.

Remark 2. The quantities C∗, c∗,M,m, κ do not depend on n. The quantity b has poly-logarithmic

dependence on n. Therefore, so long as B has poly-logarithmic dependence on n, Theorem 2 shows

that the rate of convergence is at least as fast as O

(
(K

3+ 1
m log2 K
n )

2m
2m+3 polylog(n)

)
.

Theorem 2 as stated requires m to be at least 3 but the same result holds for m = 2 if we replace

the Sobolev constraint
∫ b
−b |u

(m)
k |

2 ≤ B with a stronger Hölder constraint ∥u(m)
k ∥∞ ≤ Bb2 in the

estimation procedure (20).

Theorem 2 bounds the expected out-of-sample error. Using similar techniques, we can also

provide guarantees on the in-sample error with respect to the n observed curves.

Theorem 3. Let Ŵ and û be estimators defined as (20) where we choose b = 2σ(3 log n)1/α and

B and m ≥ 3 to satisfy Condition 2, A1. Assume also A2, A3, and A4 in Condition 2. Under the

same conditions on n as in Theorem 2, we have that, with probability at least 1− 2C′C̃
n ,

1

n

n∑
i=1

∥Ŵ⊤û(Ŵθi)−W⊤
0 u0(W0θi)∥2Σ̃ ≤

(
K3+ 1

m log2K

n

) 2m
2m+3 C8

∗
c4∗κ

2
M226mb6m

2
B2m+4.

As a direct consequence, with probability at least 1− 2C′C̃
n ,

1

n

n∑
i=1

∥m̂s
Xi
− m̃s

Xi
∥2 ≤

(
K3+ 1

m log2K

n

) 2m
2m+3 C8

∗
c4∗κ

2
M226mb6m

2
B2m+4.

We relegate the full proof of Theorem 3 to Section S4.4 of the appendix.

One of the key steps in proving Theorems 2 and 3 is to show that our risk function is locally

strongly convex around W0,u0. To be precise, define the equivalence class

[W0,u0] = {(W̃0, ũ0) : for a signed perm. matrix P , W̃0 = PW0, ũ0(z) = Pu0(P
⊤z)}, (23)

and all W̃0, ũ0 in the equivalence class yield the same score function W̃⊤
0 ũ0(W̃0θ). Then, Corollary 5

in the appendix (particularly (S4.57)) shows that if W,u is sufficiently close to some (W̃0, ũ0) ∈
[W0,u0], then

E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥2Σ̃ ≥ c2∗

{κ
4
∥WW̃−1

0 − IK∥2F +
1

4
E∥u(z)− ũ0(z)∥22

}
,

Combining this with Theorem 2, we also show consistency in the estimation of W0 and of u0:
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Corollary 1. Under the same conditions given in the statement of Theorem 2, with probability at

least 1− C′C̃
n , there exists (W̃0, ũ0) ∈ [W0,u0] such that

∥ŴW̃−1
0 − IK∥2F ≤ 8

(
K3+ 1

m log2K

n

) 2m
2m+3 C8

∗
c6∗κ

3
M226mb6m

2
B2m+4,

K∑
k=1

Ez(ûk(Zk)− ũ0k(Zk))
2 ≤ 12

(
K3+ 1

m log2K

n

) 2m
2m+3 C8

∗
c6∗κ

2
M226mb6m

2
B2m+4,

where the expectation is with respect to z = (Z1, . . . , ZK)⊤, and ũ0 = (ũ01, . . . , ũ0K)⊤.

We prove Corollary 1 in Section S4.3.1 of the appendix.

Remark 3. In Theorem 2, we require n to be large enough where the lower bound depends on a

scalar ξ > 0, which, as shown in the proof of Theorem 2, is defined as the largest real number such

that if E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥2Σ̃ ≤ ξ for any W,u, then

E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥2Σ̃ ≥ c2∗

κ

8
min
P
∥PWW−1

0 − IK∥2F

where the minimum with respect to P is over all signed permutation matrices. We prove in Propo-

sition 8 that so long as κ > 0, ξ exists and is strictly positive. The magnitude of ξ depends on

smoothness of the underlying density of z (and hence of u0) but the exact relationship is difficult

to characterize. We leave an in-depth investigation to future work.

Remark 4. We have not optimized the dependence on K in the rate given in Theorem 2. A

dependence of K2 is unavoidable since we need to estimate a square matrix W0.

We have an exponent of 2m
2m+3 on n instead of 2m

2m+1 which one might expect from estimating

univariate functions with m degrees of smoothness. This is because the first derivative u′k appears

in the optimization objective (20), which has only m − 1 degree of smoothness. This leads one to

expect a rate of 2(m−1)
2(m−1)+1 which is still larger than 2m

2m+3 . The difference is explained by the fact

that our risk is still in terms of uk and hence, we have to bound the error on uk from error bounds

on u′k, which leads to additional deterioration in the rate.

We suspect that the exponent 2m
2m+3 may not be optimal but it is not obvious what the optimal

rate should be even when W0 is known. Estimating a score function p′(x)/p(x) is different from

estimating the density p(x) because p(x) appears in the denominator and hence, the region where

p(x) is very small can still contribute significantly to the overall error.

Remark 5. Since the objective F̂ (W,u) in the estimation procedure (20) is not convex, our op-

timization algorithm (described in Section 4) may not obtain the global optimum. Theorem 2 applies

to any Ŵ , û such that F̂ (Ŵ , û)−F̂ (W0,u0) is no larger than the error bound
(K3+ 1

m log2 K
n

) 2m
2m+3 polylog(n)

given in Theorem 2.

3.2.1 Proof sketch

We give the full proof of Theorem 2 in Section S4.3 of the appendix and sketch the main ideas

here. The proof combines a truncation argument with empirical process theory techniques and a

local strong convexity analysis of the risk function.
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To be precise, we truncate by working on the event that the unmixed components Z1, . . . , ZK

lie in the hypercube [−b/2, b/2]K . This event occurs with high probability by assuming that all

components of zi are sub-Weibull. We can further bound the error introduced by the truncation

using A2 in Condition 2. On this event, we can use the 0-th order condition that F̂ (Ŵ , û) ≤
F̂ (W0,u0) to derive what is known as a “basic inequality” for an empirical process argument:

R(Ŵ , û) ≤
∣∣∣∣ 1n

n∑
i=1

ĝ(θi)− Eθi ĝ(θi)

∣∣∣∣ ≤ sup
g

∣∣∣∣ 1n
n∑

i=1

g(θi)− Eθig(θi)

∣∣∣∣
where g(·) is a function that correspond to a pair W,u and lies inside a function class G and

ĝ corresponding to Ŵ , û. To bound R(Ŵ , û), it thus suffices to analyze the supremum of the

empirical process supg∈G |n−1
∑n

i=1 g(θi)− Eθig(θi)|.
We then apply a peeling argument in which the key is bounding supg |n−1

∑n
i=1 g(θ)−Eθig(θ)|

where g(·) corresponds to W,u whose risk E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥2Σ̃ is bounded from above

by say r2 for various levels of r. To bound this supremum, we derive a bracketing entropy bound

on the function class G and a bound on the variance of g(θ). In particular, the bound on the

variance of g(θ) requires us to show that the risk is locally strongly convex, i.e., if E∥W⊤u(Wθ)−
W⊤

0 u0(W0θ)∥2Σ̃ is small, then W,u is also sufficiently close to W0,u0 up to a signed permutation

matrix transformation.

4 Fitting FEmBa

We now present an algorithm for estimating v0, needed for calculating the FEmBa estimate m̂s
X .

We start by presenting the following empirical risk function, which corresponds to (16) but with

the smoothness penalty residing in the objective function, that we minimize to obtain the FEmBa

estimate in practice:

Q̂(u,W ) =
1

n

n∑
i=1

u(Wθi)
⊤W Σ̃W⊤u(Wθi)

+

K∑
k=1

c(Wk·)

{
2

n

n∑
i=1

u′k(W
⊤
k·θi) + λ

∫
[u′′k(W

⊤
k·θ)]

2dθ

}
.

(24)

Recall that the true unmixing matrix, W0, has the representation W0 = U0Σ
−1/2
θ , where Σθ is

the covariance of θ, and U0 ∈ SO(K). Thus, we can further reparametrize (24) as a function of

u and U , and minimize it with respect to u and U under the constraint that U ∈ SO(K). Let

Qn(u, U) = Q̂(u, UΣ
−1/2
θ ). Then the optimization problem we wish to solve is

min
u,U

Qn(u, U) such that U ∈ SO(K). (25)

We minimize (25) via alternating coordinate descent, updating u while holding U constant,

and then updating U conditional on the updated u. The covariance matrix Σθ can be replaced

with the sample covariance matrix Σ̂θ. We stop the alternating process when the relative decrease

in the objective function Qn(u, U) falls below a pre-specified threshold. To optimize (25) with
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respect to u for a fixed U , we take a basis representation of u and optimize the basis coefficients;

to optimize U for a fixed u, we derive a geodesic gradient algorithm (see e.g. Plumbley (2005)) to

ensure that U stays in SO(K). We relegate the detailed description of the algorithm to Section S1

of the supplementary file.

Denote the final estimates as û and Û . Then the score function v0 can be estimated as

v̂(θ) = Ŵ⊤û(Ŵθ) with Ŵ = Û Σ̂
−1/2
θ (26)

The final FEmBa estimate m̂s
X(t) is then constructed according to (17).

5 Monte Carlo Simulations

We now assess the empirical performance of FEmBa, both in terms of how well it estimates the true

score function v0(θ), and how well FEmBa estimates of the mean curves estimate the true mean

curves, the m∗i(t)’s. We compare several different approaches in this simulation study that make

different assumptions about the data. The first approach assumes that the coordinates of θ are

independent, and is denoted as FEmBaNT . The next method assumes that decorrelation is sufficient

to produce independent coordinates of θ (i.e., Σ
−1/2
θ θ gives a vector with independent components),

and is denoted as FEmBaT . For both methods the score function v0(θ) = W⊤
0 u0(W0θ) is estimated

by minimizing the empirical risk function (24) with respect to u, with W = IK for FEmBaNT

and W = Σ̂
−1/2
θ for FEmBaT , respectively. Then the method introduced in Section 4 can be

used to get the estimate of u0, denoted as û. Thus, the final estimate of v0 can be obtained as

v̂(θ) = W⊤û(Wθ) with W = IK for FEmBaNT and W = Σ̂
−1/2
θ for FEmBaT . We also consider

an approach that estimates v(θ) via direct estimation of the multivariate density, and we denote

this method KDEM . This method utilizes a simplified vine-copula approach to obtain a kernel

density estimate of the underlying density of θ (Nagler and Czado, 2016). If we denote this density

estimate as f̂(θ), we then estimate the score function as v̂(θ) = ∇f̂(θ)/f̂(θ).
The next two methods, which we refer to as FEmBafastICA and FEmBajointICA, assume Model

(12), and exploit this assumption to estimate the needed score function. FEmBajointICA uses the

algorithm discussed in Section 4 to estimate u and U , and finally estimate v0 according to (26).

FEmBafastICA estimates the unmixing matrix W0 separately from u0. Specifically, the FastICA

algorithm is applied to the θi’s to obtain the estimate Ŵ . Then we minimize (24) with respect to

u with W held constant at the FastICA estimate Ŵ . Therefore, the main difference between these

two methods is whether W and u are jointly or separately estimated.

All four of these methods are compared to an oracle estimator, denoted ORACLE, which

assumes W0 is known. Since the true score function of θi generally does not admit an explicit

expression, for the oracle estimator we use the true unmixing matrix W0, and then estimate u0

numerically with the method discussed in Section S1.1. Finally we apply (26) to get the oracle

estimate of v0.

We generate the data from the following model so that θi has an ICA structure

θi = W̃0(yi
√
SNR + γi) = µ∗i + γ

∗
i , i = 1, . . . , n (27)

where the yi’s are i.i.d. random vectors with independent coordinates that have mean 0 and
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variance 1, γi
iid∼ N(0, IK), W̃0 is the mixing matrix, µ∗i = W̃0yi

√
SNR, γ∗

i = W̃0γi, and the

SNR > 0 is the signal-to-noise ratio of the problem. The coordinates of yi are simulated from an

asymmetric mixture of various different distributions including Weibull, Gamma, and Gaussian.

The parameter SNR controls the signal strength in the data, relative to the Gaussian noise. A

large signal-to-noise ratio implies that the behavior of the prior m∗i(t) is prevalent in the observed

data and that little shrinkage is necessary, while a small SNR implies the data is very corrupted by

Gaussian noise and that shrinkage is appropriate. We choose W̃0 = Σ
1/2
0 U⊤, where Σ0 has an AR(1)

structure with correlation parameter 0.3 and U ∈ SO(K). We also choose a basis, denoted sθ, in

which the curves are perfectly represented. In this notation, m∗i(t) = sθ(t)
⊤µ∗i, gi(t) = sθ(t)

⊤γ∗
i ,

and Xi(t) = m∗i(t) + gi(t). The basis sθ is chosen to be a 5-dimensional cubic spline basis. In the

following simulations, we generate J = 50 functional data sets, each with n = 1000 curves observed

at T = 100 time points {tj}Tj=1 over the interval [0, 1]. It is seen that our simulations consider

functional data observed at discrete but dense time points.

5.1 Score Function Estimation

We first evaluate each approach’s ability to estimate v0(θ) using θi’s fitted from the discretely

simulated data Xi(tj) with true basis sθ. We calculate θi using the empirical integral as

θi = T−1Σ−1
sθ

T∑
j=1

Xi(tj)sθ(tj). (28)

The robustness analysis with misspecified basis will be conducted in Section 5.3. Using the θi’s,

we compute v̂ using various methods and measure peformance with the empirical risk

1

n

n∑
i=1

(v̂(θi)− v0(θi))
⊤Σ̃(v̂(θi)− v0(θi)).

We present the comparison results in Section S2 of the supplementary file. The numerical results

(see Tables 9, 10, and 11 in the supplementary file) show that our proposed approach performs

best in all regimes except when SNR = 0.75 so that the data is predominantly Gaussian noise. See

detailed discussions in the supplementary file.

These results line up closely with existing works in the ICA literature, where FastICA is com-

pared to other approaches (Hastie and Tibshirani, 2002; Bach and Jordan, 2002). In particular,

as discussed in Hastie and Tibshirani (2002), “FastICA uses very simple approximations (to the

mutual information) based on a single (or a small number of) non-linear contrast functions, which

work well for a variety of situations, but not at all well for (the) more complex Gaussian Mix-

tures.” As we have seen, FEmBa also outperforms FastICA when the prior distribution for zi is

some sufficiently complicated mixture, though we are focusing on score function estimation, not

estimation of the unmixing matrix. In addition to the complexity of the mixture distribution for

z, the complexity of the distribution for θi is also related to the SNR. When the SNR is low, the

Gaussian noise curve dominates and thus the distribution of θi is close to Gaussian and has low

complexity, while when the SNR is high, the prior distribution of mi∗(t) dominates and thus the

distribution of θi’s have high complexity. This explains the relative performance of FEmBajointICA
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and FEmBafastICA.

5.2 Curve Estimation

We now evaluate each method’s ability to correct the bias in Xi(t) for estimating the true mean

curves m∗i(t)’s. The data are simulated in the same way as in the last section, and we add two

additional comparison methods that estimate the m∗i(t)’s. One method, SMOOTHED, produces

estimates of the m∗i(t)’s with m̂∗i(t) = sθ(t)
⊤θi, the unshrunk curves. The other approach ignores

the correlation structure betweenXi(t) at different time points, and estimates them∗i(t)’s pointwise

via the scalar version of Tweedie’s formula. In other words, at each time point t, we estimate m∗i(t)

by applying univariate Tweedie’s formula to the scalar data set {X1(t), · · · , XN (t)}. Note that we

are not first projecting the curves onto sθ(t) prior to applying Tweedie’s formula pointwise; neither

do we smooth these pointwise shrinkage estimates afterwards. We denote this approach as KDEU ,

which represents how we estimate the univariate score function vt(X(t)) at each time point t. As

with KDEM , we first obtain a kernel estimate of the density of X(t) at each time point, and then

use this estimate to approximate the corresponding score function vt(·). Here, we index the score

function by t to emphasize that it can vary from one time point to another. We remark that KDEU

was not included in the score function estimation results in the last section because this method

does not involve basis projection and hence its score function is different from the one used by other

methods.

The two kernel density estimation based methods, KDEM and KDEU , generally perform much

worse than ICA based methods, with the expectation that KDEU performs the best when SNR =

0.75, when the data is predominantly Gaussian noise, a scenario close to the ideal setting for

applying univariate Tweedie’s formula.

As we do not have a consistent estimator for the m∗i(t)’s, we measure performance by a relative

risk. Define the following loss function for curve estimation:

R̂m(m̂) =
1

n

n∑
i=1

∫
(m̂i(t)−m∗i(t))

2dt,

where m̂i(t) is an estimator of curvem∗i(t), and the integral above is evaluated numerically using the

discretely observed curves. As we have access to J data sets, we denote the value of R̂m calculated

from data set j as R̂
(j)
m . Our final measure of performance, then, is the following quantity:

R̂rel(m̂) =
1

J

J∑
j=1

|R̂(j)
m (m̂)− R̂

(j)
m (m̂oracle)|

R̂
(j)
m (m̂oracle)

, (29)

where R̂(j)(m̂oracle) is the empirical risk for the oracle Tweedie estimator for data set j. The

quantity R̂rel is used to measure each method’s ability to estimate the m∗i(t)’s relative to that

of the oracle estimator. The simulation results are in Tables 2 through 4. The relative perfor-

mance of the methods in these scenarios is very similar to that of the score function estimation,

where FEmBajointICA performs consistently best when the mixture distribution of the z’s has high

complexity, though FEmBafastICA and FEmBaT are more competitive when the SNR is low.
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SNR 0.75 1.562 2.375 3.188 4
FEmBaNT 333.93 661.13 495.84 409.52 345.4

(8.76) (21.33) (12.79) (8.17) (4.82)
FEmBaT 274.46 585 463.17 393.72 335.67

(9.89) (20.17) (12.36) (8.09) (4.74)
KDEM 396.54 566.39 445.34 375.47 316.6

(12.24) (18.78) (12.43) (7.93) (4.9)
KDEU 273.33 573.26 459.25 389.27 332.55

(9.59) (19.62) (12.36) (8.07) (4.88)
FEmBafastICA 306.36 544 391.78 310.17 244.63

(13.95) (20.23) (14.82) (10.55) (7.88)
FEmBajointICA 293.92 127.36 85.38 95.8 94.36

(21.45) (20.18) (11.51) (12.89) (8.77)
SMOOTHED 2711.86 1676.46 869.79 610.04 471.67

(45.02) (35.06) (15.12) (8.95) (4.85)

Table 2: Relative risk (29) of different curve estimators for several values of SNR. The
distribution of Yik is an asymmetric mixture of two Weibull distributions. All error values
in the table are multiplied by 103.

