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The simultaneous estimation of many parameters based on data collected from corresponding studies is a

key research problem that has received renewed attention in the high-dimensional setting. Many practical

situations involve heterogeneous data where heterogeneity is captured by a nuisance parameter. Effectively

pooling information across samples while correctly accounting for heterogeneity presents a significant chal-

lenge in large-scale estimation problems. We address this issue by introducing the “Nonparametric Empirical

Bayes Structural Tweedie” (NEST) estimator, which efficiently estimates the unknown effect sizes and prop-

erly adjusts for heterogeneity via a generalized version of Tweedie’s formula. For the normal means problem,

NEST simultaneously handles the two main selection biases introduced by heterogeneity: one, the selection

bias in the mean, which cannot be effectively corrected without also correcting for, two, selection bias in the

variance. We develop theory to show that NEST is asymptotically as good as the optimal Bayes rule that

uniquely minimizes a weighted squared error loss. In our simulation studies NEST outperforms competing

methods, with much efficiency gains in many settings. The proposed method is demonstrated on estimat-

ing the batting averages of baseball players and Sharpe ratios of mutual fund returns. Extensions to other

members of the two-parameter exponential family are discussed.

Key words : compound decision, double shrinkage estimation, kernelized Stein’s discrepancy,

non-parametric empirical Bayes, Tweedie’s formula.
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1. Introduction

Suppose that we are interested in estimating a vector of parameters µ = (µ1, . . . , µn) based on

the summary statistics Y1, . . . , Yn from n study units. The setting where Yi | µi ∼N(µi, σ
2) is the

most well–known example, but the broader scope includes the compound estimation of Poisson

parameters λi, Binomial parameters pi, and other members of the exponential family.

In modern large-scale applications it is often of interest to perform simultaneous and selective

inference (Benjamini and Yekutieli 2011, Berk et al. 2013, Weinstein et al. 2013), which has called

for solving the compound estimation problem in new ways and for new purposes. For example,

there has been recent work on how to construct valid simultaneous confidence intervals of µi’s after

a selection procedure is applied (Lee et al. 2016). In multiple testing, as well as related ranking

and selection problems, it is often desirable to incorporate estimates of the effect sizes µi in the

decision process to prioritize the selection of more scientifically meaningful hypotheses (Benjamini

and Hochberg 1997, Sun and McLain 2012, He et al. 2015, Henderson and Newton 2016, Basu

et al. 2017).

However, the simultaneous inference of thousands of means, or other parameters, is challenging

because, as described in Efron (2011), the large scale of the problem introduces selection bias,

wherein some data points are large merely by chance, causing traditional estimators to overesti-

mate the corresponding means. Shrinkage estimation, exemplified by the seminal work of James

and Stein (1961), has been widely used in simultaneous inference. There are several popular classes

of methods, including linear shrinkage estimators (James and Stein 1961, Efron and Morris 1975,

Berger 1976), non–linear thresholding–based estimators motivated by sparse priors (Donoho and

Jonhstone 1994, Johnstone and Silverman 2004, Abramovich et al. 2006), and both Bayes or empir-

ical Bayes estimators with unspecified priors (Brown and Greenshtein 2009, Jiang and Zhang 2009,

Castillo and van der Vaart 2012). This article focuses on a class of estimators based on Tweedie’s

formula (Dyson 1926, Eddington 1940, Robbins 1956). The formula is an elegant shrinkage esti-

mator, for distributions from the exponential family, that has recently received renewed interest
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(Brown and Greenshtein 2009, Efron 2011, Koenker and Mizera 2014). Tweedie’s formula is simple

and intuitive, and its implementation only requires estimating the marginal distribution of Yi. This

property is particularly appealing for large–scale estimation problems where such estimates can be

easily constructed from the observed data. The resultant empirical Bayes estimator enjoys opti-

mality properties (Brown and Greenshtein 2009) and the work of Efron (2011) further convincingly

demonstrates that Tweedie’s formula provides an effective bias correction tool when estimating

thousands of parameters simultaneously.

1.1. Issues with heterogeneous data

Most of the research in this area has been restricted to models where the distribution of Yi is

solely a function of the parameter of interest µi. In situations involving a nuisance parameter τi it

is generally assumed to be known and identical for all Yi. For example, homoskedastic Gaussian

models of the form Yi | µi, σ
ind∼ N(µi, σ

2) involve a common nuisance parameter τi = 1/σ2 for all i.