SNR 0.75 1.562 2.375 3.188 4
FEmBaNT 153.1 175.46 116.71 92.51 79.03

(3.48) (3.7) (1.99) (1.67) (1.74)
FEmBaT 83.67 121.09 91.28 78.64 69.54

(3.74) (3.74) (1.88) (1.52) (1.61)
KDEM 217.5 117.37 80.86 70.89 61.85

(7.2) (3.56) (2) (1.57) (1.71)
KDEU 87.54 119.73 89.65 76.94 68.68

(2.49) (3.53) (1.76) (1.6) (1.65)
FEmBafastICA 108.96 107.54 79.38 69.35 62.16

(6.8) (3.27) (2.25) (1.7) (1.7)
FEmBajointICA 142.01 45.31 35.46 55.53 61.12

(12.55) (4.32) (3.95) (3.38) (2.06)
SMOOTHED 2414.48 908.25 410.97 257.69 185.14

(28.72) (7.11) (3.25) (1.89) (1.99)

Table 3: Relative risk (29) of different curve estimators for several values of SNR. The
distribution of Yik is an asymmetric mixture of two Gamma distributions, one with shape
and scale parameters 1 and .5, respectively, and the other with shape and scale parameters
1 and 8, respectively. All error values in the table are multiplied by 103.
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SNR 0.75 1.562 2.375 3.188 4
FEmBaNT 104.13 189.83 153.8 142.97 131.22

(3.95) (5.38) (2.16) (1.68) (1.59)
FEmBaT 56.47 132.06 125.63 127.06 120.68

(3.34) (4.85) (2.07) (1.54) (1.56)
KDEM 143.32 138.46 123.58 125.16 118.97

(5.21) (4.87) (2.18) (1.54) (1.61)
KDEU 64.67 127.83 122.58 124.8 119.25

(3.58) (4.88) (2.12) (1.52) (1.56)
FEmBafastICA 91.76 35.96 11.23 8.97 7.31

(7.79) (4.19) (1.75) (1.15) (1.36)
FEmBajointICA 176.77 29.98 11.23 6.76 3.8

(14.77) (3.21) (1.47) (0.93) (0.83)
SMOOTHED 1933.35 925.92 448.44 308.29 237.21

(27.63) (9.46) (2.85) (1.87) (1.82)

Table 4: Relative risk (29) of different curve estimators for several values of SNR. The
distribution of Yik is an asymmetric mixture of a gamma distribution with shape and scale
parameters 1 and .5, respectively, and a Gaussian distribution with mean and standard
deviation 10 and 3, respectively. All error values in the table are multiplied by 103.

5.3 Robustness of the proposed method

We study the robustness of FEmBa for curve estimation from two perspectives: 1) when the

discretely observed curves are contaminated with discrete measurement errors; and 2) when the

basis s chosen for estimating the θi’s is misspecified and different from sθ that generates the data.

In all numerical studies presented in this section, we generate data from the following Model (30),

where we observe

Yi(tj) = Xi(tj) + εitj , (30)

with i = 1, . . . , 1000 and j = 1, . . . , 100. Here, εitj
iid∼ N(0, 0.03). We calculate the θi’s identically

to (28) with Xi(tj) replaced with Yi(tj). Note that these θi’s are generated from a misspecified

ICA model, even when the working basis s is the same as the true basis sθ, because of the added

Gaussian white noise εitj ’s.

Table 5 summarize the comparison results for curve estimation under the performance measure

(29) when the working basis s is chosen to be sθ. It is seen that the additional noise causes the ICA

model to be mis-specified and deteriorates the performance of all methods in almost all scenarios,

but the relative performance of these methods stays the same as discussed in the last section.

Table 6 presents results when the working basis s is also different from the true basis sθ. In

particular, the working basis is chosen to be a cubic B-spline basis with K = 5, while the underlying

true basis sθ is a cubic spline withK = 8. The results suggest that FEmBa can outperform standard

approaches, with FEmBajointICA outperforming FEmBafastICA, as long as the SNR is not very low.
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SNR 0.75 1.562 2.375 3.188 4
FEmBaNT 598.25 663.36 469.18 374.22 311.38

(16.14) (21.33) (13.14) (7.7) (3.14)
FEmBaT 717.1 704.29 490.5 394.44 325.77

(19.35) (22.51) (13.55) (7.98) (3.57)
KDEM 851.65 700.74 474.56 375.44 309.53

(20.5) (22.35) (13.19) (8.27) (3.57)
KDEU 571.28 623.49 449.35 363.84 305.98

(17.92) (20.35) (12.62) (7.68) (3.15)
FEmBafastICA 788.81 660.8 431.65 297.87 239.4

(22.8) (21.59) (13.16) (9.6) (6.47)
FEmBajointICA 800.71 254.17 175.88 163.68 157.71

(21.72) (11) (5.1) (3.53) (2.44)
SMOOTHED 2802.87 1724.49 887.93 624.43 479.25

(50.52) (33.49) (16) (8.98) (4.13)

Table 5: Relative risk of different curve estimators for several values of SNR. The distribution
of Yik is an asymmetric mixture of two Weibull distributions, and the curves are generated
according to Model (30). All error values in the table are multiplied by 103.

SNR 0.75 1.562 2.375 3.188 4
FEmBaNT 797.19 899.76 748.42 735.01 761.66

(15.49) (26.93) (14.48) (11.3) (7.37)
FEmBaT 336.43 772.74 709.14 715.75 748.94

(10.64) (25.84) (14.42) (11.33) (7.31)
KDEM 396.04 772.01 697.51 702.31 738.3

(12.12) (25.81) (14.15) (11.15) (7.23)
KDEU 277.87 776.21 715.77 718.34 750.3

(9.31) (24.86) (14.79) (11.55) (7.26)
FEmBafastICA 352.53 750.52 684.32 687.25 723.84

(12.33) (25.06) (14.22) (11.34) (8.24)
FEmBajointICA 330.75 669.41 625.35 650.89 705.97

(12.13) (23.25) (13.16) (12.01) (9.13)
SMOOTHED 2650.05 1787.56 1085.98 919.25 878.51

(40.9) (39.46) (17.01) (12.11) (7.66)

Table 6: Relative risk of different curve estimators for several values of SNR. In this scenario,
the distribution of Yik is an asymmetric mixture of two Weibull distributions, and the curves
are generated according to Model (30). The true basis that contains the curves is also
different than the basis chosen for modeling. All error values in the table are multiplied by
103.
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6 Exoplanet Radii Estimation

We demonstrate how FEmBa can help answer the important question on whether the radii estimates

for the exoplanets discovered by the Kepler missions are accurate. The exoplanet radii estimates

derived from the Kepler data are calculated via the transit method, which works as follows. During

missions, the Kepler telescope would point at a part of the sky for roughly 90 days and take multiple

“images” of that part of the sky, which after processing yield light curves for tracking the relative

flux of a star over time. If a planet passed in front of one of the stars Kepler was monitoring during

this time period a small, but consistent, drop in the brightness of the star would be observed. This

would manifest itself in a periodic dip in the flux values of the light curve. After some additional

preprocessing steps one can obtain a light curve that tracks the proportion of light blocked out by

the exoplanet as it transits the star, as a function of time, as we saw in Figure 1. One minus the

minimum value of this curve is referred to as transit depth τtd. The radius of the host star rs, one

can estimate the radius of the exoplanet, denoted rp with the following formula:

rp = rs
√
τtd. (31)

In the above equation, rs is usually well-estimated, and the challenge is to estimate τtd.

For this analysis we have access to NASA’s MAST database, which contains light curve data

for every star Kepler observed during its missions. We also have a data set cataloguing all the

exoplanets discovered by Kepler, as well as their various properties and the properties of their

host stars. After querying the MAST database and preprocessing the queried light curve data, we

have 2313 preprocessed light curves for which we calculate transit depths τtd, leading to exoplanet

radii estimates by (31). The data was queried and preprocessed with the Lightkurve package

(Lightkurve Collaboration et al., 2018). We assume that the observed data is generated according

to Model (30), with m∗i(t) representing a “perfect” observation of planet i’s transit around its host

star, gi(t) representing noise induced by various astronomical conditions and preprocessing steps,

and the εij ’s representing discrete observation error induced by the Kepler telescope itself, that

is normally distributed with mean 0 and variance σ2. If we had observed the m∗i(t)’s directly,

we would have perfect estimates of the transit depth (as one minus the minimum value of m∗i(t))

and thus the perfect estimate of the exoplanet radii. However, the data is corrupted by various

sources of noise, and thus it’s possible we need to correct for this noise, via FEmBa. As the

database contains multiple transit curves for each exoplanet we can also estimate Σγ using the

sample estimate based on these repeated measurements. This allow us to apply FEmBa to the

transit curves and generate bias-corrected estimates of exoplanet radii. If the corrections are minor,

then this suggests that current exoplanet radii estimates are rather accurate, assuming there are no

systematic biases in data collection that affect radii estimates as a whole. If the estimates generated

from the corrected curves are very different from the initial estimates, then perhaps our current

exoplanet radii estimates are not as accurate as we’d hope. The results of the correction analysis

are shown in Table 7.

Table 7 suggests that the uncorrected exoplanet radii estimates are quite accurate, and that the

FEmBa corrected estimates are almost identical to the uncorrected estimates. Upon reflection this

is not surprising, as the Kepler telescope was a space telescope, and thus there was no atmospheric

distortion of the light measurements it took. The telescope also observed light emissions of various
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Min Q1 Median Q3 Max
0.000 0.000 0.000 0.000 0.001

Table 7: Summary statistics for the distribution of the differences between the exoplanet
radii estimates derived from bias-corrected curves, and radii estimates derived from uncor-
rected curves.

objects for unusually long amounts of time, taking many measurements during each time period.

This allowed Kepler to observe the same planet transit its host star potentially many times, and

for each light curve to be densely observed. All of these factors significantly reduced the noise in

the data, leading to minimal selection bias.

6.1 Radii Estimation with Noise

The results of the previous section suggest that the Kepler light curve data is high quality data, with

very little noise. However, we can still assess FEmBa’s ability to correct these light curves when

corrupted with simulated noise, and recover improved estimates of exoplanet radii using simulated

data. To accomplish this, we generate data from the following model:

Xi(tl) = m∗i(tl) + gi(tl), i = 1, . . . , 2313; l = 1, . . . , 75,

wherem∗i(t) is a smoothed light curve from the raw data; gi(t) = sγ(t)
⊤γ, where γ ∼ N

(
0, 1√

SNR
Σγ

)
is a random vector of dimension 7; sγ is the basis in which gi(t) is exactly represented; and SNR

again represents the signal-to-noise ratio of the problem. For a given value of SNR we generate

J = 50 such data sets, with observation i of data set j being denoted as X
(j)
i . From the X

(j)
i ’s,

we use the methodologies presented in the simulation section to calculate the FEmBa estimates of

the m∗i’s. Unlike in the simulation section, we do not simulate m∗i(t)’s and thus they unlikely to

have an ICA structure. For these simulations we again vary the SNR, to examine performance of

the methods as a function of the amount of noise in the data. The measure of performance is the

expected RMSE of the exoplanet radii estimates, defined as

RMSE =
1

J

J∑
j=1

(
1

N

N∑
i=1

(r̂ij − ri)
2

)1/2

, (32)

where r̂ij denotes the estimate provided for planets i’s radius, obtained from data set j, and ri
is planet i’s radius calculated from the raw data and is treated as the underlying truth here. We

calculate the RMSE for each method, and each value of the SNR. The results of this analysis are

in Table 8. We can see that the bias-corrected curves provide significantly better estimates of the

exoplanet radii than the uncorrected curves, and that both ICA based methods provide the best

estimates. The fact that FEmBajointICA does not provide much improvement over FEmBajointICA

may be a result of the lack of an exact ICA structure in the data.
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SNR 2 4 6 8
FEmBaNT 17171.364 13847.819 12246.897 11227.897

(77.016) (62.933) (60.188) (47.835)
FEmBaT 13380.170 12223.583 11506.627 11075.360

(97.709) (69.348) (61.836) (55.113)
FEmBafastICA 10374.177 8897.552 7911.384 7399.863

(131.708) (75.206) (67.045) (55.001)
FEmBajointICA 10207.020 8820.057 7937.542 7383.864

(100.567) (71.002) (63.757) (60.385)
SMOOTHED 35587.135 28341.969 24732.566 22397.175

(119.453) (84.761) (85.886) (81.477)

Table 8: The expected RMSE for exoplanet radii estimates for each considered method, for
each considered value of the SNR.
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Supplementary material to “An empirical Bayes shrinkage method

for functional data”

Joshua Derenski, Yingying Fan, Gareth James, and Min Xu

S1 Algorithm for the joint risk optimization (24)

S1.1 Updating u with a given U

With a given U , the matrix (z1, · · · , zn)⊤ ∈ Rn×K can be estimated as U Σ̂
−1/2
θ θ, and W0 can be

estimated as W = U Σ̂
−1/2
θ . For simplicity of presentation, we abuse the notation and still use zi,

i = 1, . . . , n to denote these estimated unmixed independent components vectors in this section.

The values of the zi’s and W will be fixed at these given values in this section when estimating u0.

Recall that u0 has coordinates u0,k for k = 1, . . . ,K taking the form of a univariate function.

In minimizing (25) with respect to u = (u1, . . . , uK)⊤, we represent each uk using some pre-chosen

functional basis. Let suk
∈ Rlk be a prechosen lk-dimensional functional basis with at least the

second order derivative existing, and define uk(Zik) = suk
(Zik)

⊤βk, where the subscript uk and k

indicate that the basis representation and the coefficient vector βk may vary with k. Using matrix

notation we have

u(zi) = S (zi)
⊤β, (S1.1)

where zi = (Zi1, . . . , ZiK)⊤ and

S (zi) = diag(su1(Zi1), · · · , suk
(ZiK)) ∈ R(

∑K
k=1 lk)×K

is a block-diagonal matrix, and β = (β⊤
1 , . . . ,β

⊤
k )

⊤ ∈ R
∑K

k=1 lk . By substituting (S1.1) into (24),

we can represent the empirical counterpart to the risk in (24) as a quadratic function of β, and

thus can be easily optimized. The tuning parameter λ can be chosen using the cross validation

method with the loss function

ℓ(u) :=
1

n

n∑
i=1

u(zi)
⊤W Σ̃W⊤u(zi) +

K∑
k=1

c(Wk·)

{
2

n

n∑
i=1

u′k(Zik)

}
.

This concludes the alternating step for estimating u with a given U .

S1.2 Updating U with a given u

The value of u will be fixed at the given value throughout this section. We implement gradient

descent for searching for the optimal solution for U given u. Because of the constraint in (25), we

want to guarantee that our gradient descent updates stay within the feasible set. In fact, at the t-th

step in this algorithm, we want the corresponding estimate of U , denoted U (t), to be in SO(K).

The update step derived via a standard coordinate descent approach will not generate a sequence

of U (t)’s with this property, because SO(K) is not closed under addition or scalar multiplication.
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Thus, we propose to design an algorithm by utilizing the method presented in Plumbley (2005),

for which we now provide a brief overview.

Let us begin with some intuition. Notice first that if U1 ∈ SO(K) and U2 ∈ SO(K), then

U1U2 ∈ SO(K). In other words, SO(K) is closed under matrix multiplication. This provides us with

a way to “move” from any U1 ∈ SO(K) to a U2 ∈ SO(K): simply construct U3 = U2U
−1
1 ∈ SO(K),

and then left multiply U1 by U3. Now that we have a notion of movement in SO(K), we need to

pick the best direction in which to move. As we wish to minimize an objective function over this

space, the best direction should be the one of steepest descent, while remaining in SO(K).

As discussed in Plumbley (2005), the geodesic gradient descent can be used to implement this

move. Specifically, the (t + 1)-step update takes the form U (t+1) = exp(ηH)U (t), where H is a

skew-symmetric matrix (i.e., H⊤ = −H) and exp(∗) denotes the matrix exponential. To give an

intuition for this choice of H and for the matrix exponential, let us draw a connection between

skew-symmetric matrices, and orthogonal matrices. Denote the space of K × K skew-symmetric

matrices as so(K). This space of matrices is known to be a Lie Algebra, and in particular it is

closed under addition, and multiplication by a scalar. In fact, for any skew-symmetric H ∈ so(K),

exp(H) is an orthogonal matrix. The reverse is also true, that is, taking the matrix logarithm

of any U ∈ SO(K) yields a skew-symmetric matrix. Thus, if one were to convert the step t

update U (t) ∈ SO(K) to a matrix B ∈ so(K) via the matrix logarithm, one could then search

for the update U (t+1) by U (t+1) = exp(B + ηH) = U (t) exp(ηH) with η > 0 the step size. Thus,

constructing the geodesic step in terms of movement in so(K) will allow us to guarantee that when

we update U , we remain in SO(K). To justify such a step, notice that for the K×K identity matrix

IK ∈ SO(K), log(IK) is the zero matrix, meaning that U (t+1) = IKU (t) implies no movement in

SO(K). However, if we move from this origin to a non-zero matrix ηH ∈ so(K), this is equivalent

to going from U (t) ∈ SO(K) to exp(ηH)U (t) ∈ SO(K).

We are now ready to introduce the specifics of determining the H needed for a gradient descent

algorithm following the idea in Plumbley (2005). For our update step we need to compute the

geodesic gradient of Qn(u, U) with respect to U , denoted as ∇̃Qn(u, U), derived as follows. Recall

that movement in SO(K) can be thought of in terms of movement in so(K), by starting at the origin

and then moving to ηH ∈ so(K), and this translates to moving from an element U (t) ∈ SO(K)

to U (t+1) ∈ SO(K), where U (t+1) = exp(ηH)U (t). Following Plumbley (2005), we define the inner

product on so(K) as ⟨G,H⟩ = 1
2tr(GH) for any G,H ∈ so(K). We then define, if it exists, the

geodesic gradient ∇̃Qn(u, U) with respect to U as a skew-symmetric matrix such that for any

H ∈ so(K) where 1
2∥H∥

2
F = 1, it satisfies that

1

2
tr(∇̃Qn(u, U)⊤H) = lim

t→0

Qn(u, exp(tH)U)−Qn(u, U)

t
.

We next discuss the calculation of the right hand side above.

Observe that for each k ∈ 1, . . . ,K, the regular gradient of Qn(u, U) with respect to Uk·,
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denoted as ∇Uk·Qn(u, U), can be calculated as

∇Uk·Qn(u, U) =
1

n

n∑
i=1

{
2AUk·u

2
k(U

⊤
k· θ̃i) + 2(U⊤

k·AUk·)uk(U
⊤
k· θ̃i)u

′
k(U

⊤
k· θ̃i)θ̃i

+
∑
j ̸=k

AUj∗uk(U
⊤
k· θ̃i)uj(U

⊤
j∗θ̃i) + 2(U⊤

k·AUj∗)uj(U
⊤
j∗θ̃i)u

′
k(U

⊤
k· θ̃i)θ̃i

+ 2AUk·u
′
k(U

⊤
k· θ̃i) + 2(U⊤

k·AUk·)uk(U
⊤
k· θ̃i)u

′′
k(U

⊤
k· θ̃i)θ̃i

}
,

(S1.2)

where

θ̃ = Σ̂
− 1

2
θ θ, A := Σ̂

− 1
2

θ Σ̃Σ̂
− 1

2
θ .

The gradient of Qn(u, U) with respect to U , denoted as ∇Qn(u, U), then, is a K×K matrix whose

k-th row is ∇Uk·Qn(u, U). By Plumbley (2005) ∇̃Qn(u, U) can be calculated as

∇̃Qn(u, U) = ∇Qn(u, U)U⊤ − U∇Qn(u, U)⊤. (S1.3)

We then set the updating direction H in our gradient descent algorithm at U (t) as

H(t) = ∇̃Qn(u, U
(t)).

That is, we move from U (t) to U (t+1) by using the following updating rule

U (t+1) = exp(ηH(t))U (t).

This concludes the updating step of U for a given value of u.

S2 Simulation results for Section 5.1

In view of (8), we measure performance with the following empirical risk:

1

n

n∑
i=1

(v̂(θi)− v0(θi))
⊤Σ̃(v̂(θi)− v0(θi)). (S2.4)

Since the true score function v0(θ) generally does not admit an explicit expression, we use the

values of the score function provided by the oracle approach, discussed in Section 5, as a proxy of

the values of the true score function. Such risk is calculated for each of the simulated 50 data sets,

and their averages and standard errors are both presented in Tables 9 through 11.

Recall that the Yik’s, the entries of yi, are simulated from an asymmetric mixture of two distri-

butions. In cases where both components of the mixture distributions are skewed, FEmBajointICA

generally performs best, though FEmBaT and FEmBafastICA are competitive when the SNR is

quite low. These are consistent with our intuition gained from the univariate Tweedie’s formula

that when SNR is low, the shrinkage approach does not give much improvement on bias reduction.

KDEM performs poorly compared to ICA based FEmBa methods, which is not surprising because

of the well-known curse of dimentionality in multivariate density estimation.
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SNR 0.75 1.562 2.375 3.188 4
FEmBaNT 75.17 43.16 30.8 22.32 16.66

(2.46) (1.4) (0.89) (0.54) (0.29)
FEmBaT 42.79 38.41 29.44 21.81 16.44

(2.5) (1.38) (0.89) (0.54) (0.28)
KDEM 60.8 39.59 29.47 21.47 16.03

(2.29) (1.29) (0.87) (0.53) (0.28)
FEmBafastICA 47.85 36.48 25.36 17.35 12.1

(2.82) (1.33) (0.95) (0.6) (0.38)
FEmBajointICA 46.11 10.01 5.83 5.87 4.65

(3.28) (1.08) (0.59) (0.65) (0.42)

Table 9: Score function error for several values of SNR. The distribution of Yik is an
asymmetric mixture of two Weibull distributions. All values in the table are multiplied by
103.

SNR 0.75 1.562 2.375 3.188 4
FEmBaNT 57.59 18.06 9.43 6.33 4.54

(1.71) (0.46) (0.18) (0.15) (0.14)
FEmBaT 22.96 12.78 7.86 5.67 4.21

(1.54) (0.48) (0.2) (0.15) (0.14)
KDEM 45.64 15.22 8.16 5.67 4.15

(1.57) (0.45) (0.19) (0.15) (0.13)
FEmBafastICA 25.52 11.83 6.91 5.04 3.81

(1.59) (0.43) (0.23) (0.15) (0.13)
FEmBajointICA 28.62 6.03 3.4 4.13 3.71

(2.28) (0.39) (0.32) (0.24) (0.16)

Table 10: Score function estimation for several values of SNR. The distribution of Yik is
an asymmetric mixture of two Gamma distributions, one with shape and scale parameters
1 and .5, respectively, and the other with shape and scale parameters 1 and 8, respectively,
shifted horizontally to the right by 10. All error values in the table are multiplied by 103.
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SNR 0.75 1.562 2.375 3.188 4
FEmBaNT 48.46 16.53 11.34 9.05 7.32

(1.36) (0.72) (0.29) (0.14) (0.12)
FEmBaT 14.13 11.08 9.58 8.3 6.93

(1.23) (0.7) (0.29) (0.13) (0.12)
KDEM 31.06 13.21 10.11 8.48 7.03

(1.23) (0.67) (0.29) (0.14) (0.12)
FEmBafastICA 20.54 4.82 1.72 0.92 0.64

(1.82) (0.43) (0.12) (0.06) (0.04)
FEmBajointICA 37.53 4.23 1.54 0.84 0.52

(2.81) (0.35) (0.12) (0.05) (0.03)

Table 11: Score function estimation for several values of SNR. The distribution of Yik is
an asymmetric mixture of a gamma distribution with shape and scale parameters 1 and
.5, respectively, and a Gaussian distribution with mean and standard deviation 10 and 3,
respectively. All error values in the table are multiplied by 103.

S3 Proofs of Results in Section 2

S3.1 Proof of Lemma 1

Proof. We drop subscript i respecting the observation id in the proof. For example, we write Xi(t)

as X(t). The basis s∗ is unknown, so we instead represent X(t) in finite dimensional basis s ∈ RK :

Xs(t) = s(t)⊤θs with θs = Σ−1
s

∫
s(t)X(t)dt, and we recall that Σs =

∫
s(t)s(t)⊤dt. We then have

θs = Σ−1
s

∫
s(t)X(t)dt

= Σ−1
s

∫
s(t)

∞∑
k=1

s∗k(t)θ
s∗
k dt

=

K∑
k=1

θs
∗

k Σ−1
s

∫
s(t)s∗k(t)dt+

∞∑
k=K+1

θs
∗

k Σ−1
s

∫
s(t)s∗k(t)dt.

(S3.5)

As we have assumed that limK→∞
∑

j>K |θs
∗

j | = 0 almost surely, it follows that∥∥∥∥∥
∞∑

k=K+1

θs
∗

k Σ−1
s

∫
s(t)s∗k(t)dt

∥∥∥∥∥
1

= max
i

∣∣∣∣∣
∞∑

k=K+1

θs
∗

k e⊤i Σ
−1
s

∫
s(t)s∗k(t)dt

∣∣∣∣∣
≤

∞∑
k=K+1

|θs∗k |max
i
∥e⊤i Σ−1

s

∫
s(t)s∗k(t)dt∥1 ≤

∞∑
k=K+1

|θs∗k |max
i

(∫
(e⊤i Σ

−1
s s(t))2dt

∫
(s∗k(t))

2dt

)1/2

≤ C
∞∑

k=K+1

|θs∗k |max
i

e⊤i Σ
−1
s ei.

Thus, the results in the lemma follows automatically.
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S3.2 Proof of Proposition 1

We wish to minimize E(
∫
(m∗i(t) − s(t)⊤µ)2dt) with respect to µ. Let ∥ ∗ ∥ denote the L2 norm.

Let us first expand this expression via the law of total expectation:

argmin
µ

E(
∫
(m∗i(t)− s(t)⊤µ)2dt

= argmin
µ

E(E(
∫

(m∗i(t)− s(t)⊤µ)2dt|θsi )).
(S3.6)

Thus, it suffices to minimize E[
∫
(m∗i(t)−s(t)⊤µ)2dt|θsi ] for every θsi . We thus consider the following

optimization problem:

argmin
µ

E(∥m∗i(t)− s(t)⊤µ∥2|θsi )

= argmin
µ

E(∥m∗i(t)− s(t)⊤µs
∗i + s(t)⊤µs

∗i − s(t)⊤µ∥2|θsi )

= argmin
µ

{
E(∥s(t)⊤µs

∗i − s(t)⊤µ∥2|θsi ) + E(∥m∗i(t)− s(t)⊤µs
∗i∥2|θsi )

}
= argmin

µ
E(∥s(t)⊤µs

∗i − s(t)⊤µ∥2|θsi ),

(S3.7)

where s(t)⊤µs
∗i is the projection of the curve m∗i(t) onto the basis s. Standard calculations then

show that the optimization problem on the last line is solved with µ = E(µs
∗i|θsi ), completing the

proof.

S3.3 Proof of Proposition 2

The proof follows automatically from the multivariate version of Tweedie’s formula and is thus

omitted.

S3.4 Proof of Theorem 1

Proof. In this proof, we will use ∂j to denote partial derivative with respect to the j-th coordinate

of θs. First note that by (5),

E∥m∗i − m̃s
Xi
∥2 = E[(µs

∗i − µ̃θi)
⊤Σs(µ

s
∗i − µ̃θi)] + E

∫
(m∗i(t)− s(t)⊤µs

∗i)
2dt,

E∥m∗i −Xs
i ∥2 = E[(µs

∗i − θsi )⊤Σs(µ
s
∗i − θsi )] + E

∫
(m∗i(t)− s(t)⊤µs

∗i)
2dt.

Let S = Σ
1/2
s . Recall that µ̃θi = θ

s
i +Σγv0(θ

s
i ) we have

E[(µs
∗i − µ̃θi)

⊤Σs(µ
s
∗i − µ̃θi)] = E∥S(µs

∗i − µ̃θi)∥
2
2

= E∥S(θsi − µs
∗i)∥22 + E∥SΣγv0(θ

s
i )∥22 + 2E[(θsi − µs

∗i)
⊤S⊤SΣγv0(θ

s
i )].

We next study E[(θsi − µs
∗i)

⊤S⊤SΣγv0(θ
s
i )]. By definitions, we have vj(θ), the jth component of

v0(θ), satisfies that vj(θ) = ∂j log f(θ), f(θ) =
∫
f(θ|µ)fµ(µ) and f(θ|µ) = ϕΣγ (θ−µ), where fµ
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is the marginal density of µs
∗i’s, ϕΣγ () is the density function of multivariate normal distribution

N(0,Σγ), and f(θ|µ) is the conditional density of θsi given µs
∗i. Let f(θ,µ) be the joint density of

θsi and µs
∗i. Thus,

∇θf(θ,µ) = ∇θf(θ|µ)fµ(µ) = −Σ−1
γ (θ − µ)f(θ|µ)fµ(µ) = −Σ−1

γ (θ − µ)f(θ,µ).

Then it follows from the above result and v0(θ) = ∇θ log f(θ) that

E[(θsi − µs
∗i)

⊤S⊤SΣγv0(θ
s
i )] =

∫
(θi − µi)

⊤S⊤SΣγv0(θi)f(θi,µi)dθidµi

= −
∫

(Σγv(θi))
⊤S⊤SΣγ∇θif(θi,µi)dθidµi

= −
∫
(ΣγS

⊤SΣγv(θi))
⊤∇θif(θi,µi)dθidµi

=

∫
tr
(
(ΣγS

⊤SΣγ∇2
θi
log f(θi))

)
f(θi,µi)dθidµi

= E[tr(ΣγS
⊤SΣγ∇2

θi
log f(θi)],

where in the second to last step we have used integration by parts and the assumption that

f(θ,µ)→ 0 as ∥θ∥∞ →∞. Note that it is well know that

E[∇2
θ log f(θ)] = −E[(∇θ log f(θ))(∇θ log f(θ))

⊤] = −E[v0(θ)(v0(θ))
⊤]

is the fisher information matrix. It follows from

E[tr(ΣγS
⊤SΣγ∇2

θi
log f(θi)] = −tr(E[ΣγS

⊤SΣγv0(θi)(v0(θi))
⊤]) = −E∥SΣγv0(θi)∥22

that the desired result is proved. This completes the proof.

S4 Proof of Results in Section 3

Notation for this section: Recall that our data consists of random vectors D := {θ1, . . . ,θn}
and we have zi := W0θi. Given estimators Ŵ , û constructed from data, we write

Eθ∥Ŵ⊤û(Ŵθ)−W⊤
0 u(W0θ)∥22 := E

[
∥Ŵ⊤û(Ŵθ)−W⊤

0 u(W0θ)∥22
∣∣∣∣D]

as the L2 distance between the estimators and the truth.

For a function f : Rn → Rm and z ∈ Rn, we write (Jf)(z) ∈ Rm×n as the Jacobian of f at z

and write (D(2)f)(z) as the second derivative tensor; for x,y ∈ Rn, we use (D(2)f)(z)[x,y] ∈ Rm

to denote a vector where (D(2)f)(z)[x,y]k = x⊤(∇(2)fk)(z)y. For a matrix W , we write smin(W )

to denote its minimum singular value. We write ∥W∥2 as the operator (spectral) norm of W and

∥W∥F as the Frobenius norm.

Throughout the analysis, we use C,C ′, C1, C2 to represent generic universal constants. The

actual values of these may change from instance to instance.
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S4.1 Variable transformation

To simplify notation, we make, for the entirety of Section S4, the following transformation:

W0 ←W0Σ̃
1/2, θ ← Σ̃−1/2θ.

We note that z = W0θ remains invariant after the transformation. We further reparametrize

W ←W Σ̃1/2,

and, for the entirety of Section S4, we abuse notation and use the same symbols W0,θ,W to

represent the new parametrization.

With the new parametrization, the risk function (15) has the simplified form

R(W,u) = E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22 (S4.8)

= E∥W⊤u(Wθ)∥22 + 2
K∑
k=1

∥Wk·∥22 Eu′k(W⊤
k·θ) + E∥W⊤

0 u0(W0θ)∥22, (S4.9)

where c(Wk·) defined in (15) becomes ∥Wk·∥22 and the covariance of θ is Eθθ⊤ = Σ̃−1/2ΣθΣ̃
−1/2.

The empirical risk takes the form

F̂ (W,u) =
1

n

n∑
i=1

∥W⊤u(Wθi)∥22 + 2

K∑
k=1

∥Wk·∥22
1

n

n∑
i=1

u′k(W
⊤
k·θi).

Our estimator remains the same as in (20)

(Ŵ , û) := argmin
W,u1,...uK

F̂ (W,u)

s.t. W ∈ W and u1, . . . , uK ∈ Fb,B,m, (S4.10)

where Fb,B,m is defined as in (21) but W is now defined as

W := {W ∈ RK×K : W = U Σ̃1/2Σ
1/2
θ , U ∈ SO(K)}.

We can convert the estimated Ŵ , û back to the original parametrization by simply setting Ŵ ←
Ŵ Σ̃−1/2 and leaving û the same.
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S4.2 Proof of Theorem 2

We adopt the notation defined as the beginning of Section S4 and the variable transformation

described in Section S4.1. The following quantities appear in the analysis:

A1 :=
C2
∗

c∗
b2m+1B (S4.11)

A2 :=

{
C4
∗

c2∗κ
M23mb2m

2
Bm+1

}1/2

(S4.12)

A3 :=
C∗4

c2∗κ
M23mb3m

2
Bm+2 (S4.13)

A4 := C2
∗b

2mBR2
0R1C̃. (S4.14)

It is useful to define the following function classes:

Gr :=
{
g ∈ R(RK) : g(θ) = ∥W⊤u(Wθ)∥22 − ∥W⊤

0 u0(W0θ)∥22 (S4.15)

+ 2
K∑
k=1

∥Wk·∥22u′k(W⊤
k·θ)− 2

K∑
k=1

∥W0k·∥22u′0k(W⊤
0k·θ),

and E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22 ≤ r2,

where u1, . . . , uK ∈ Fb,B,m,W ∈ W
}
,

G(b)r := {gb(θ) = g(θ)1z∈[− b
2
, b
2
]K : g ∈ Gr}, (S4.16)

where z = W0θ in (S4.16) and where u(z) = (u1(Z1), . . . , uK(ZK))⊤ for z = (Z1, . . . , ZK)⊤ ∈ RK ,

and u0 and u0k are defined analogously.

S4.3 Proof of Theorem 2

Proof. (of Theorem 2)

Recall that zi = W0θi; we define the event

Eb =
{
z1, . . . ,zn ∈

[
− b

2
,
b

2

]K}
. (S4.17)

We write t := A3

(K3+ 1
m log2 K
n

) m
2m+3 . Also, as a short-hand, define

F (W,u) := E∥W⊤u(Wθ)∥22 + 2

K∑
k=1

∥Wk·∥22Eu′k(W⊤
k·θ),

F̂ (W,u) :=
1

n

n∑
i=1

∥W⊤u(Wθi)∥22 + 2
K∑
k=1

∥Wk·∥22
1

n

n∑
i=1

u′k(W
⊤
k·θi).

By Lemma 6 and under Condition 2 A1, there exists function ũ0 = (ũ01, . . . , ũ0K)⊤ such that
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ũ0k ∈ Fb,B,m. Morever, on event Eb, we have that ũ0(W0θi) = u0(W0θi) for all i ∈ [n]. Using the

fact that û, Ŵ is the minimizer of F̂ over Fb,B,m therefore,

F̂ (Ŵ , û) ≤ F̂ (W0, ũ0) = F̂ (W0,u0). (S4.18)

Thus, using the fact that R(W0,u0) = 0, we have

R(Ŵ , û) = F (Ŵ , û)− F (W0,u0) (S4.19)

= F (Ŵ , û)− F̂ (Ŵ , û) + F̂ (Ŵ , û)− F̂ (W0,u0)︸ ︷︷ ︸
≤0

+ F̂ (W0,u0)− F (W0,u0)

≤
(
F (Ŵ , û)− F (W0,u0)

)
−
(
F̂ (Ŵ , û)− F̂ (W0,u0)

)
≤
∣∣∣∣ 1n

n∑
i=1

ĝ(θi)− Eθĝ(θ)

∣∣∣∣, (S4.20)

where we define the g–function, which is implicitly associated with a pair (W,u), by

g(θ) := ∥W⊤u(Wθ)∥22 − ∥W⊤
0 u0(W0θ)∥22

+ 2
K∑
k=1

∥Wk·∥22u′k(W⊤
k∗θ)−

K∑
k=1

∥W0k·∥22u′0k(W⊤
0k·θ), (S4.21)

gb(θ) := g(θ)1z∈[− b
2
, b
2
]K , where z = W0θ,

and define ĝ as the g–function associated with Ŵ and û.

We continue from (S4.20). On the event Eb, it holds that ĝ(θi) = ĝ(θi)1zi∈[− b
2
, b
2
]K and thus,

R(Ŵ , û) ≤
∣∣∣∣ 1n

n∑
i=1

ĝ(θi)1zi∈[− b
2
, b
2
]K − Eθĝ(θ)

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

ĝ(θi)1zi∈[− b
2
, b
2
]K − Eθ

[
ĝ(θ)1z∈[− b

2
, b
2
]K

]∣∣∣∣
+

∣∣∣∣Eθ

[
ĝ(θ)1z/∈[− b

2
, b
2
]K

]∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

ĝ(θi)1zi∈[− b
2
, b
2
]K − Eθ

[
ĝ(θ)1z∈[− b

2
, b
2
]K

]∣∣∣∣+ 25
A4K

2

n

≤
∣∣∣∣ 1n

n∑
i=1

ĝb(θi)− Eθĝb(θ)

∣∣∣∣+ t2

2
,

where the penultimate inequality follows from Proposition 10 and the final inequality follows be-

cause, under the assumption that n
3

2m+3 ≥ 27KR2
0R1C̃, we have that 25A4K2

n ≤ t2

2 .

Let r1 > 0 be defined as in Proposition 3; by taking C in condition (22) suitably large, we may

satisfy the r1 ≤ C condition in the statement of Proposition 3. In addition, we take ξ = ξ1∧ξ2 = ξ2
(where ξ1 and ξ2 are possibly dependent on u0 and defined in Proposition 7 and 8 respectively)
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and obtain that r1 ≤ r0 ≤ 1 where r0 is defined in (S4.39). Define J := min{j ∈ N : 2jt ≥ r1} and
define

Sj :=
{
W ∈ W,u = (u1, . . . , uK)⊤ with u1, . . . , uK ∈ F :

22(j−1)t2 ≤ E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22 ≤ 22jt2

}
. (S4.22)

We then have by (S4.20) and Proposition 3 that

P
(
Eθ∥Ŵ⊤û(Ŵθ)−W⊤

0 u0(W0θ)∥22 ≥ t2, Eb
)

≤ P
(
∃W ∈ W, u1, . . . , uK ∈ F s.t. r21 ≥ E∥W⊤u(Wθ)−W⊤

0 u0(W0θ)∥22 ≥ t2

and
t2

2
+

∣∣∣∣ 1n
n∑

i=1

gb(θi)− Egb(θ)
∣∣∣∣ ≥ E∥W⊤u(Wθ)−W⊤

0 u0(W0θ)∥22, Eb
)

+ P(Eθ∥Ŵ⊤û(Ŵθ)−W⊤
0 u0(W0θ)∥22 ≥ r21, Eb)

≤
J∑

j=1

P
(
∃W,u1, . . . , uK ∈ Sj s.t.

∣∣∣∣ 1n
n∑

i=1

gb(θi)− Egb(θ)
∣∣∣∣ ≥ 22(j−2)t2, Eb

)
+

2

n4
. (S4.23)

We apply Corollary 2 to every term in (S4.23); we verify the conditions of Corollary 2 by letting

a = 22(j−2)t2 and r = 2jt. Since a = r2/4 and r ≤ r1 ≤ 1, it is immediate that a ≤ r2(1−
1
m
) and

also that a ≤ 8A2K
1
2
+ 1

2m r1−
1
m as A2,K ≥ 1.