However, in large-scale studies when the data are collected from heterogeneous sources, the nuisance

parameters may vary over the n study units. Perhaps the most common example, and the setting

we concentrate most on, involves heteroskedastic errors, where σ2 varies over Yi. Microarray data

(Erickson and Sabatti 2005, Chiaretti et al. 2004), returns on mutual funds (Brown et al. 1992),

and the state-wide school performance gaps (Sun and McLain 2012) are all instances of large-scale

data where genes, funds, or schools have heterogeneous variances. Heteroskedastic errors also arise

in analysis of variance (Weinstein et al. 2018) and linear regression settings (Kou and Yang 2017).

Moreover, in compound binomial problems, heterogeneity arises through unequal sample sizes

across different study units. Unfortunately, the conventional Tweedie’s formula assumes identical

nuisance parameters across study units and so cannot eliminate selection bias for heterogeneous

data. Moreover, various works show that failing to account for heterogeneity leads to inefficient

shrinkage estimators (Weinstein et al. 2018), methods with invalid false discovery rates (Efron

2008, Cai and Sun 2009), unstable multiple testing procedures (Tusher et al. 2001) and suboptimal
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ranking and selection algorithms (Henderson and Newton 2016), exacerbating the replicability

crisis in large-scale studies. Few methodologies are available to address this issue.

For Gaussian data, a common goal is to find the estimator of the means µi that minimizes the

expected squared error loss. A plausible–seeming solution might be to scale each sample mean Yi

by its estimated standard deviation Si/
√
mi so that a homoskedastic method could be applied to

Xi =
√
miYi/Si, before undoing the scaling on the final estimate of µi. Indeed, this is essentially

the approach taken whenever we compute standardized test statistics, such as t–values and z–

values. However, this approach, which disregards important structural information, can be highly

inefficient. More advanced methods have been developed, but all suffer from various limitations.

For instance, the methods proposed by Xie et al. (2012), Tan (2015), Jing et al. (2016a), Kou

and Yang (2017), and Zhang and Bhattacharya (2017) are designed for heteroscedastic data but

assume a parametric Gaussian prior or semi-parametric Gaussian mixture prior, which leads to loss

of efficiency when the prior is misspecified. Moreover, existing methods, such as Xie et al. (2012)

and Weinstein et al. (2018), often assume that the nuisance parameters, the variances 1/τi, are

known and use a consistent estimator for implementation. However, when a large number of units

are investigated simultaneously, traditional sample variance estimators may similarly suffer from

selection bias, which often leads to severe deterioration in the MSE for estimating the means.

1.2. The proposed approach and main contributions

In the homogeneous setting, Tweedie’s formula for Gaussian data estimates µi using the score

function at Yi, which is the gradient of the log marginal density of the sufficient statistic Yi. How-

ever, this approach does not immediately extend to heterogeneous data. A significant challenge in

the heterogeneous setting is how to pool information from different study units effectively while

accounting for the heterogeneity captured by the possibly unknown nuisance parameter τi. In this

article, we address this issue by proposing a double shrinkage method that simultaneously incorpo-

rates the structural information encoded in both the primary (e.g. Yi) and auxiliary (e.g. Si) data.

We develop a two–step approach, “Nonparametric Empirical Bayes Structural Tweedie” (NEST),
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which first estimates the bivariate score function at the primary and auxiliary data, and second

predicts µi under a weighted squared error loss function using a generalized version of Tweedie’s

formula that effectively incorporates the structural information encoded in the nuisance parameter.

Unlike the squared error loss, which has been widely used for large-scale shrinkage estimation, the

weighted squared error loss provides a more suitable performance metric for analyzing heteroge-

neous data by utilizing a weighting scheme that captures the underlying heterogeneity across the

study units. The corresponding shrinkage estimator that minimizes the expected weighted squared

error loss naturally encompasses the ability to differentiate between the study units both with

respect to µi and the heterogeneity captured by the unknown nuisance parameter τi.

NEST has several clear advantages. First, it simultaneously handles the two main selection biases

introduced by heterogeneity: one, selection bias in the primary data (e.g. sample means), which

cannot be effectively corrected without also correcting for, two, selection bias in the auxiliary data

(e.g. sample variances). By producing more accurate estimates for the nuisance parameters, NEST

in general renders improved shrinkage factors for estimating the primary parameters. Second, NEST

makes no parametric assumptions about the prior since it uses a nonparametric method to directly

estimate the bivariate score function. Third, NEST exploits the structure of the entire sample

and avoids the information loss that occurs in the discretization step used in grouping methods

(Weinstein et al. 2018). Fourth, we establish that NEST is asymptotically as good as the optimal

Bayes rule that uniquely minimizes the weighted squared error loss. Finally, NEST provides a

general estimation framework for members of the two-parameter exponential family and is robust

against model mis-specification. We demonstrate numerically that NEST can provide high levels

of estimation accuracy relative to a host of benchmark methods.