Now, noting that (1− 1
m)(1− 1

2(m−1)) =
2m−3
2m , we have that

t ≥ (A3)
2m

2m+3

(
K3+ 1

m log2K

n

) m
2m+3

(⇒)

t
2m+3
2m ≥ 1√

n
A3(K

3
2
+ 1

2m logK) (⇒)

22(j−2)t2 ≥ 1√
n
A3(K

3
2
+ 1

2m logK)(2jt)
2m−3
2m

Therefore, we may apply Corollary 2 to (S4.23) to obtain that there exists universal C1, C2 > 0

such that

P
(
Eθ∥Ŵ⊤û(Ŵθ)−W⊤

0 u0(W0θ)∥22 ≥ t2, Eb
)

≤ 2

n4
+

J∑
j=1

C1 exp

(
−n 24(j−2)t4

C2A2
2K

1+ 1
m 22j(1−

1
m
)t2(1−

1
m
)

)

≤ 2

n4
+

J∑
j=1

C1 exp

(
−n 22jt

2m+2
m

2−8C2A2
2K

1+ 1
m

)

≤ 2

n4
+ C1 exp

(
−n t

2m+2
m

2−8C2A2
2K

1+ 1
m

){
1− exp

(
−n t

2m+2
m

2−8C2A2
2K

1+ 1
m

)}−1

≤ 2

n4
+ C1 exp

(
−n t

2m+2
m

2−8C2A2
2K

1+ 1
m

)
≤ 2

n4
+

C1

n
,
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where the penultimate and the last inequality follows because, by taking C suitably large and

noting that A3 ≥ A2
2, we have n t

2m+2
m

2−8C2A2
2K

1+ 1
m
≥ log n under our condition on n. Therefore,

P
(
Eθ∥Ŵ⊤û(Ŵθ)−W⊤

0 u0(W0θ)∥22 ≥ t2
)

≤ P
(
Eθ∥Ŵ⊤û(Ŵθ)−W⊤

0 u0(W0θ)∥22 ≥ t2, Eb
)
+ P(Ecb ) ≤

2

n4
+

C1

n
+

C̃K

n2
.

The conclusion of the Theorem follows as desired.

Proposition 3. Define r21 := n− m−1
2m−1A

1
2m−1

1 b4mC4
∗K

2(logK)(log n). There exists universal con-

stants C,C ′ > 0 such that if r21 ≤ C and n2 log n ≥ C ′R2
0R1C̃, then

P
(
Eθ∥Ŵ⊤û(Ŵθ)−W⊤

0 u0(W0θ)∥22 ≥ r21, Eb
)
≤ 2

n4
.

Proof. We work on the event Eb. From (S4.20) in the proof of Theorem 2, we have

R(Ŵ , û) ≤
∣∣∣∣ 1n

n∑
i=1

ĝ(θi)− Eθĝ(θ)

∣∣∣∣. (S4.24)

Define r2u := 2b2mC2
∗BK + 2R2

0, then we have that for any W ∈ W and u1, . . . , uK ∈ Fb,B,m,

we have by assumption A2 and Proposition 9 that

E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22 ≤ 2E∥W⊤u(Wθ)∥22 + 2E∥W⊤

0 u0(W0θ)∥22 ≤ r2u.

On the event Eb, we have further have that

R(Ŵ , û) ≤
∣∣∣∣ 1n

n∑
i=1

ĝ(θi)1zi∈[− b
2
, b
2
]K − Eθĝ(θ)

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

ĝ(θi)1zi∈[− b
2
, b
2
]K − Eθ

[
ĝ(θ)1z∈[− b

2
, b
2
]K

]∣∣∣∣
+

∣∣∣∣Eθ

[
ĝ(θ)1z/∈[− b

2
, b
2
]

]∣∣∣∣.
≤ sup

gb∈G
(b)
ru

∣∣∣∣ 1n
n∑

i=1

gb(θi)− Egb(θ)
∣∣∣∣+ 25

A4K
2

n3

≤ sup
gb∈G

(b)
ru

∣∣∣∣ 1n
n∑

i=1

gb(θi)− Egb(θ)
∣∣∣∣+ r21

2
,

where the penultimate inequality follows from Proposition 10 and the last inequality follows because,

when n2 log n ≥ 26R2
0R1C̃, then 25A4K2

n3 ≤ r21
2 .

Let ϵ :=
r21
4 and let G∗ be an ϵ–L∞ covering of Gbru . We have by Proposition 5 that, for some
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universal constant C1 > 0,

log |G∗| ≤ C1K
2 log

KA1

r21
+ C1A

1
m−1

1 b4B
1

m−1K
m

m−1 r
− 2

m−1

1

Then, we have that, by Hoeffding’s inequality (with Proposition 9) and union bound,

P(Eθ∥Ŵ⊤û(Ŵθ)−W⊤
0 u0(W0θ)∥22 ≥ r21, Eb)

≤ P
(

sup
gb∈G

(b)
ru

∣∣∣∣ 1n
n∑

i=1

gb(θi)− Egb(θ1)
∣∣∣∣ ≥ r21

2
, Eb
)

≤ P
(
sup
g̃∈G∗

∣∣∣∣ 1n
n∑

i=1

g̃(θi)− Eg̃(θ1)
∣∣∣∣ ≥ r21

4
, Eb
)

≤ 2 exp

(
−2−4 nr41

b4mC4
∗B

2K2
+ C1K

2 log
KA1

r21
+ C1A

1
m−1

1 b4B
1

m−1K
m

m−1 r
− 2

m−1

1

)
.

Straightforward calculation yields that, with r21 := n− m−1
2m−1A

1
2m−1

1 b4mC4
∗K

2(logK)(log n) there

exists a universal constant C2 > 0 such that if r1 ≤ C2, then

2−5 nr41
b4mC4

∗B
2K2

≥ 4 log n,

2−6 nr41
b4mC4

∗B
2K2

≥ C1A
1

m−1

1 b4B
1

m−1K
m

m−1 r
− 2

m−1

1 ,

2−6 nr41
b4mC4

∗B
2K2

≥ C1K
2 log

KA1

r21
.

Hence, we have that

P(Eθ∥Ŵ⊤û(Ŵθ)−W⊤
0 u0(W0θ)∥22 ≥ r21, Eb) ≤ 2 exp

(
−4 log n

)
≤ 2

n4
.

The proposition follows as desired.

S4.3.1 Proof of Corollary 1

Under condition (22) in Theorem 2, it holds that(
K3+ 1

m log2K

n

) 2m
2m+3 C8

∗
c4∗κ

2
M226mb6m

2
B2m+4 ≤ r20 ≤ ξ2,

where r0 is defined in (S4.39) and ξ2 is defined in Proposition 8. Thus, on the event that

Eθ∥Ŵ⊤û(Ŵθ)−W⊤
0 u0(W0θ)∥22 ≤

(
K3+ 1

m log2K

n

) 2m
2m+3 C8

∗
c4∗κ

2
M226mb6m

2
B2m+4,
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we also have that Eθ∥Ŵ⊤û(Ŵθ)−W⊤
0 u0(W0θ)∥22 ≤ ξ2. Hence, by Proposition 8, we have

c2∗
κ

8
∥W̃W−1

0 − IK∥2F ≤ Eθ∥Ŵ⊤û(Ŵθ)−W⊤
0 u0(W0θ)∥22.

With condition (22), we may apply Corollary 5 to obtain that

c2∗
12

E∥u(z)− u0(z)∥22 ≤ Eθ∥Ŵ⊤û(Ŵθ)−W⊤
0 u0(W0θ)∥22.

The conclusion of Corollary 1 thus immediately follows.

S4.4 Proof of Theorem 3

Proof. (Proof of Theorem 3)

We define

t2 =

(
K3+ 1

m log2K

n

) 2m
2m+3 C8

∗
c4∗κ

2
M226mb6m

2
B2m+4

and define A as the event that the conclusion of Theorem 2 holds. That is,

A :=

{
Eθ∥Ŵ⊤û(Ŵθ)−W⊤

0 u0(W0θ)∥22 ≤ t2
}
.

Define also Eb as in (S4.17). We note that P(A ∩ Eb) ≥ 1− C′C̃
n by Theorem 2. We work on event

A for the remainder of this proof.

Using Lemma 6 and Assumption A1, there exist functions ũ0 = (ũ01, . . . , ũ0K) such that ũ0k ∈
Fb,B,m and that, on event Eb, we have ũ0(W0θi) = u0(W0θi) and likewise for the first derivative.

Hence, using the fact that û, Ŵ is the minimizer of the objective F̂ (W,u) over Fb,B,m, we have

1

n

n∑
i=1

∥Ŵ⊤û(Ŵθi)−W⊤
0 u0(W0θi)∥22

=
1

n

n∑
i=1

{
∥Ŵ⊤û(Ŵθi)∥22 + 2

K∑
k=1

∥Ŵk·∥22û′k(Ŵ⊤
k·θi) + ∥W⊤

0 u0(W0θi)∥22
}

− 2

n

n∑
i=1

{
Ŵ⊤û(Ŵθi)

}⊤{
W⊤

0 u0(W0θi)
}
− 2

n

n∑
i=1

K∑
k=1

∥Ŵk·∥22û′k(Ŵk·θi)

≤ 1

n

n∑
i=1

{
2∥W⊤

0 u0(W0θi)∥22 + 2

K∑
k=1

∥W0k·∥22u′0k(W⊤
0k·θi)

}

− 2

n

n∑
i=1

{
Ŵ⊤û(Ŵθi)

}⊤{
W⊤

0 u0(W0θi)
}
− 2

n

n∑
i=1

K∑
k=1

∥Ŵk·∥22û′k(Ŵk·θi)

≤
∣∣∣∣ 1n

n∑
i=1

ĝ♯(θi)− Eθĝ
♯(θi)

∣∣∣∣,
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where we define a new g♯-function, again implicitly associated with a pair (W,u), by

g♯(θ) = 2
(
W⊤

0 u0(W0θ)−W⊤u(Wθ)
)⊤

W⊤
0 u0(W0θ)

+ 2
K∑
k=1

{
∥W0k·∥22u′0k(W⊤

0k·θ)− ∥Wk·∥22u′k(W⊤
k·θ)

}
,

and define ĝ♯ as the g♯-function associated with Ŵ and û. It is seen that Eθg
♯(θ) = 0 be-

cause Eθ[(W
⊤u(Wθ)

)⊤
W⊤

0 u0(W0θ)] = −
∑K

k=1 ∥Wk·∥2Eθu
′
k(Wk·θ) which leads to Eθg

♯(θ) =

R(W0,u0) = 0. Define also

g♯b(θ) = g♯(θ)1z∈[− b
2
, b
2
]K , where z = W0θ. (S4.25)

Then, we have

1

n

n∑
i=1

∥Ŵ⊤û(Ŵθi)−W⊤
0 u0(W0θi)∥22 ≤

∣∣∣∣ 1n
n∑

i=1

ĝ♯(θi)1zi∈[− b
2
, b
2
]K − Eĝ♯(θ)

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

ĝ♯(θi)1zi∈[− b
2
, b
2
]K − E

[
ĝ♯(θ)1z∈[− b

2
, b
2
]K

]∣∣∣∣
+

∣∣∣∣E[ĝ♯(θ)1z/∈[− b
2
, b
2
]K

]∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

ĝ♯b(θi)− E
[
ĝ♯b(θ)

]∣∣∣∣+ 27
A4K

2

n

≤
∣∣∣∣ 1n

n∑
i=1

ĝ♯b(θi)− E
[
ĝ♯b(θ)

]∣∣∣∣+ t2

2
,

where the penultimate inequality follows from Proposition 10 and the final inequality follows from

the condition that n
3

2m+3 ≥ 27R0R1C̃.

Therefore, we have

P
(
1

n

n∑
i=1

∥Ŵ⊤û(Ŵθi)−W⊤
0 u0(W0θi)∥22 ≥ t2, A ∩ Eb

)

≤ P
(
∃W ∈ W, u1, . . . , uK ∈ Fb,B,m s.t.

∣∣∣∣ 1n
n∑

i=1

g♯b(θi)− Eg♯b(θ)
∣∣∣∣ ≥ t2

2
,

E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22 ≤ t2, Eb

)
. (S4.26)
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Analogous to (S4.15), we define function class

G♯r :=
{
g♯ : g♯(θ) = 2

(
W⊤

0 u0(W0θ)−W⊤u(Wθ)
)⊤

W⊤
0 u0(W0θ)

+ 2
K∑
k=1

{
∥W0k·∥22u′0k(W⊤

0k·θ)− ∥Wk·∥22u′k(W⊤
k·θ)

}
,

E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22 ≤ r2

}
G♯(b)r :=

{
g♯b(θ) = g♯(θ)1z∈[− b

2
, b
2
]K : g♯ ∈ G♯r

}
.

Similar to Corollary (3), we have that, for any r > 0, ϵ > 0 and L ≥ 2ϵ,

HB(ϵ,G♯(b)r , ρL) ≤ CK2 log
KA1

ϵ
+ CA

1
m−1

1 b4B
1

m−1K
m

m−1 ϵ−
1

m−1 . (S4.27)

Since g(θ) and g♯(θ) are almost identical, the proof of (S4.27) proceeds in exactly the same way as

that of Corollary (3) and Proposition 5. We omit a full proof for brevity.

Likewise, similar to Corollary 4, we have that for L = 4b2mBKC2
∗ and for r ≤ r0 (where r0 is

defined in (S4.39)), we have

ρ2L(g
♯
b(θ)− Eg♯b(θ)) ≤ C

C4
∗

c2∗κ
M23mb2m

2
Bm+1K1+ 1

m r2(1−
1
m
). (S4.28)

The proof of (S4.28) proceeds in exactly the same way as that of Corollary (4) and Proposition 6.

We omit a full proof for brevity.

Therefore, Corollary 2 holds for G♯(b)r . We apply Corollary 2 with a = t2/2 and r = t; we

may verify that all the conditions of Corollary 2 hold in exactly the same way as in the proof of

Theorem 2. Continuing from (S4.26), we have that

P
(
1

n

n∑
i=1

∥Ŵ⊤û(Ŵθi)−W⊤
0 u0(W0θi)∥22 ≥ t2, A ∩ Eb

)

≤ C exp

(
− nt4

2C2A2
2K

1+ 1
m t2(1−

1
m
)

)
≤ C exp

(
− nt

2m+2
m

2C2A2
2K

1+ 1
m

)
≤ C1

n
.

Therefore, we have that

P
(
1

n

n∑
i=1

∥Ŵ⊤û(Ŵθi)−W⊤
0 u0(W0θi)∥22 ≥ t2

)

≤ P
(
1

n

n∑
i=1

∥Ŵ⊤û(Ŵθi)−W⊤
0 u0(W0θi)∥22 ≥ t2, A ∩ Eb

)
+ P(Ac) + P(Ecb )

≤ 2
C1

n
+

C̃K

n2
.

The conclusion of the Theorem follows as desired.
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S4.5 Empirical process theory results

We first state a general theorem from empirical process theory. Let Y1, . . . , Yn be iid random objects

taking value in some measurable space Y and let G be a class of real-valued functions g(·) on Y.
For L > 0, define ḡ(·) = g(·)− Eg(θ) and

ρ2L(ḡ) = 2L2E
[
e

|ḡ(θ)|
L − 1− |ḡ(θ)|

L

]
. (S4.29)

We note that if ρ2L(ḡ) ≤ V , then the random variable ḡ(Y1) satisfies Bernstein’s condition (and

hence Bernstein’s inequality) with variance factor V and scale factor L.

For u > 0, define the bracketing entropy HB(u,G, ρL) as the logarithm of the cardinality of the

smallest set M such that for every g ∈ G, there exists (gU , gL) ∈ M such that gU ≥ g ≥ gL and

ρL(g
U − gL) ≤ u. Then, we have

Theorem S1. (Theorem 5.11 in van de Geer (2000))

Write R2 := supg∈G ρ
2
L(g) and suppose there exist C0, C1 > 0 such that

a ≤ C1R
2/L, a ≤ 8R

a ≥ C0√
n

(∫ R

0
H

1/2
B (u,G, ρL)du ∨R

)
.

Then, there exists C2 > 0 dependent only on C0, C1 such that

P
(
sup
g∈G

∣∣∣∣ 1n
n∑

i=1

g(Yi)− Eg(Y1)
∣∣∣∣ ≥ a

)
≤ C exp

(
− na2

C2R2

)
.

We apply Theorem S1 to G(b)r on our problem.

Corollary 2. Suppose r < r0 with r0 defined in (S4.39). Suppose there exists C0, C1 > 0 such that

a ≤ C1r
2(1− 1

m
), a ≤ 8A2K

1
2
+ 1

2m r1−
1
m , (S4.30)

a ≥ C0√
n

(
CA3(K

3
2
+ 1

2m logK)r
(1− 1

m
)(1− 1

2(m−1)
)
.

)
, (S4.31)

Then, there exists C2 > 0 dependent only on C0, C1 such that

P
(

sup
gb∈G

(b)
r

∣∣∣∣ 1n
n∑

i=1

gb(θi)− Egb(θ1)
∣∣∣∣ ≥ a

)
≤ C exp

(
− na2

C2A2
2K

1+ 1
m r2(1−

1
m
)

)
.

Proof. Write R := sup
gb∈G

(b)
r

ρ2L(gb). Since r < r0, we have from Corollary 4 that with

L = 4C2
∗b

2mBK,
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we have

R2 ≤ C
C4
∗

c2∗κ
M23mb2m

2
Bm+1Kr2(1−

1
m
).

We use the short-hand A2
2 := C4

∗
c2∗κ

M23mb2m
2
Bm+1 so that R2 = CA2

2K
1+ 1

m r2(1−
1
m
). We note then

that
R2

L
≥ C

C2
∗

c2∗κ
M23mb2m(m−1)BmK

1
m r2(1−

1
m
) ≥ Cr2(1−

1
m
).

Using Corollary 3 and the fact that
√
log x ≤ log(x+ 1) for all x > 0, we have that

H
1/2
B (u,G(b)r , ρL) ≤ CK log1/2

A1K

u
+ CA

1
2(m−1)

1 K
m

2(m−1)u
− 1

2(m−1) (S4.32)

≤ CK

(
log

A1K

u
+ 1

)
+ CA

1
2(m−1)

1 K
m

2(m−1)u
− 1

2(m−1) , (S4.33)

Using the fact that
∫ R
0 log c

udu = R+R log c
R for any c,R > 0 we have∫ R

0
H

1/2
B (u,G(b)r , ρL)du ≤ CKR

(
1 + log

A1K

R

)
+ CA

1
2(m−1)

1 K
m

2(m−1)R
1− 1

2(m−1)

≤ CK
3
2
+ 1

2mA2r
1− 1

m

(
log

A1K
1
2
− 1

2m

A2r
1− 1

m

+ 1

)
+ CA

1
2(m−1)

1 A
2m−3
2m−2

2 K
4m2−m−3

4m2−4m r
(1− 1

m
)(1− 1

2(m−1)
)

≤ CA3(K
3
2
+ 1

2m logK)r
(1− 1

m
)(1− 1

2(m−1)
)
.

where A3 =
C4

∗
c2∗κ

M23mb3m
2
BM+2 ≥ A1A2 log(A1/A2 + e).

S4.5.1 Bracketing entropy bounds

The following covering number result is due to Birman and Solomjak (Theorem 5.2 in Birman and

Solomjak (1967))

Lemma 3. Let H ⊂ R[−1,1] and T > 0 be such that
∫ 1
−1 h

2 ≤ T 2 and
∫ 1
−1 |h

(m)|2 ≤ T 2 for all

h ∈ H. Then, we have that, there exists a universal constant C > 0 such that, for any ϵ > 0,

logN(ϵ,H, L∞) ≤ Cϵ−1/mT 1/m.

Lemma 3 applies only to functions supported on the unit interval [−1, 1], but it is straightfor-
ward to extend the result to functions supported on any interval [−b, b].

Proposition 4. Let b ≥ 1 and T > 0. Let H ⊂ R[−b,b] such that
∫ b
−b h

2 ≤ T 2 and
∫ b
−b |h

(m)|2 ≤ T 2

for all h ∈ H. Then, we have that, there exists a universal constant C > 0 such that, for any ϵ > 0,

logN(ϵ,H, L∞) ≤ Cϵ−1/mT 1/mb.
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Proof. For any h ∈ H, define

h̃(x) =

√
b

bm
h(bx), for any x ∈ [−1, 1].

Then, we have that h̃(m)(x) =
√
bh(m)(bx) and that∫ 1

−1
|h̃(m)|2 =

∫ 1

−1
b|h(m)(bx)|2dx =

∫ b

−b
|h(m)(z)|2dz ≤ T 2.

Similarly, we have that ∫ 1

−1
h̃2 ≤

∫ 1

−1

b

b2m
h(bx)2dx ≤

∫ b

−b
h(z)2dz ≤ T 2.

Therefore, by Lemma 3, for any ϵ > 0, we have that logN(ϵ, {h̃ : h ∈ H}, L∞) ≤ Cϵ−1/m.

Since for any h̃1, h̃2 such that ∥h̃1 − h̃2∥∞ ≤ ϵ, we have that

sup
z∈[−b,b]

|h1(z)− h2(z)| ≤
bm√
b
ϵ ≤ bmϵ.

Therefore, an b−mϵ–L∞ covering of {h̃ : h ∈ H} is an ϵ covering of H. The claim follows immedi-

ately.

Now recall the definition of Gr and G(b)r from (S4.15). We may extend the covering number

results to these function classes.

Proposition 5. We have that, for any ϵ > 0 and r > 0,

logN(ϵ,G(b)r , L∞) ≤ CK2 log
KA1

ϵ
+ CA

1
m−1

1 b4B
1

m−1K
m

m−1 ϵ−
1

m−1 ,

where A1 := 24C2
∗

c∗
b2m+1B.

Before proving Proposition 5, we first derive an immediate corollary:

Corollary 3. For any r > 0, ϵ > 0, and for any L > 2ϵ,

HB(ϵ,G(b)r , ρL) ≤ CK2 log
KA1

ϵ
+ CA

1
m−1

1 b4B
1

m−1K
m

m−1 ϵ−
1

m−1 ,

where ρL is defined as (S4.29).

Proof. This follows given any ϵ–L∞–cover N , we may construct an 4ϵ–ρL–bracketing by {(g+ϵ, g−
ϵ) : g ∈ N}. To see this, note that ex − 1 − x ≤ x2 for all x ∈ (0, 1); hence, when L > 2ϵ, the ρL
value of a constant function 2ϵ is at most 4ϵ.

Proof. (of Proposition 5)

Fix ϵ > 0. Since every gb ∈ G
(b)
r is associated with u1, . . . , uK ∈ Fb,B,m and W ∈ W, we will
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construct a covering of

H :=

{
u1, . . . , uK ∈ Fb,B,m,W ∈ W : Eb∥W⊤u(Wθ)−W⊤

0 u0(W0θ)∥22 ≤ r2
}
.

Let ϵ1, ϵ2 > 0. There exists a ϵ1 Frobenius norm covering W∗ of W of cardinality log |W∗| ≤
CK2 log 1

ϵ1
.

By Lemma 5, for any f ∈ Fb,B,m, we have that
∫ b
−b |f(t)|

2dt ≤ 2b2m+1B. Therefore, by

Proposition 4, there exist F∗ an ϵ2–L∞ covering of Fb,B,m and F∗∗ an ϵ2–L∞ covering of Fb,B,m−1

such that

log |F∗| ≤ Cϵ
− 1

m
2 (2b2m+1B)

1
m b ≤ Cϵ

− 1
m

2 b4B1/m,

log |F∗∗| ≤ Cϵ
− 1

m−1

2 (2b2m−1B)
1

m−1 b ≤ Cϵ
− 1

m−1

2 b3B
1

m−1 .

We will show that, for appropriately chosen ϵ1, ϵ2, the set (F∗∗)K × (F∗)K ×W∗ is an ϵ–L∞
covering of G(b)r . To that end, let g ∈ Gr and let W,u1, . . . , uK be the corresponding matrix and

univariate functions. Let W̃ ∈ W∗, ũ1, . . . , ũK ∈ F∗, and ũ♯1, . . . , ũ
♯
K ∈ F∗∗ such that ∥W −W̃∥F ≤

ϵ1, that ∥uk − ũk∥∞ ≤ ϵ2, and that ∥u′k − ũ♯k∥∞ ≤ ϵ2 for all k ∈ [K]. We note that ũ♯k need not be

the derivative of ũk.

We write

g̃(·) = ∥W̃⊤ũ(W̃ ·)∥22 − ∥W⊤
0 u0(W0·)∥22

+ 2
K∑
k=1

∥W̃k·∥22ũ
♯
k(W̃

⊤
k· ·)− 2

K∑
k=1

∥W0k∗∥22u′0k(W⊤
0k∗·).

Let θ ∈ RK be such that z = W0θ ∈ [−b/2, b/2]K . Then, we have that

g(θ)− g̃(θ) = ∥W⊤u(Wθ)∥22 − ∥W̃⊤ũ(W̃θ)∥22 (Term 1)

+ 2

K∑
k=1

∥Wk·∥22u′k(W⊤
k·θ)− 2

K∑
k=1

∥W̃k·∥22ũ
♯
k(W̃

⊤
k·θ) (Term 2). (S4.34)

We bound Term 1 and Term 2 separately.

Bounding Term 1 of (S4.34):
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By triangle inequality and Proposition 9, we have that∣∣∣∣∥W⊤u(Wθ)∥22 − ∥W̃⊤ũ(W̃θ)∥22
∣∣∣∣

≤
{
∥W⊤u(Wθ)∥2 + ∥W̃⊤ũ(W̃θ)∥2

}
∥W⊤u(Wθ)− W̃⊤ũ(W̃θ)∥2

≤ 2bmC∗B
1/2K1/2∥W⊤u(Wθ)− W̃⊤ũ(W̃θ)∥2

≤ 2bmC∗B
1/2K1/2

{
∥W⊤u(Wθ)− W̃⊤u(Wθ)∥2 (Term 1A)

+ ∥W̃⊤u(Wθ)− W̃⊤ũ(Wθ)∥2 (Term 1B)

+ ∥W̃⊤ũ(Wθ)− W̃⊤ũ(W̃θ)∥2
}
. (Term 1C)

We then have by Proposition 9 that

(Term 1A) ≤ ∥W − W̃∥2∥u(Wθ)∥2 ≤ bmB1/2K1/2ϵ1. (S4.35)

and that

(Term 1B) ≤ ∥W̃∥2∥u(Wθ)− ũ(Wθ)∥2 ≤ C∗K
1/2ϵ2. (S4.36)

We now turn to Term 1C. Let k ∈ [K]; by mean value theorem,

|ũk(W⊤
k·θ)− ũk(W̃

⊤
k·θ)| ≤

(
sup
t
ũ′
k(t)

)
|(Wk· − W̃k·)

⊤θ|

≤ bmB1/2∥Wk· − W̃k·∥2∥θ∥2.

Hence, we have that

∥ũ(Wθ)− ũ(W̃θ)∥22 ≤ b2mB

K∑
k=1

∥Wk· − W̃k·∥22∥θ∥22

≤ c−2
∗ b2mBKb2ϵ21.

We then obtain

(Term 1C) ≤ ∥W̃∥2∥ũ(Wθ)− ũ(W̃θ)∥2 (S4.37)

≤ C∗
c∗

bmB1/2K1/2bϵ1. (S4.38)

Putting the bounds on Term 1A, 1B, and 1C together, we have that∣∣∣∣∥W⊤u(Wθ)∥22 − ∥W̃⊤ũ(W̃θ)∥22
∣∣∣∣ ≤ 6

C2
∗

c∗
b2m+1BK(ϵ1 + ϵ2).

Bounding Term 2 of (S4.34):
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For any k ∈ [K], we have that

∥Wk·∥22u′k(W⊤
k·θ)− ∥W̃k·∥22ũ

♯
k(W̃

⊤
k·θ) = ∥Wk·∥22u′k(W⊤

k·θ)− ∥W̃k·∥22u′k(W⊤
k·θ) (Term 2A)

+ ∥W̃k·∥22u′k(W⊤
k·θ)− ∥W̃k·∥22ũ

♯
k(W

⊤
k·θ) (Term 2B)

+ ∥W̃k·∥22ũ
♯
k(W

⊤
k·θ)− ∥W̃k·∥22ũ

♯
k(W̃

⊤
k·θ) (Term 2C).

Then, we have that

Term 2A ≤
∣∣∣∣∥Wk·∥22 − ∥W̃k·∥22

∣∣∣∣bmB1/2

≤
{
∥Wk·∥2 + ∥W̃k·∥2

}
∥Wk· − W̃k·∥2bmB1/2

≤ 2C∗b
mB1/2ϵ1.

and that

Term 2B ≤ C2
∗
∣∣u′k(W⊤

k·θ)− ũ♯k(W
⊤
k·θ)

∣∣ ≤ C2
∗ϵ2.

For Term 2C, similar to our bound on Term 1C (S4.38), we have by Lemma 5 applied on

Fb,B,m−1 that

Term 2C ≤ C2
∗

{
sup

t∈[−b,b]
|ũ♯′k (t)|

}
∥W̃k· −Wk·∥2∥θ∥2

≤ C2
∗

{
sup

t∈[−b,b]
|ũ♯′k (t)|

}
K1/2c−1

∗ b∥W̃k· −Wk·∥2

≤ C2
∗

c∗
bm+1B1/2K1/2∥W̃k· −Wk·∥2.

We note that
∑K

k=1 ∥W̃k· −Wk·∥2 ≤ K1/2ϵ1.

Putting our bounds on Term 2A, 2B, 2C together, we have∣∣∣∣2 K∑
k=1

{
∥Wk·∥22u′k(W⊤

k·θ)− ∥W̃k·∥22ũ
♯
k(W̃

⊤
k·θ)

}∣∣∣∣ ≤ 6
C2
∗

c∗
K(bm+1B1/2ϵ1 + ϵ2).

Bounding |g(θ)− g̃(θ)|:

Combining our bounds on Term 1 and Term 2 of (S4.34) and using the fact that B,A1 ≥ 1, we

have we have that

|g(θ)− g̃(θ)| ≤ 12
C2
∗

c∗
b2m+1BK(ϵ1 + ϵ2).

By choosing ϵ1 = ϵ2 = ϵ
(
24C2

∗
c∗
b2m+1BK

)−1
, we have that

|g(θ)− g̃(θ)| ≤ ϵ.
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Therefore, W∗ × (F∗)⊗K × (F∗∗)⊗K is an ϵ–L∞–covering of G(b)r for any r > 0. Since

log |W∗ × (F∗)⊗K × (F∗∗)⊗K |

≤ CK2 log
1

ϵ1
+ 2CKϵ

− 1
m−1

2 b4B
1

m−1

≤ CK2 log
KA1

ϵ
+ CA

1
m−1

1 b4B
1

m−1K
m

m−1 ϵ−
1

m−1 .

where A1 :=
C2

∗
c∗
b2m+1B. The conclusion of the proposition immediately follows.

S4.5.2 Variance bound

Corollary 4. Let r > 0 and suppose that r ≤ r0 where r0 is defined as (S4.39). Then, for

L := 4b2mBKC2
∗ , we have

ρ2L(ḡb) ≤ C
C4
∗

c2∗κ
M23mb2m

2
Bm+1K1+ 1

m r2(1−
1
m
).

Proof. We note that for L ≥ sup
gb∈G

(b)
r

supθ |gb(θ)| by Proposition 9 and thus, we have

ρ2L(ḡb) ≤ 4E
(
gb(θ)− Egb(θ)

)2 ≤ 4E
(
gb(θ)

2
)
.

The desired conclusion then follows from Proposition 6.

Define also the constant

r0 :=

{
c2∗
12

}1/2

∧
{
2−11 κ2

K2c1b2mB

}1/2

∧
{
ξ1
κ

8
c2∗

}1/2

∧ ξ
1/2
2 , (S4.39)

where ξ1, ξ2 are defined in Proposition 7 and 8 and are possibly dependent on u0.

Proposition 6. Let r > 0 and suppose r ≤ r0. Then, for any gb ∈ G
(b)
r ,

Egb(θ)2 ≤ C
C4
∗

c2∗κ
M23mb2m

2
Bm+1K1+ 1

m r2(1−
1
m
).

Proof. Recall that gb(·) is defined with respect to some W,u and the fact that gb ∈ G
(b)
r implies

that E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22 ≤ r2. Since r2 ≤ ξ2 and , we have by Proposition 8 that, for

some W̃ , ũ ∈ [W,u] (see Definition in (23)),

∥W̃W−1
0 − IK∥2F ≤

8

κc2∗
E∥W⊤u(Wθ)−W⊤

0 u0(W0θ)∥22 ≤
8

κc2∗
r2. (S4.40)

Since r2 ≤ 2−11 κ2

K2c1b2mB
∧ ξ1

κ
8 c

2
∗, we also have that

∥W̃W−1
0 − IK∥2F ≤ 2−8 κ

K2c1b2mB
∧ ξ1.
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Therefore, we have by Corollary 5 that

K∑
k=1

E
(
ũk(Zk)− u0k(Zk)

)2 ≤ 12

c2∗
E∥W⊤u(Wθ)−W⊤

0 u0(W0θ)∥22 ≤
12

c2∗
r2. (S4.41)

We assume without loss of generality that W̃ = W and ũ = u.

Now, using the definition of gb(θ), we have that

Egb(θ)2 ≤ 4E
{
∥W⊤u(Wθ)∥22 − ∥W⊤

0 u0(W0θ)∥22
}2

1z∈[− b
2
, b
2
]K (Term 1)

+ 4E
{ K∑

k=1

∥Wk·∥22u′k(W⊤
k·θ)− ∥W0k∗∥22u′0k(W⊤

0k∗θ)

}2

1z∈[− b
2
, b
2
]K (Term 2).

To bound Term 1, we have by Proposition 9 that

Term 1 ≤ 4E
[{
∥W⊤u(Wθ)∥2 + ∥W⊤

0 u0(W0θ)∥2
}2

1z∈[− b
2
, b
2
]K∥W

⊤u(Wθ)−W⊤
0 u0(W0θ)∥2

]
≤ 16b2mC2

∗BKE∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥2 ≤ 16b2mC2

∗BKr2.

To bound Term 2, we have that

K∑
k=1

∥Wk·∥22u′k(W⊤
k·θ)− ∥W0k·∥22u′0k(W⊤

0k·θ)

=

K∑
k=1

∥Wk·∥22u′k(W⊤
k·θ)− ∥W0k·∥22u′

k(W
⊤
k·θ) (2A)

+
K∑
k=1

∥W0k·∥22u′k(W⊤
k·θ)− ∥W0k·∥22u′

k(W
⊤
0k·θ) (2B)

+

K∑
k=1

∥W0k·∥22u′k(W⊤
0k·θ)− ∥W0k·∥22u′0k(W⊤

0k·θ) (2C).

Using the fact that (∥Wk·∥2 + ∥W0k∗∥2)2 ≤ C2
∗ , using Lemma 5, and (S4.40), we have that

E(2A)2 ≤
{ K∑

k=1

{
∥Wk·∥22 − ∥W0k·∥22

}
sup

t∈[−b,b]
|u′k(t)|

}2

≤
{ K∑

k=1

{
∥Wk·∥2 + ∥W0k·∥2

}
∥Wk· −W0k·∥2 sup

t∈[−b,b]
|u′k(t)|

}2

≤ 4C2
∗b

2mB

{ K∑
k=1

∥Wk· −W0k·∥2
}2

≤ 4C2
∗b

2mBK

(
8

κc2∗
r2
)
.

Next, using the fact that |u′k(W⊤
k·θ) − u′k(W

⊤
0k·θ)| ≤

{
supt∈[−b,b] |u′′k(t)|

}
|(Wk· − W0k·)

⊤θ|,
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Lemma 5, and (S4.40), we have that

E(2B)2 ≤ E
{ K∑

k=1

C2
∗
{
u′k(W

⊤
k·θ)− u′k(W

⊤
0k∗θ)

}}2

≤ E
{ K∑

k=1

C2
∗

{
sup

t∈[−b,b]
|u′′k(t)|

}
|(Wk· −W0k·)

⊤θ|
}2

≤ C4
∗b

2mB E
{ K∑

k=1

|e⊤k (WW−1
0 − IK)z|

}2

≤ C4
∗b

2mB E
{
K∥(WW−1

0 − IK)z∥22
}

≤ C4
∗b

2mBK E
{
tr((WW−1

0 − IK)zz⊤(WW−1
0 − IK))

}
≤ C4

∗b
2mBK∥WW−1

0 − IK∥2F ≤ C4
∗b

2mBK

(
8

κc2∗
r2
)
,

where the fourth inequality follows from Cauchy–Schwarz and the penultimate inequality follows

from the fact that Ezz⊤ is identity.

Then, we have

E(2C)2 ≤ E
{ K∑

k=1

∥W0k·∥22
{
u′k(W

⊤
0k·θ)− u′0k(W

⊤
0k·θ)

}}2

≤ C4
∗E
{ K∑

k=1

{
u′k(Zk)− u′0k(Zk)

}}2

≤ C4
∗K

K∑
k=1

E(u′k(Zk)− u′0k(Zk))
2

≤ C4
∗K

K∑
k=1

{
23mBm+1b2m

2
M E(uk(Zk)− u0k(Zk))

2
}1− 1

m

≤ C4
∗2

3mBm+1b2m
2
MK2

(
1

K

K∑
k=1

E(uk(Zk)− u0k(Zk))
2

)1− 1
m

≤ C4
∗2

3mBm+1b2m
2
MK1+ 1

m

(
12

c2∗
r2
)1− 1

m

,

where the fourth inequality follows from Corollary 6 with f = uk − u0k and the fifth inequality

follows from Jensen’s inequality.
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Combining these bounds, we have

Term 2 ≤ 4E
{
(2A) + (2B) + (2C)

}2
≤ 12(E(2A)2 + E(2B)2 + E(2C)2)

≤ 32
C2
∗

c2∗κ
b2mBKr2 + 8

C4
∗

c2∗κ
b2mBKr2 + 12

C4
∗

c2∗
23mBm+1b2m

2
MK1+ 1

m r2(1−
1
m
)

≤ C
C4
∗

c2∗κ
b2m

2
Bm+123mMK1+ 1

m r2(1−
1
m
).

Combining the bounds on Term 1 and Term 2, we have

Egb(θ)2 ≤ C
C4
∗

c2∗κ
M23mb2m

2
Bm+1K1+ 1

m r2(1−
1
m
).

The proposition thus follows.

S4.6 Local strong convexity of the risk

Theorem S2. Suppose z is a mean-zero random vector in RK with twice continuously differen-

tiable score function u0. Suppose z has independent components and no two components of z are

univariate Gaussians with the same variance. Let κ = infH E∥ −Hu0(z) + (Ju0)(z)Hz∥22 where

the infimum is over all skew-symmetric H satisfying ∥H∥F = 1 and note that κ > 0 by Lemma 2.

Let u : RK → RK be of the form u(z) = (u1(Z1), . . . , uK(ZK)). Let ξ1 > 0 be defined in

Proposition 7 whose value is possibly dependent on u0.