1.3. Connection to existing works

For empirical Bayes (EB) estimation of the means, recent works such as Xie et al. (2012), Tan

(2015), Jing et al. (2016a), Kou and Yang (2017) assume a parametric prior distribution for the

means. This is in contrast to the setting where such a prior is unknown and in those settings there
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are two main modeling strategies for EB estimation. They are known as the g-modeling and f -

modeling strategies in the terminology of Efron (2014). The idea of g-modeling is to first obtain a

deconvolution estimate of the unknown prior distribution of µi, and then predict µi by plugging this

estimate into Bayes rule for various loss functions. The deconvolution estimate can be constructed

via the nonparametric maximum likelihood estimate (NPMLE; Kiefer and Wolfowitz 1956, Laird

1978), or by modeling the unknown prior as a low-dimensional exponential family distribution

(Efron 2016). Some notable works along this line include Jiang and Zhang (2009), Koenker and

Mizera (2014), Gu and Koenker (2017a), Saha and Guntuboyina (2020), and Soloff et al. (2021).

In contrast, the f -modeling strategy usually assumes that the nuisance parameter, such as the

variance, is known and sidesteps the need of deconvolution estimation by directly predicting µi

based on Tweedie’s formula (or its generalized version), which only depends on the score function at

the sufficient statistic Yi and the known nuisance parameter. Notable works along this line include

Brown and Greenshtein (2009) and Efron (2011), both of which rely on fixed and known variances.

In particular, their approach involves kernel density estimation techniques for separately estimating

the marginal density and its gradient, and then taking their ratio to construct an estimate of the

score function. NEST adopts the f -modeling strategy. However, in contrast to existing f -modeling

methods, we allow the variances to be unknown and develop a convex optimization approach that

directly provides consistent estimate of the score function and is capable of incorporating various

structural constraints in the data-driven NEST estimator.

The g-modeling approach via the NPMLE provides an excellent tool for EB estimation of het-

eroskedastic means. However, to the best of our knowledge, the asymptotic properties of the

NPMLE are highly nontrivial to establish and often require strong assumptions. For instance, the

analysis in Saha and Guntuboyina (2020) only works for a limited class of covariance structures,

and the theory on the rate of convergence is applicable only when the degree of heteroskedasticity

is “mild”; alternatively the analysis in Soloff et al. (2021) assumes that µi are independent of σi,

which is often violated in practice (Weinstein et al. 2018). In contrast, we establish the asymp-

totic properties of NEST without assumptions on the degree of heteroskedasticity or independence
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between µi and σi. A key advantage of g-modeling is its capability to deal with a wider range of

problems, particularly those in which direct use of the marginal density of the sufficient statistic

itself cannot yield a solution. Meanwhile, the f -modeling approach, which often has a simple and

intuitive form (e.g. Tweedie’s formula), is attractive when only the information on the marginal

distribution is needed for solving the problem of interest.

1.4. Organization

The rest of the paper is structured as follows. In Section 2 we present our hierarchical Gaussian

model where both the mean and variance parameters are unknown. In Section 2.1 we discuss the

weighted squared error loss function and in Section 2.2 we rely on the natural-parameter Tweedie’s

formula for our hierarchical model to introduce the oracle NEST estimator under the weighted

squared error loss in Definition 1. We then develop a convex optimization approach in Section 3 for

estimating the unknown shrinkage factors in the oracle NEST formula. In Section 4, we describe

the theoretical setup, justify the optimization criterion, and finally establish asymptotic theories

for the proposed NEST estimator. Simulation studies are carried out in Section 5 to compare NEST

to competing methods. The article concludes with a discussion in Section 6. Two data applications

are presented in Section EC.4 of the Electronic Companion (EC). The proofs, as well as additional

theoretical and numerical results, are provided in the EC.

2. Double shrinkage estimation on heteroskedastic Normal data

In the main text of this article, we focus on the normal means problem. Extensions of the method-

ology to other members of the two-parameter exponential family are discussed in Section EC.5 of

the EC.

Suppose we collect mi observations for the ith study unit, i = 1, . . . , n. The data are normally

distributed obeying the following hierarchical model:

Yij | µi, τi
i.i.d.∼ N(µi,1/τi), j = 1, . . . ,mi, (1)

µi |τi
ind.∼ Gµ(·|τi), τi

i.i.d∼ Hτ (·), i= 1, . . . , n.
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Let Yi = m−1
i

∑mi
j=1 Yij and S2

i = (mi − 1)−1
∑mi

j=1(Yij − Yi)2 respectively denote the sample mean

and sample variance under Model (1). Further, let Y = (Y1, . . . , Yn) and S = (S2
1 , . . . , S

2
n) be the

vectors of summary statistics, and y = (y1, . . . , yn) and s = (s2
1, . . . , s

2
n) the observed values. We

view µi and τi, both of which are unknown, as the primary and nuisance parameters, respectively.