Suppose there exists some ϵ0 ∈ (0, 1/2) such that, for some 0 < A <∞ and for any non-negative

sequences {νk}k∈[K] and {ν ′k}k∈[K] that satisfy
∑K

k=1 νk ≤ 1 and
∑K

k=1 ν
′
k ≤ 1, we have

E
{

sup
V : ∥V−I∥F≤ϵ0

K∑
k=1

(
uk(V

⊤
k· z)

2 + 5∥z∥22u′k(V ⊤
k· z)

2νk + ∥z∥42u′′k(V ⊤
k· z)

2ν ′k

)}
≤ A.

If ∥V − I∥2F ≤ 2−5κA−1 ∧ ϵ0 ∧ ξ1, then we have that

E∥V ⊤u(V z)− u0(z)∥22 ≥
1

12
E∥u0(z)− u(z)∥22.

Moreover, if in addition E∥u(z) − u0(z)∥22 ≤ 2−6κ and E∥u′(z) − u′
0(z)∥22 ≤ 2−6(E∥z∥22)−1κ,

then, we have that

E∥V ⊤u(V z)− u0(z)∥22 ≥
κ

4
∥V − I∥2F +

1

4
E∥u0(z)− u(z)∥22.

Proof. By Lemma 9, since ∥V − I∥2F ≤ 2−5κA−1, we have that ∥H∥2F ≤ 2−4κA−1.

As a short hand, we write

E∥e−Hu(eHz)− u0(z)∥22 = E∥T1 + T2 + T3∥22,
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where the terms T1, T2, T3 are defined as

T1 = e−Hu(eHz)− u(z)−
{
−Hu(z) + (Du)(z)Hz

}
T2 =

{
−Hu(z) + (Du)(z)Hz

}
T3 = u(z)− u0(z).

Then, we have that

E∥T1 + T2 + T3∥22 ≥
1

2
E∥T2 + T3∥22 − E∥T1∥22

=
1

2
E∥T2∥22 +

1

2
E∥T3∥22 + ET⊤

2 T3 − E∥T1∥22

≥ 1

2
E∥T3∥22 + ET⊤

2 T3 − E∥T1∥22. (S4.42)

We bound each of the terms in turn.

Bounding E∥T1∥22. Fix z ∈ RK and define ϕ(r, z) = e−rHu(erHz) − u(z) for r ∈ [0, 1]. Then,

from the fact that the derivative of r 7→ erH is HerH , we have

ϕ′(r, z) = −He−rHu(erHz) + e−rH(Ju)(erHz)HerHz

ϕ′′(r, z) = −H2e−rHu(erHz)− 2He−rH(Du)(erHz)HerHz

+ e−rHw + e−rH(Ju)(erHz)H2erHz,

where we use w ∈ RK to denote a vector whose k-th coordinate is

wk = u′′k
(
(erHz)k

)
(HerHz)2k.

We note that ϕ′(0, z) = −Hu(z) + (Ju)(z)Hz so that T1 = ϕ(r, z)− ϕ(0, z)− ϕ′(0, z). Hence,

by mean value theorem, there exists rz ∈ [0, r] such that T1 = ϕ′′(rz, z). We thus bound ∥ϕ′′(r, z)∥22
uniformly over r ∈ [0, 1].

To that end, we define H̄ = H
∥H∥F and have that, using the fact that ∥H̄2e−rH∥op ≤ 1,

∥ −H2e−rHu(erHz)∥22 ≤ ∥H∥4F ∥ − H̄2e−rHu(erHz)∥22
≤ ∥H∥4F ∥u(erHz)∥22, (S4.43)
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and that, using the fact that ∥H̄erH∥op ≤ 1 and Cauchy–Schwarz inequality,

∥2He−rH(Ju)(erHz)HerHz∥22 = 4∥H∥4F ∥H̄e−rH(Ju)(erHz)H̄erHz∥22
≤ 4∥H∥4F ∥(Ju)(erHz)H̄erHz∥22

= 4∥H∥4F
K∑
k=1

u′k((e
rHz)k)

2{(H̄⊤
k·(e

rHz)}2

≤ 4∥H∥4F
K∑
k=1

u′k((e
rHz)k)

2∥erHz∥22,

≤ 4∥H∥4F ∥z∥22
K∑
k=1

u′k((e
rHz)k)

2∥H̄k·∥22. (S4.44)

We also have

∥e−rHw∥22 ≤ ∥w∥22 =
K∑
k=1

u′′k((e
rHz)k)

2(HerHz)4k

≤ ∥H∥4F
K∑
k=1

u′′k((e
rHz)k)

2∥H̄k·∥42∥erHz∥42

≤ ∥H∥4F ∥z∥42
K∑
k=1

u′′k((e
rHz)k)

2∥H̄k·∥42, (S4.45)

and that, using the fact that ∥H̄2erH∥k· ≤ ∥H̄2erH∥op ≤ 1,

∥e−rH(Ju)(erHz)H2erHz∥22 = ∥H∥4F ∥(Ju)(erHz)H̄2erHz∥22

= ∥H∥4F
K∑
k=1

u′k((e
rHz)k)

2{(H̄2)⊤k·(e
rHz)}2

≤ ∥H∥4F
K∑
k=1

u′k((e
rHz)k)

2∥(H̄2)k·∥22∥erHz∥22 (S4.46)

≤ ∥H∥4F ∥z∥22
K∑
k=1

u′k((e
rHz)k)

2∥(H̄2)k·∥22. (S4.47)

We write νk = 4
5∥H̄k·∥22 + 1

5∥(H̄
2)k·∥22 and observe that

∑K
k=1 νk = 4

5∥H̄∥
2
F + 1

5∥H̄
2∥2F ≤ 1.

We also write ν ′k = ∥H̄k·∥42 and observe that
∑K

k=1 ν
′
k ≤ (

∑K
k=1 ∥H̄k·∥22)2 ≤ 1. Combining this

and (S4.43), (S4.44), (S4.45), (S4.47), we have that, for any r ∈ [0, 1],

∥ϕ′′(r, z)∥22 ≤ ∥H∥4F
{

sup
V : ∥V−I∥F≤c1

K∑
k=1

(
uk(V

⊤
k· z)

2 + 5∥z∥22u′k(V ⊤
k· z)

2νk + ∥z∥42u′′k(V ⊤
k· z)

2ν ′k

)}
.

(S4.48)
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Therefore, using the fact that ∥H∥2FA ≤ 2−4κ,

E∥T1∥22 = E∥e−Hu(eHz)− u(z)−
{
−Hu(z) + (Du)(z)Hz

}
∥22

= E∥ϕ′′(rz, z)∥22

= ∥H∥4FE
{

sup
V : ∥V−I∥F≤c1

K∑
k=1

(
uk(V

⊤
k· z)

2 + 5∥z∥22u′k(V ⊤
k· z)

2νk + ∥z∥42u′′k(V ⊤
k· z)

2ν ′k

)}
≤ ∥H∥4FA ≤ 2−4κ∥H∥2F .

Bounding ET⊤
2 T3: We again write H̄ = H

∥H∥F . We observe that, since H is skew–symmetric,

Hkk = 0 for any k and thus H⊤
k·u0(z) and H⊤

k·z are functions of only {Zj}j ̸=k. Moreover, since

Eu0(z) = 0 and Ez = 0, we have

E
[(
(Du)(z)Hz

)⊤(
u(z)− u0(z)

)]
(S4.49)

=

K∑
k=1

E
[
u′k(Zk)(H

⊤
k·Z)

(
uk(Zk)− u0k(Zk)

)]
(S4.50)

=
K∑
k=1

E
[
u′k(Zk)

(
uk(Zk)− u0k(Zk)

)]
E[H⊤

k·Z] = 0, (S4.51)

and that

E
[
u0(z)

⊤H⊤(u(z)− u0(z)
)]

(S4.52)

=
K∑
k=1

E
[
(uk(Zk)− u0k(Zk))(H

⊤
k·u0(z))

]
(S4.53)

=

K∑
k=1

E
[
uk(Zk)− u0k(Zk)

]
E
[
H⊤

k·u0(z)
]
= 0. (S4.54)

Using (S4.51) and (S4.54), we have

ET⊤
2 T3 = E(−Hu(z) + (Ju)(z)Hz)⊤(u(z)− u0(z))

= −E
[
u(z)⊤H⊤(u(z)− u0(z))

]
= −E

[
(u(z)− u0(z))

⊤H⊤(u(z)− u0(z))
]

= −∥H∥2FE
[
(u(z)− u0(z))

⊤H̄⊤(u(z)− u0(z))
]

≥ −∥H∥2FE∥u(z)− u0(z)∥22 ≥ −
1

4
E∥u(z)− u0(z)∥22.

Combining the bounds: We combine all the bounds with (S4.42). We have by Proposition 7

and Lemma 9 that

E∥V ⊤u(V z)− u0(z)∥22 ≥
1

4
E∥u(z)− u0(z)∥22 − 2−4κ∥H∥2F

≥ 1

4
E∥u(z)− u0(z)∥22 − 2E∥V ⊤u(V z)− u0(z)∥22.
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The first claim of the Theorem directly follows.

Proving the second claim of the Theorem: For the second claim of the Theorem, we write

E∥e−Hu(eHz)− u0(z)∥22 = E∥T1 + T2a + T2b + T3∥22,

where the terms T1, T2a, T2b, T4 are

T1 = e−Hu(eHz)− u(z)−
{
−Hu(z) + (Du)(z)Hz

}
T2a =

{
−Hu(z) + (Du)(z)Hz

}
−
{
−Hu0(z) + (Du0)(z)Hz

}
T2b =

{
−Hu0(z) + (Du0)(z)Hz

}
T3 = u(z)− u0(z).

Using this, we have that

E∥T1 + T2a + T2b + T4∥22 ≥
1

2
E∥T2b + T3∥22 − E∥T1 + T2a∥2F

≥ 1

2
E∥T2b∥22 +

1

2
E∥T3∥22 + ET⊤

2bT3 − 2E∥T1∥22 − 2E∥T2a∥22.

Bounding E∥T2a∥22.

We again write H̄ := H
∥H∥F . Then, using the fact that H̄ is skew-symmetric and hence H̄⊤

k·z is

independent of Zk, we have

E∥T2∥22 ≤ 2E∥H(u0(z)− u(z))∥22 + 2E∥(Ju0 − Ju)(z)Hz∥22

≤ 2∥H∥2FE∥H̄(u0(z)− u(z))∥22 + 2∥H∥2F
K∑
k=1

E
[{
(u′k(Zk)− u′0k(Zk))H̄

⊤
k·z
}2]

≤ 2∥H∥2FE∥u0(z)− u(z)∥22 + 2∥H∥2F
K∑
k=1

E
[
(u′k(Zk)− u′0k(Zk))

2
]
E[(H̄⊤

k·z)
2]

≤ 2∥H∥2FE∥u0(z)− u(z)∥22 + 2∥H∥2F
K∑
k=1

E
[
(u′k(Zk)− u′0k(Zk))

2
]
E∥z∥22

≤ 2−4κ∥H∥2F ,

where the last inequality follows because E∥u(z) − u0(z)∥22 ≤ 2−6κ and E∥u′(z) − u′
0(z)∥22 ≤

2−6(E∥z∥22)−1κ.

Bounding E∥T2b∥22.
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We have that

E∥T3∥22 = E∥
{
−Hu0(z) + (Du0)(z)Hz

}
∥22

= ∥H∥2FE∥
{
−H̄u0(z) + (Du0)(z)H̄z

}
∥22

≥ κ∥H∥2F .

Bounding ET⊤
2bT3.

Using the same argument for bounding ET⊤
2 T3 (see (S4.51) and (S4.54)), we have

E
{
−Hu0(z) + (Du0)(z)Hz

}⊤{u(z)− u0(z)}

=

K∑
k=1

E
{
−(uk(Zk)− u0k(Zk))H

⊤
k·u0(z)

}
+ E

{
u′0k(Zk)H

⊤
k·z(uk(Zk)− u0k(Zk))

}
=

K∑
k=1

E
{
−(uk(Zk)− u0k(Zk))

}
E
{
H⊤

k·u0(z)
}
+ E

{
u′0k(Zk)(uk(Zk)− u0k(Zk))

}
E{H⊤

k·z} = 0.

Combining the bounds: Putting all the previous bounds together, we have

E∥T1 + T2a + T2b + T3∥22 ≥
1

2
E∥T2b∥22 +

1

2
E∥T3∥22 + ET⊤

2bT3 − 2E∥T1∥22 − 2E∥T2a∥22

≥ κ

2
∥H∥2F +

1

2
E∥u(z)− u0(z)∥22 −

κ

4
∥H∥2F

≥ κ

4
∥H∥2F +

1

2
E∥u(z)− u0(z)∥22,

as desired.

We state two corollaries that are immediately applicable to risk analysis of ICA estimation.

Recall that we have W := {W ∈ RK×K : W = UΣ
−1/2
θ Σ̃1/2, for U ∈ SO(K)}.

Corollary 5. Let θ be a random vector taking value in RK such that z := W0θ has independent

components with mean zero for some W0 ∈ W. Let u0 : RK → RK be the score function of Z.

Define κ as Definition 2.

Let u1, . . . , uK ∈ Fb,B,m and let W ∈ W. Then, there exists ξ1 ∈ (0, 1/2) depending only on u0

such that if

∥WW−1
0 − I∥2F ≤ 2−8 κ

K2c1b2mB
∧ ξ1, (S4.55)

then

E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22 ≥

c2∗
12

E∥u(z)− u0(z)∥22.

Moreover, if we additionally have

E∥u(z)− u0(z)∥22 ≤ 2−6κ, and E∥u′(z)− u′
0(z)∥22 ≤ 2−6 κ

K
. (S4.56)
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Then, it holds that

E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22 ≥ c2∗

{
κ

4
∥WW−1

0 − IK∥2F +
1

4
E∥u(z)− u0(z)∥22

}
. (S4.57)

Proof. (of Corollary 5)

Writing z := W0θ, we have that

E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22

= E∥W⊤
0

{
W−⊤

0 W⊤u(WW−1
0 z)− u0(z)

}
∥22

≥ c2∗ E∥Ṽ ⊤u(Ṽ z)− u0(z)∥22,

where we write Ṽ := WW−1
0 . Since W and W0 are both in W, Ṽ is an orthogonal matrix.

Since u1, . . . , uK ∈ Fb,B,m, it holds by Lemma 5 that |uk| ≤ bmB1/2, that |u′k| ≤ bm−1B1/2, and

that |u′′k| ≤ bm−2B1/2. Therefore, for any sequence {νk}Kk=1 and {ν ′k}Kk=1 where
∑

k νk,
∑

k ν
′
k ≤ 1,

we have

E
{
sup
V

K∑
k=1

(
uk(V

⊤
k· z)

2 + 5∥z∥22u′k(V ⊤
k· z)

2νk + ∥z∥42u′′k(V ⊤
k· z)

2ν ′k

)}

≤ E
{
Kb2mB + 5∥z∥22b2m−2B

K∑
k=1

νk + ∥z∥42b2m−4B

K∑
k=1

ν ′k

}
≤ Kb2mB + 5Kb2mB + E(∥z∥42)b2mB

≤ 6Kb2mB +K2c1b
2mB ≤ 7K2c1b

2mB,

where the second inequality follows because E(∥z∥42) ≤ KE
∑K

k=1 Z
4
k ≤ K2c1.

Thus, by applying Theorem S2 with A = 7K2c1b
2mB and taking ϵ0 to be equal to ξ1, the

Corollary follows.

Proposition 7. Let z = (Z1, . . . , ZK) be independent random variables with differentiable densities.

Let u0 : RK → RK be the score function of Z.

Then, there exists ξ1 ∈ (0, 1/2) dependent only on u0 such that, for all orthogonal matrix V

satisfying ∥V −I∥2F ≤ ξ1, for all function u : RK → RK of the form u(z) = (u1(Z1), . . . , uK(ZK)),

E∥V ⊤u(V z)− u0(z)∥22 ≥
κ

8
∥V − I∥2F .

Proof. By Lemma 9, there exists a skew-symmetric matrix H such that V = eH . Thus, we have

that

E∥V ⊤u(V z)− u0(z)∥22 = E∥u(V z)− V u0(z)∥22
= E∥u(eHz)− eHu0(z)∥22
≥ E∥u∗(eHz)− eHu0(z)∥22
= E∥e−Hu∗(eHz)− u0(z)∥22,
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where u∗k(t) = E[(eH)⊤k·u0(z) | (eH)⊤k·z = t]. As a short-hand, write f(H) = E∥e−Hu∗(eHz) −
u0(z)∥22 so that f(0) = 0. We then have that f(·) is twice continuously differentiable and thus,

f(H) = f(0) + tr
(
(∇f)(0)⊤H

)
+ (D(2)f)(0)[H,H] + η,

where η = o(∥H∥2F ) and we write (D(2)f)(0)[H,H] to denote
∑

(j,k),(j′,k′)(D
(2)f)(0)(j,k),(j′k′)HjkHj′k′ .

Suppose (∇f)(0) = 0 and (D(2)f)(0)[H,H] ≥ κ∥H∥2F . Since η = o(∥H∥2F ), there exists ξ1 > 0

such that, if ∥V − I∥2F ≤ 4∥H∥2F ≤ ξ1 (first inequality following from Lemma 9), then |η| ≤ κ
2∥H∥

2
F

and thus

f(H) ≥ κ

2
∥H∥2F ≥

κ

8
∥V − I∥2F .

It remains to show that (∇f)(0) = 0 and (D(2)f)(0)[H,H] ≥ κ∥H∥2F . To this end, define

H̄ = H
∥H∥F and, for r ≥ 0, t ∈ R, and k ∈ [K],

ũk(r, t) = E[(erH̄k· )⊤u0(z) | (erH̄)⊤k·z = t].

We note that ũk(0, t) = u0k(t) and ũk(∥H∥F , t) = u∗k(t). For a vector z ∈ RK , we define

ũ(r, z) = (ũ1(r, Z1), . . . , ũK(r, ZK)). We now define

ϕ(r, z) = e−rH̄ũ(r, erH̄z)− u0(z).

Using the fact that the derivative of r 7→ erH̄ is H̄erH̄ , we have

∂rϕ(r, z) = −H̄e−rH̄ũ(r, erH̄z) + e−rH̄(Dzũ)(r, e
rH̄z)H̄erH̄z

+ e−rH̄(∂rũ)(r, e
rH̄z).

In particular, writing ψ(z) := (∂rũ)(0, z), we have

∂rϕ(r, z)
∣∣
r=0

= −H̄u0(z) + (Du0)(z)H̄z +ψ(z).

Thus, by Fatou’s lemma, we have that

lim inf
r→0

1

r2
E
∥∥e−rH̄ũ(r, erH̄z)− u0(z)

∥∥2
≤ E

[
lim inf
r→0

∥∥∥∥e−rH̄ũ(r, erH̄z)− u0(z)

r

∥∥∥∥2]
= E

∥∥−H̄u0(z) + (Du0)(z)H̄z +ψ(z)
∥∥2
2

≥ E
∥∥−H̄u0(z) + (Du0)(z)H̄z

∥∥2
2
+ E∥ψ(z)∥22

+ 2E
[
(−H̄u0(z) + (Ju0)(z)H̄z)

⊤ψ(z)
]

≥ κ+ E∥ψ(z)∥22 ≥ κ,

where the penultimate inequality follows because H̄ is skew-symmetric and Eu0(z) = 0 and thus,

E[u0(z)
⊤H̄⊤ψ(z)] =

∑
k ̸=ℓ

H̄ℓkE[u0k(Zk)ψℓ(Zℓ)] = 0.
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Likewise, we have that E
[
z⊤H̄⊤(Du0)(z)ψ(z)

]
= 0. To summarize, we have

lim inf
r→0

1

r2
E
∥∥e−rH̄ũ(r, erH̄z)− u0(z)

∥∥2 ≥ κ,

which directly implies that lim infr→0
f(rH̄)
r2
≥ κ. This yields that tr

{
(∇f)(0)⊤H̄

}
= 0 and that

(D(2)f)(0)[H̄, H̄] ≥ κ. Since H̄ is an arbitrary skew-symmetric matrix satisfying ∥H̄∥F = 1, the

proposition follows.

Proposition 8. Let z = (Z1, . . . , ZK) be independent random variables with differentiable densities

and let θ = W−1
0 z. Let u0 : RK → RK be the score function of Z. Suppose no two components of

Z are Gaussians with the same variance.

Then, there exists ξ2 ∈ (0, 1) dependent only on u0 (and less than ξ1 in Proposition 7) such

that if E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22 ≤ ξ2, then

E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22 ≥ c2∗

κ

8
∥W̃W−1

0 − I∥22,

for some W̃ in the equivalence class [W,u].

Proof. We assume without loss of generality that W minimizes ∥W̃W−1
0 − IK∥F among all W̃ in

[W,u]. In other words, ∥WW−1
0 − IK∥F = minP signed perm. ∥PWW−1

0 − IK∥F .
Write V = WW−1

0 so that

E∥W⊤u(Wθ)−W⊤
0 u0(W0θ)∥22 = E

∥∥W⊤
0

{
V ⊤u(V z)− u0(z)

}∥∥2
2

≥ c2∗E∥V ⊤u(V z)− u0(z)∥22.

Define ξ2 := inf{E∥V ⊤u(V z)− u0(z)∥22 : u, V, s.t. ∥PV − I∥2F ≥ ξ1 ∀P signed perm.} where
ξ1 > 0 is defined in Proposition 7 whose value is possibly dependent on u0. Since the function V 7→
infu E∥V ⊤u(V z) − u0(z)∥22 is continuous and {V ∈ SO(K) : ∥PV − I∥2F ≥ ξ1 ∀P signed perm.}
is compact, there exists some V̌ such that ∥PV̌ − I∥2F ≥ ξ1 for all signed permutation matrix P

that attains the infimum in the definition of ξ2. That is, infu E∥V̌ ⊤u(V̌ z) − u0(z)∥22 = ξ2. Thus,

it must be that ξ2 > 0 by Maxwell’s theorem.

Hence, we have that if E∥V ⊤u(V z) − u0(z)∥22 ≤ ξ2, then there exists a signed permutation

matrix P such that ∥PV − I∥2F ≤ ξ1 which implies by Proposition 7 that

E∥V ⊤u(V z)− u0(z)∥22 ≥
κ

8
∥PV − I∥2F .

The Proposition follows as desired.

S4.6.1 Proof of Lemma 2

For readers’ convenience, we first restate Lemma 2 in the main paper.
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Lemma 4. Let z = (Z1, . . . , ZK) be independent centered random variables with unit variance

where Zk has density pk(·). Let u0k :=
p′k(zk)
pk(zk)

be the score functions. Then, we have that

κ := inf
H skew-symm.

∥H∥F=1

E∥ −Hu0(z) + (Ju0)(z)Hz∥22 = 0

if and only if there exists a pair (j, k) such that pj and pk are standard Gaussian.

Proof. First suppose that

inf
H skew-symm.

∥H∥F=1

E∥ −Hu0(z) + (Ju0)(z)Hz∥22 = 0

Since {H : H skew-symm., ∥H∥F = 1} is a compact set, there must exists H such that∑K
k=1 E

(
−H⊤

k·u0(z) + u′0k(Zk)H
⊤
k·z
)2

= 0. Let k ∈ [K] be such that the k-th row of H is non-zero.

Since

E
(
−H⊤

k·u0(z) + u′0k(Zk)H
⊤
k·z
)2

= 0,

it must be that −H⊤
k·u0(z) + u′0k(Zk)H

⊤
k·z = 0 for almost every z ∈ RK . The fact that Hkk = 0

implies that u′0k(Zk) must be a negative constant (negativity follows from the fact that the positive

linear function x 7→ ax for a > 0 does not correspond to the score function of any density) which we

denote by −a for some a > 0, so that u0k(Zk) = −aZk, and that, for all j ̸= k such that Hkj ̸= 0,

u0j(Zj) = aZj a.e. This implies that (Zk, Zj) ∼ N(0, a−1I2). Since Zj has unit variance, it must

be that a = 1.

Now suppose there exists j ̸= k such that pj , pk are both N(0, 1). Then, we have that u0j(Zj) =

−Zj and u0k(Zk) = −Zk. Define H as a matrix of all zeros except that Hjk = 1/
√
2 and Hkj =

−1/
√
2, then we have that H is skew symmetric, that ∥H∥F = 1, and that

K∑
k=1

E
(
−H⊤

k·u0(z) + u′0k(Zk)H
⊤
k·z
)2

= E
(
− Zj√

2
+

Zj√
2

)2

+ E
(
−Zk√

2
+

Zk√
2

)2

= 0.

S4.7 Other auxiliary results

S4.7.1 Bound on maximum value

Lemma 5. Let f ∈ Fb,B,m and let k ∈ {0, 1, . . . ,m− 1}. We then have that

sup
t∈[−b,b]

|f (k)(t)| ≤ bm−kB1/2.

Proof. Let f ∈ Fb,B,m. Using the fact that f = 0 outside of [−b, b] and Cauchy–Schwartz inequality,
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we have that, for any x ≤ 0,

|f (m−1)(x)| =
∣∣∣∣∫ x

−b
f (m)(t)dt

∣∣∣∣
≤
{∫ x

−b
|f (m)(t)|2dt

∫ x

−b
1dt}1/2

≤ B1/2b1/2 ≤ bB1/2.

For x ≥ 0, we may apply the same argument except we integrate from x to b. This establishes the

lemma for the k = m − 1 case. For the k = m − 2 case, we use the uniform bound on f (m−1) to

obtain, for any x ≤ 0,

|f (m−2)(x)| =
∣∣∣∣∫ x

−b
f (m−1)(t)dt

∣∣∣∣ ≤ b2B1/2.

The cases where k = m− 3, . . . , 0 follow similarly.

Proposition 9. Let u1, . . . , uK ∈ Fb,B,m and let W ∈ W. Then,

sup
θ
∥W⊤u(Wθ)∥22 ≤ b2mC2

∗BK and sup
θ
∥u(Wθ)∥22 ≤ b2mBK.

Moreover, we have that

sup
gb∈G

(b)
r

sup
θ
|gb(θ)| ≤ 4b2mC2

∗BK.

Proof. By Lemma 5, we have, for any θ ∈ RK ,

∥u(Wθ)∥22 =
K∑
k=1

|uk(Wk·θ)|2 ≤ b2mBK.

Then, directly, we also have that ∥W⊤u(Wθ)∥22 ≤ C2
∗b

2mBK as desired for the first part of the

Proposition.

Now consider the second part of the proposition. We have that

g(θ) = ∥W⊤u(Wθ)∥22 − ∥W⊤
0 u0(W0θ)∥22

+ 2
K∑
k=1

∥Wk·∥22u′
k(W

⊤
k·θ)− 2

K∑
k=1

∥W0k∗∥22u′0k(W⊤
0k∗θ).

By Lemma 6, there exists ũ01, . . . , ũ0K ∈ Fb,B,m such that ũ0k(t) = u0k(t) for all t ∈ [−b/2, b/2].
Hence, using the first result of this Proposition, we have that

∥W⊤
0 u0(W0θ)∥221{z∈[− b

2
, b
2
]K} = ∥W

⊤
0 ũ0(W0θ)∥22 ≤ b2mC2

∗BK. (S4.58)

Similarly, we have by Lemma 5 that

|u′0k(W⊤
0k∗θ)|1{z∈[− b

2
, b
2
]K} = |ũ

′
0k(zk)| ≤ bmB1/2. (S4.59)

62



Combining (S4.58) and (S4.59), we have that

|g(θ)|1{z∈[− b
2
, b
2
]K} ≤ 2(b2mC2

∗BK +KC2
∗b

mB1/2) ≤ 4b2mC2
∗BK.

The Proposition follows as desired.

S4.7.2 Smooth extension of a function

Lemma 6. Let c0 := maxk∈[K]maxj∈[m−1] |u
(j)
0k (0)|. For any b ≥ 2, the restriction u0k1[− b

2
, b
2
] has

an extension ũ0k where

1. u
(j)
0k = ũ

(j)
0k on [−b/2, b/2] for all j = 0, 1, . . . ,m,

2. ũ0k is m–times differentiable on R,

3. ũ0k = 0 outside of [−b, b], and

4. there exists cm > 0 depending only on m such that
{∫ b

−b |ũ
(m)
0k |

2
}1/2 ≤ 2mcm

{∫ b
−b |u

(m)
0k |

2
}1/2

+

2mc0.

In particular, if
∫ b
−b |u

(m)
0k |

2 ≤ B
22(m+1)c2m

and c0 ≤ B1/2

2m+1 , then
∫ b
−b |ũ

(m)
0k |

2 ≤ B.

Proof. We use a standard mollifier argument. Define the smooth cutoff function

φb(t) =


e
− 1

1−( 2t
b

−1)2
+1

if b/2 ≤ t ≤ b

e
− 1

1−( 2t
b

+1)2
+1

if −b/2 ≥ t ≥ −b
1 if |t| ≤ b/2

0 if |t| ≥ b.

We may then take the derivative to verify that φb is infinitely differentiable on R and that,

there exists cm > 0 depending only on m such that

|φ(j)
b | ≤ cmb−j for all j ∈ [m] (S4.60)

We then construct ũ0k = u0kφb. By construction, we fulfill the first three requirements in the

statement of the Lemma. To verify the last requirement, we have

ũ
(m)
0k =

m∑
j=0

(
m

j

)
φ
(j)
b u

(m−j)
0k .

For a function f on [−b, b], we write ∥f∥L2(b) = {
∫ b
−b f

′(t)2dt}1/2. We observe that for any

j ≥ 1, by repeated applications of Lemma 7,

∥u(m−j)
0k ∥L2(b) ≤ b∥u(m−j+1)

0k ∥L2(b) + |u
(m−j)
0k (0)|

≤ bj∥u(m)
0k ∥L2(b) +

(j−1∑
s=0

bs
)
c0.
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Therefore, we have that

∥ũ(m)
0k ∥L2(b) ≤ 2m max

j∈{0,1,...,m}
∥φ(j)

b u
(m−j)
0k ∥L2(b)

≤ 2m
(
∥φbu

(m)
0k ∥L2(b) ∨ max

j∈[m]
cmb−j

{
bj∥u(m)

0k ∥L2(b) +

(j−1∑
s=0

bs
)
c0

})
≤ 2mcm∥u(m)

0k ∥L2(b) + 2mc0.

The lemma follows as desired.

The following variation of Poincare inequality is standard.

Lemma 7. Let b > 0 and let f : [−b, b] → R be absolutely continuous. Write ∥f∥L2(b) =

{
∫ b
−b |f

′(x)|2dx}1/2; we then have

∥f∥L2(b) ≤ b∥f ′∥L2(b) + |f(0)|.

Proof. Since f is absolutely continuous, we have by Fubini’s theorem that∫ b

−b
(f(x)− f(0))2dx =

∫ b

−b

{∫ x

0
f ′(z)dz

}2

dx

≤
∫ b

−b

{∫ |x|

0
|f ′(z)|2dz · |x|

}
dx

≤
∫ b

−b
|f ′(z)|2dz

∫ b

−b
|x| dx

= b2
∫ b

−b
|f ′(z)|2dz.

Thus, ∥f − f(0)∥L2(b) ≤ ∥f ′∥L2(b) and the desired claim immediately follows.

S4.7.3 Tail bound

Proposition 10. Let g(θ) and g♯(θ) be defined as (S4.21) and (S4.25) respectively. Under as-

sumption A2 and A3, we have that

|Eg(θ)1z/∈[− b
2
, b
2
]K | ≤ 25

A4K
2

n
,

|Eg♯(θ)1z/∈[− b
2
, b
2
]K | ≤ 27

A4K
2

n
,

where A4 := C2
∗b

2mBR2
0R1C̃.

Proof. Recall that

g(θ) = ∥W⊤u(Wθ)∥22 − ∥W⊤
0 u0(W0θ)∥22 + 2

K∑
k=1

∥Wk·∥22u′k(W⊤
k·θ)− 2

K∑
k=1

∥W0k∗∥22u′0k(W⊤
0k∗θ).
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Therefore, we have

|g(θ)|1+δ0 ≤ 4∥W⊤u(Wθ)∥2+2δ0
2 + 4∥W⊤

0 u0(W0θ)∥2+2δ0
2

+ 8

{ K∑
k=1

∥Wk·∥22u′k(W⊤
k·θ)

}1+δ0

+ 8

{ K∑
k=1

∥W0k∗∥22u′0k(W⊤
0k∗θ)

}1+δ0

.

By Proposition 9 and assumption A2, we have that

E|g(θ)|1+δ0 ≤ 4(b2mC2
∗BK)1+δ0 + 4(R2

0)
1+δ0 + 8(C∗b

mB1/2K)1+δ0 + 8(C∗KR1)
1+δ0 .

Since δ0 ≥ 1/2, we have that

|Eg(θ)1z/∈[− b
2
, b
2
]K | ≤

{
E|g(θ)|1+δ0

} 1
1+δ0 P(z /∈ [−b/2, b/2]K)

δ0
1+δ0

≤ 25b2mC2
∗BR2

0R1C̃K

(
K

n3

) δ0
1+δ0

≤ 25A4
K2

n
.

Similarly, we have that, for any θ ∈ RK ,

|g♯(θ)|1+δ0 ≤ 8∥W⊤
0 u0(W0θ)∥2(1+δ0)

2 + 8∥W⊤u(Wθ)∥1+δ0
2 ∥W⊤

0 u0(W0θ)∥1+δ0
2

+ 8

{ K∑
k=1

∥Wk·∥22u′k(W⊤
k·θ)

}1+δ0

+ 8

{ K∑
k=1

∥W0k∗∥22u′0k(W⊤
0k∗θ)

}1+δ0

≤ 12∥W⊤
0 u0(W0θ)∥2(1+δ0)

2 + 4∥W⊤u(Wθ)∥2(1+δ0)
2

+ 8

{ K∑
k=1

∥Wk·∥22u′k(W⊤
k·θ)

}1+δ0

+ 8

{ K∑
k=1

∥W0k∗∥22u′0k(W⊤
0k∗θ)

}1+δ0

.

We can thus bound g♯ in exactly the same way and the Proposition thus follows.

S4.8 Unknown covariance case

For notational simplicity, we assume Σ̃ = IK ; the general Σ̃ case follows in exactly the same way.

We also assume without loss of generality that Σθ = IK and write Σ̂ ≡ Σ̂θ; we can prewhiten the

data to ensure that this assumption holds. Then, W0 is an orthogonal matrix and our estimator

can be written as

V̂ , û := argmin
{
F̂ (V Σ̂−1/2,u) : V ∈ SO(K), u1, . . . , uK ∈ Fb,B,m

}
.

For simplicity, we assume that Σ̂−1/2 is estimated on a heldout dataset and hence independent of

the dataset θ1, . . . ,θn used to estimate V̂ and û; in practice, we find this to not be necessary. We
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then have that

R(V̂ Σ̂−1/2,u) = Eθ∥(V̂ Σ̂−1/2)⊤û(V̂ Σ̂−1/2θ)−W⊤
0 u0(W0θ)∥22

= Eθ∥(V̂ Σ̂−1/2)⊤û(V̂ Σ̂−1/2θ)∥22 − 2
K∑
k=1

Eθ

{
∥(V̂ Σ̂−1/2)k·∥22û′

k((V̂ Σ̂−1/2)⊤k·θ)
}

+ E∥W⊤
0 u0(W0θ)∥22

= F (V̂ Σ̂−1/2, û) + E∥W⊤
0 u0(W0θ)∥22. (⋆)

By working on the event Eb := {zi ∈ [−b/2, b/2]K , ∀i ∈ [n]} and using the same reasoning

as (S4.18) in the proof of Theorem 2, we have that F̂ (V̂ Σ̂−1/2, û) ≤ F̂ (W0Σ̂
−1/2,u0). Therefore,

(⋆) = F (V̂ Σ̂−1/2, û)− F̂ (V̂ Σ̂−1/2, û) + F̂ (V̂ Σ̂−1/2, û)− F̂ (W0Σ̂
−1/2,u0)︸ ︷︷ ︸

≤0

+ F̂ (W0Σ̂
−1/2,u0)− F (W0Σ̂

−1/2,u0)

+ F (W0Σ̂
−1/2,u0) + E∥W⊤

0 u0(W0θ)∥22
≤
(
F (V̂ Σ̂−1/2, û)− F (W0Σ̂

−1/2,u0)
)
−
(
F̂ (V̂ Σ̂−1/2, û)− F̂ (W0Σ̂

−1/2,u0)
)

+ F (W0Σ̂
−1/2,u0) + E∥W⊤

0 u0(W0θ)∥22

≤
∣∣∣∣ 1n

n∑
i=1

ĝ(θi)− Eĝ(θ1)
∣∣∣∣

+ F (W0Σ̂
−1/2,u0) + E∥W⊤

0 u0(W0θ)∥22, (S4.61)

where we associate a pair (V,u) with a modified g-function:

g(θi) = ∥(V Σ̂−1/2)⊤u(V Σ̂−1/2θi)∥22 − ∥(W0Σ̂
−1/2)⊤u0(W0Σ̂

−1/2θi)∥22

+ 2
K∑
k=1

∥(V Σ̂−1/2)k·∥22u′k((V Σ̂−1/2)⊤k·θi)− 2
K∑
k=1

∥(W0Σ̂
−1/2)k·∥22u′0k((W0Σ̂

−1/2)⊤k·θi),

and we define ĝ as the g-function associated with V̂ , û.

To bound the extra approximation error term F (W0Σ̂
−1/2,u0) + E∥W⊤

0 u0(W0θ)∥22 in (S4.61),

we use integration by parts to get

F (W0Σ̂
−1/2,u0) + E∥W⊤

0 u0(W0θ)∥22
= E∥(W0Σ̂

−1/2)⊤u0(W0Σ̂
−1/2θ)−W⊤

0 u0(W0θ)∥22.

Using Lemma 8 (see also Remark 6) and an additional integrability condition on u′0k, we see that

this is of order K3

n which is negligible compared to the rate of (K
3+ 1

m log2 K
n )2m/(2m+3) given in

Theorem 2.

The statement and proof of the covering number bound (Proposition 5) require no modification.

The bound on Egb(θ)2 (Proposition 6) also holds but the proof requires an additional step where
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we use Lemma 8 and the fact that r2 ≥ O(K3/n) to show that

E∥(V Σ̂−1/2)⊤u(V Σ̂−1/2θ)−W⊤
0 u0(W0θ)∥22 ≤ r2

(⇒) E∥V ⊤u(V θ)−W⊤
0 u0(W0θ)∥22 ≤ 4r2.

The remainder of the proof of Proposition 6 goes through without issue.

The following Lemma is used in the discussion in this section.

Lemma 8. Let V ∈ SO(K) and u : RK → RK be of the form u(z) = (u1(Z1), . . . , uK(ZK)). If

there exists B1 > 0 such that

B1 ≥
{
E∥u(V Σ̂−1/2θ)∥22

}
∨
{ K∑

k=1

E
[
sup

λ∈[0,1]
u′k(V (λIK + (1− λ)Σ̂−1/2)θ)2∥θ∥22

]}
,

then

E∥(V Σ̂−1/2)⊤u(V Σ̂−1/2θ)− V ⊤u(V θ)∥22 ≤ 2∥Σ̂−1/2 − I∥22B1.

Remark 6. In Lemma 8, if u1, . . . , uK are in Fb,B,m, then B1 is of order K2 (suppressing depen-

dence on b, B, etc). If ∥Σ̂−1/2 − I∥22 = Op(K/n), then we have that E∥(V Σ̂−1/2)⊤u(V Σ̂−1/2θ) −
V ⊤u(V θ)∥22 is order K3/n.

Proof. (of Lemma 8)

We have that

E∥(V Σ̂−1/2)⊤u(V Σ̂−1/2θ)− V ⊤u(V θ)∥22
≤ 2E∥(V Σ̂−1/2)⊤u(V Σ̂−1/2θ)− V ⊤u(V Σ̂−1/2θ)∥22 (Term 1)

+ 2E∥V ⊤u(V Σ̂−1/2θ)− V ⊤u(V θ)∥22. (Term 2)

We bound the two terms separately. For the first term, we observe that

(Term 1) = 2E∥(Σ̂−1/2 − IK)
{
V ⊤u(V Σ̂−1/2θ)

}
∥22

≤ 2∥Σ̂−1/2 − IK∥22E∥V ⊤u(V Σ̂−1/2θ)∥22 ≤ 2∥Σ̂−1/2 − IK∥22B1.

We now turn to the second term. We write E = Σ̂−1/2− IK and Ē := E/∥E∥2. By mean value

theorem, there exists λ ∈ [0, 1], dependent on θ, such that

∥u(V Σ̂−1/2θ)− u(V θ)∥22
= ∥(Ju)(V {IK + λE}θ)V Eθ∥22

= ∥E∥22
K∑
k=1

(
u′k(V {IK + λE}θ)(V Ē)⊤k·θ

)2
≤ ∥E∥22

K∑
k=1

u′k(V {IK + λE}θ)2∥θ∥22.
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Therefore, we may bound Term 2 as

(Term 2) = E∥u(V Σ̂−1/2θ)− u(V θ)∥22

≤ 2∥E∥22
K∑
k=1

E
[
sup

λ∈[0,1]
u′k(V {IK + λE}θ)2∥θ∥22

]
≤ 2∥Σ̂−1/2 − IK∥22B1.

The conclusion of the Lemma follows as desired.

S4.9 Technical lemmas

S4.9.1 Orthogonal matrices

For an orthogonal matrix V ∈ SO(K), we may have V = eH = eH
′
for two different matrices

H,H ′. The next Lemma shows that if V is sufficiently close to identity, then its matrix exponential

representation is essentially unique if we restrict ourselves to skew-symmetric matrices with small

Frobenius norm.

Lemma 9. Let V ∈ SO(K) suppose ∥V − I∥F ≤ 1
2 . Then, there exists a skew-symmetric matrix

H such that V = eH and
1

2
∥H∥F ≤ ∥V − I∥F ≤ 2∥H∥F .

Proof. Since ∥V − I∥2 ≤ ∥V − I∥F < 1
2 , we may define the convergent series

H := log V =
∞∑
k=1

(−1)k+1 (V − I)k

k

and we note that eH =
∑∞

k=0
Hk

k! = V .

Using the fact that ∥V − I∥F ≤ 1
2 , we have

∥H∥F ≤
∞∑
k=1

∥V − I∥kF
k

≤ ∥V − I∥F
{ ∞∑

k=0

∥V − I∥kF
k + 1

}
≤ 2∥V − I∥F .

In particular, we have that ∥H∥F < 1. Using the fact that ex − 1 ≤ 2x when x ≤ 1, we also have

∥V − I∥F = ∥eH − I∥F

≤ ∥H∥F +
∥H∥2F

2
+
∥H∥3F
3!

+ . . .

≤ e∥H∥F − 1 ≤ 2∥H∥F .
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In summary, we have that

1

2
∥H∥F ≤ ∥V − I∥F ≤ 2∥H∥F , (S4.62)

as desired. To see that H is skew symmetric, note that (V − I)(V ⊤− I) = (V ⊤− I)(V − I) so that

HH⊤ = H⊤H. Hence, eH+H⊤
= eHeH

⊤
= V V ⊤ = I. Therefore, we conclude that H is a skew

symmetric matrix.

S4.9.2 Bounds on the first derivative under higher derivative integral con-

straints

The key result of this Section is Proposition 11, which bounds
∫
|f ′(x)|2p(x)dx in terms of

∫
|f(x)|2p(x)dx

for a sufficiently smooth density p(·) and a univariate function f(·) satisfying a Sobolev condition∫
|f ′′(x)|2dx ≤ B. Our analysis extends result by Agmon which considers the case where p(·) is

uniform; see Theorem 3.1 and its Corollary in Agmon (1966) and also Lemma 10.8 in van de Geer

(2000).

We start with the following Lemma:

Lemma 10. Let a < b be real numbers and let f be a twice continuously differentiable function on

[a, b]; let q1(·), q2(·) be densities on [a, b]. Then,∫ b

a
|f ′(x)|2q1(x)dx ≤ 128

(
sup

x∈(a,b)
q2(x)

)∫ b

a
|f(x)|2q2(x)dx+ 2(b− a)

∫ b

a
|f ′′(x)|2dx.

Proof. First assume that [a, b] = [0, 1] and write M0 = supx∈[0,1] q2(x). Let α ∈ (0, 1/2) and define

sα, tα ∈ [0, 1] such that
∫ sα
0 q2(x)dx =

∫ 1
tα
q2(x)dx = α. We observe that

tα − sα =
1

M0

∫ tα

sα

M0dx ≥
1

M0

∫ tα

sα

q2(x)dx =
1− 2α

M0
.

For any x1 ∈ (0, sα) and x2 ∈ (tα, 1), there exists η ∈ (0, 1) such that f ′(η) = f(x2)−f(x1)
x2−x1

, which

further implies that for any x ∈ (0, 1),

|f ′(x)| =
∣∣∣∣f ′(η) +

∫ x

η
f ′′(t)dt

∣∣∣∣ ≤M0
|f(x2)|+ |f(x1)|

1− 2α
+

∫ 1

0
|f ′′(t)|dt, (S4.63)

where the inequality follows because x2 − x1 ≥ tα − sα ≥ 1−2α
M0

. Since x1, x2 are arbitrary elements

of (0, sα) and (tα, 1) respectively, we may integrate them in (S4.63) to obtain

α2|f ′(x)| ≤ αM0

1− 2α

∫
(0,sα)∪(tα,1)

|f(t)|q2(t)dt+ α2

∫ 1

0
|f ′′(t)|dt (S4.64)

(⇒) |f ′(x)| ≤ M0

α(1− 2α)

∫ 1

0
|f(t)|q2(t)dt+

∫ 1

0
|f ′′(t)|dt. (S4.65)
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Squaring both sides and applying Jensen’s inequality twice, we obtain

|f ′(x)|2 ≤ 2

(
M0

α(1− 2α)

)2 ∫ 1

0
|f(t)|2q2(t)dt+ 2

∫ 1

0
|f ′′(t)|2dt.

Using the fact that α(1−2α) is minimized at α = 1/4 with the value of 1/8, we integrate to obtain∫ 1

0
|f ′(x)|2q1(x)dx ≤ 128M2

0

∫ 1

0
|f(x)|2q2(x)dx+ 2

∫ 1

0
|f ′′(x)|2dx.

For the general case, we apply the change of variable z = (b − a)x + a so that z ∈ [a, b]. We

note that, writing g(z) = f(x) = f( z−a
b−a ),

g′(z) = f ′(x)
1

b− a
and g′′(z) = f ′′(x)

1

(b− a)2
.

Therefore, we have

(b− a)2
∫ b

a
|g′(z)|2q1

(
z − a

b− a

)
1

b− a
dz ≤ 128M2

0

∫ b

a
|g(z)|2q2

(
z − a

b− a

)
1

b− a
dz

+ 2(b− a)4
∫ b

a
|g′′(z)|2 dz

b− a

(⇒)

∫ b

a
|g′(z)|2q1

(
z − a

b− a

)
1

b− a
dz ≤ 128

M2
0

(b− a)2

∫ b

a
|g(z)|2q2

(
z − a

b− a

)
1

b− a
dz

+ 2(b− a)

∫ b

a
|g′′(z)|2dz

Since any density p(·) on [a, b] can be written as p(z) = q
(
z−a
b−a

)
1

b−a for some density q(·) on [0, 1],

and q(·) ≤M0 implies that p(·) ≤ M0
b−a , the desired conclusion follows.

Lemma 11. Let a < b be real numbers and let p be a density on (a, b). We assume there exists

M0, δ0 > 0 such that

for any interval (s, t) such that t− s ≤ δ0, we have that sup
x∈(s,t)

p(x) ≤M0
1

t− s

∫ t

s
p(x)dx.

(S4.66)

Then, for any ϵ ∈ (0, δ20(b− a)−2],∫ b

a
|f ′(x)|2p(x)dx ≤ 128M2

0

1

ϵ(b− a)2

∫ b

a
|f(x)|2p(x)dx+

(
sup

x∈(a,b)
p(x)

)
ϵ(b− a)2

∫ b

a
|f ′′(x)|2dx.

Proof. Define a partition a = a1 < a2 < . . . < an = b where ai+1 − ai ≤
√
ϵ(b− a).

Fix i ∈ [n− 1] and define q̃(x) = p(x)∫ ai+1
ai

p(x)dx
so that q̃(·) is a density on (ai, ai+1). We note that
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since (ai+1 − ai) =
√
ϵ(b− a) ≤ δ0, we have

sup
x∈(ai,ai+1)

q̃(x) ≤
supx∈(ai,ai+1) p(x)

1
ai+1−ai

∫ ai+1

ai
p(x)dx

1

ai+1 − ai
≤ M0

ai+1 − ai
. (S4.67)

Hence, by applying Lemma 10 with q1 = q2 = q̃, we have that∫ ai+1

ai

|f ′(x)|2q̃(x)dx ≤ 128M2
0

1

ϵ(b− a)2

∫ ai+1

ai

|f(x)|2q̃(x)dx+ ϵ(b− a)2
∫ ai+1

ai

|f ′′(x)|2 dx

ai+1 − ai
.

Multiplying both slides by
∫ ai+1

ai
p(x)dx and noting that 1

ai+1−ai

∫ ai+1

ai
p(x)dx ≤ supx∈(a,b) p(x), we

have that

∫ ai+1

ai

|f ′(x)|2p(x)dx ≤ 128M2
0

1

ϵ(b− a)2

∫ ai+1

ai

|f(x)|2p(x)dx+

(
sup

x∈(a,b)
p(x)

)
ϵ(b− a)2

∫ ai+1

ai

|f ′′(x)|2dx.

Summing this inequality for all i ∈ [n− 1] yields the first conclusion.

Proposition 11. Let a < b be real numbers and let p be a density on (a, b). We assume there

exists M0,M1 ≥ 1 and δ0 ∈ (0, 1] such that

1. supx∈(a,b) p(x) ≤M1 and

2. for any interval (s, t) such that t− s ≤ δ0, we have that supx∈(s,t) p(x) ≤M0
1

t−s

∫ t
s p(x)dx.

Then, for all ϵ ∈ (0, δ20(b− a)−2],∫ b

a
|f ′(x)|2p(x)dx ≲ M2m

0

1

ϵ(b− a)2

∫ b

a
|f(x)|2p(x)dx+M1M0ϵ

m−1(b− a)2(m−1)

∫ b

a
|f (m)(x)|2dx.

As a direct consequence, if
∫ b
a |f

(m)(x)|2dx ≤ B and if
∫ b
a |f(x)|

2p(x)dx ≤ δ2m0 , then, by letting

ϵ =
(∫ b

a |f(x)|
2p(x)dx

) 1
m (b− a)−2, we have that

∫ b

a
|f ′(x)|2p(x)dx ≲ M2m

0 M1B

(∫ b

a
|f(x)|2p(x)dx

)1− 1
m

Proof. Let (s, t) be an interval such that |t − s| ≤ δ0 and define q̃(x) = p(x)∫ t
s p(x)dx

as a density on

(s, t). By the same reasoning as (S4.67), we have that supx∈(s,t) q̃(x) ≤ M0
t−s .

Therefore, by Lemma 10, we have

1

t− s

∫ t

s
|f ′′(x)|2dx ≤ 128M2

0

1

(t− s)2

∫ t

s
|f ′(x)|2q̃(x)dx+ 2(t− s)2

∫ t

s
|f (3)(x)|2 dx

t− s
.

We note that if the density p(·) on (a, b) satisfies condition (S4.66), then q̃(·) also satisfies
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condition (S4.66) since, for any (s′, t′) whose width is at most δ0, we have

sup
x∈(s′,t′)

q̃(x) ≤ sup
x∈(s′,t′)

p(x)∫ t
s p(x)dx

≤ M0

t′ − s′

∫ t′

s′ p(x)dx∫ t
s p(x)dx

≤ M0

t′ − s′
.

Let ϵ0 = (256M3
0 )

−1 so that 128ϵ0M
3
0 ≤ 1

2 ; we note also that ϵ0 ≤ 1 ≤ δ20
1

(t−s)2
by the

assumption that t− s ≤ δ0. Hence, by applying Lemma 11 with ϵ = ϵ0, we obtain∫ t

s
|f ′(x)|2q̃(x)dx ≤ 128

M2
0

ϵ0

1

(t− s)2

∫ t

s
|f(x)|2q̃(x)dx+

M0

t− s
ϵ0(t− s)2

∫ t

s
|f ′′(x)|dx∫ t

s
|f ′(x)|2q̃(x)dx ≤ 128

M2
0

ϵ0

1

(t− s)2

∫ t

s
|f(x)|2q̃(x)dx

+M0ϵ0(t− s)

{
128M2

0

1

t− s

∫ t

s
|f ′(x)|2q̃(x)dx+ 2(t− s)2

∫ t

s
|f (3)(x)|2dx

}
.

(⇒)

∫ t

s
|f ′(x)|2q̃(x)dx ≤ 256

M2
0

ϵ0

1

(t− s)2

∫ t

s
|f(x)|2q̃(x)dx+ 4M0ϵ0(t− s)3

∫ t

s
|f (3)(x)|2dx.

Using the fact that 1
t−s

∫ t
s p(x)dx ≤M1 and writing C1 = 256M2

0 /ϵ0 and C2 = 4M0ϵ0, we then

have that∫ t

s
|f ′(x)|2p(x)dx ≤ C1

1

(t− s)2

∫ t

s
|f(x)|2p(x)dx+ C2(t− s)4

∫ t

s
|f (3)(x)|2dx. (S4.68)

We note that C1 ≤ 216M5
0 and that C2 ≤ 4M1M0.

Now fix ϵ ∈ (0,
δ20

(b−a)2
) and choose a partition a = a1 < a2 < . . . an = b where ai+1 − ai ≤√

ϵ(b − a). We may now apply (S4.68) on each (ai, ai+1) in an argument identical to that of

Lemma 11 to obtain the conclusion of the proposition for m = 3.

The argument for any m > 3 is similar. For the sake of concisely, we only sketch out the

analysis for m = 4. Fix a sub-interval (s, t) of (a, b) where t− s ≤ δ0. Let q̃(x) = p(x)∫ t
s p(x)

and note

that supx∈(s,t) q̃(x) ≤M0 and that q̃ satisfies condition (S4.66).

By applying Lemma 10 on f (2), we obtain

1

t− s

∫ t

s
|f (3)(x)|2dx ≤ 128M0

∫ t

s
|f (2)(x)|2q̃(x)dx+ 2(t− s)

∫ t

s
|f (4)(x)|2dx. (S4.69)

Now, by applying the conclusion of this proposition in the m = 3 case to f ′ with ϵ = ϵ0 where ϵ0
is a real number in (0, 1) whose value is given later, we have∫ t

s
|f (2)(x)|2q̃(x)dx ≤ C1

1

ϵ0(t− s)2

∫ t

s
|f ′(x)|2q̃(x)dx+M1C2ϵ

2
0(t− s)4

∫ t

s
|f (4)(x)|2dx. (S4.70)
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By plugging (S4.70) into (S4.69), we have

1

t− s

∫ t

s
|f (3)(x)|2dx ≤128M0C1

1

ϵ0(t− s)2

∫ t

s
|f ′(x)|2q̃(x)dx

+
{
128M0M1C2ϵ

2
0(t− s)4 + 2(t− s)

}∫ t

s
|f (4)(x)|2dx. (S4.71)

Now, we apply the conclusion of this proposition in the m = 3 case to f with ϵ = ϵ1 where ϵ1
is a real number in (0, 1) whose value is given later,∫ t

s
|f ′(x)|2q̃(x)dx ≤ C1

1

ϵ1(t− s)2

∫ t

s
|f(x)|2q̃(x)dx+M1C2ϵ

2
1(t− s)4

∫ t

s
|f (3)(x)|2dx. (S4.72)

By choosing ϵ0, ϵ1 such that 128M0M1C2ϵ
2
0 = 1 and 128M

1/2
0 C1C

1/2
2 ϵ21 = 1

2 , and by plug-

ging (S4.71) into (S4.72), we have that∫ t

s
|f ′(x)|2q̃(x)dx ≤ C ′

1

1

(t− s)2

∫ t

s
|f(x)|2q̃(x)dx+ 3(t− s)5

∫ t

s
|f (3)(x)|2dx,

where C ′
1 = C1/ϵ1 ≲ M8

0 . Now, by sub-dividing the interval (a, b) into segments of length
√
ϵ(b−a)

and applying the same argument for the m = 3, we obtain the desired conclusion for m = 4.

Corollary 6. Let b ≥ 2, let m ≥ 2 be an integer, and suppose p(·) is a density on (−b, b) of the

form p(x) = eu(x) where u(x) satisfies

1.
∫ b
−b |u

(m)(x)|2dx ≤ B and

2. |u(j)(0)| ≤ B1/2 for all j ∈ [m].

Suppose also supx p(x) ≤M for some M > 0. Then, for any interval (s, t) such that |s− t| ≤ 1,

sup
x∈(s,t)

p(x) ≤ eB1/2bm
1

t− s

∫ t

s
p(x)dx.

As a direct corollary, if f(·) is a function such that
∫ b
−b |f

(m)(x)|2p(x)dx ≤ B and
∫ b
−b |f(x)|

2p(x)dx ≤
1, then ∫ b

−b
|f ′(x)|2p(x)dx ≲ 23mBm+1b2m

2
M

(∫ b

−b
|f(x)|2p(x)dx

)1− 1
m

.

Proof. We observe that, for any x ∈ (−b, b),

|u(m−1)(x)| =
∣∣∣∣∫ x

0
u(m)(t)dt− u(m)(0)

∣∣∣∣ ≤ bB1/2 +B1/2 = (b+ 1)B1/2

|u(m−2)(x)| ≤ b(b+ 1)B1/2 +B1/2 = (b2 + b+ 1)B1/2

...

|u′(x)| ≤ (bm−1 + bm−2 + . . .+ b+ 1)B1/2 ≤ bmB1/2,
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where the last inequality follows from the assumption that b ≥ 2.

Write ϵ = b−mB−1/2. Let (s, t) ⊂ (−b, b) such that |s − t| ≤ 1 and let s∗ ∈ [s, t] be the point

such that p(s∗) = supx∈(s,t) p(x). Then, by mean value theorem,

1
t−s

∫ t
s p(x)dx

supx∈(s,t) p(x)
=

1

t− s

∫ t

s
eu(x)−u(s∗)dx

≥
∫
(s∗−ϵ,s∗+ϵ)∩(s,t)

eu(x)−u(s∗)dx

≥ ϵ inf
x∈(s∗−ϵ,s∗+ϵ)

e(u(x)−u(s∗))

≥ ϵe−|bmB1/2|ϵ

≥ b−mB−1/2e−1.

The conclusion then follows directly from Proposition 11 by letting M1 = M , M0 = ebmB1/2.
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