The prior distributions Gµ(·|τi) and Hτ (·) are unspecified. When the precisions τi are known in

Model (1), compound estimation of the means µ= (µ1, . . . , µn)T under the squared error loss has

received significant attention in recent years (see for example Weinstein et al. (2018), Xie et al.

(2012), Cai et al. (2021) and the references therein) and the estimator minimizing the expected

squared error loss is,

E(µi | Yi = yi, τi,mi) = yi +
1

miτi
w1(yi;mi, τi), (2)

where w1(y;m,τ) :=
∂

∂y
log fm,τ (y) and fm,τ (·) is the pdf of the marginal distribution of Y . Equation

(2) is the celebrated Tweedie’s formula with known variances (Efron 2011) which forms the basis

for f -modeling strategies for estimating µi, and only requires estimation of the score functions

w1(yi;mi, τi) in order to compute the estimator. This is particularly appealing in large-scale studies

where one observes thousands of (Yi, τi), making it possible to obtain an accurate estimate of

w1(yi;mi, τi) (see Section EC.5 of the EC for more details). Here, we develop a nonparametric

empirical Bayes method for estimating µ under the weighted squared error loss (Section 2.1) when

τi are unknown.

2.1. The weighted squared error loss

Let δ= (δ1, . . . , δn)T be an estimator for µ based on (Y ,S). Consider a class of loss functions

`(p)(µi, δi; τi) = τ pi (µi− δi)2, (3)

for p∈ {0,1}, where `(0)(µi, δi; τi) represents the usual squared error loss and `(1)(µi, δi; τi) = τi(µi−

δi)
2 is the weighted squared error loss with weight given by the precision τi. While the squared

error loss treats any two study units equally with respect to their precisions τi, the weighted

squared error loss `(1)(µi, δi; τi) is a particularly natural loss function which effectively captures
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Figure 1 A toy illustration of the squared error and weighted squared error losses. Here n= 100 and µi = 0 for all

i= 1, . . . , n. The variances σ2
i = 1/τi are n equispaced numbers between 0.5 and 2. In the right panel δi

are n equispaced numbers between −0.5 and 0.5. The red dots represent the squared error losses while

the green dots represent the corresponding weighted squared error losses for estimating µi using δi for

i= 1, . . . , n.

the underlying heterogeneity across the study units and appropriately adjusts their contributions

to the total estimation error. Under Model (1), and unlike the squared error loss, `(1)(µi, δi; τi) is

also invariant under a linear transformation of the data Yij to Ỹij i.e. `(1)(µi, δi; τi) = `(1)(µ̃i, δ̃i; τ̃i)

where Ỹij = ai + biYij, µ̃i = ai + biµi, τ̃i = τi/b
2
i and δ̃i = ai + biδi for (ai, bi) ∈ R2 with bi 6= 0.

Moreover, the weighting scheme alleviates potential concerns on the fairness issue in terms of the

estimation accuracy that each study unit achieves since estimating µi as accurately when τi is small

is difficult compared to when τi is large. Intuitively, the weighted loss down-weights the impacts

of observations with extremely large variances and allows a relatively larger estimation error when

the precisions are small while penalizing the estimation error more when the precisions are large.

In Figure 1 we present a toy illustration of this phenomenon. We fix n = 100 and µi = 0 for all

i= 1, . . . , n. The variances σ2
i = 1/τi are n equispaced numbers between 0.5 and 2. The red dots

in Figure 1 represent the squared error losses while the green dots represent the corresponding

weighted squared error losses for estimating µi using δi for i= 1, . . . , n. In the left panel of Figure

1 we see that when the precisions are large, the same δi, say δi = 0.5, incurs a relatively larger loss

under `(1)(µi, δi; τi) than when the precisions are small. In the right panel, we pair each σ2
i with a
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δi, where δi are n equispaced numbers between −0.5 and 0.5, and calculate the two losses. Both the

left and the right panels reveal that `(0)(µi, δi; τi) does not adjust the estimation error in response

to the underlying heteroskedasticity represented by the precisions.

In the following section, we present the oracle NEST estimator of µ under this weighted squared

error loss. Thereafter in Section EC.1 of the EC we present an analysis under the usual squared

error loss.

2.2. The oracle NEST estimator under the weighted squared error loss

Denote the average loss l(p)n (µ,δ;τ ) = n−1
∑n

i=1 `
(p)(µi, δi; τi). The compound Bayes risk is

rp(δ,G) =E{l(p)n (µ,δ;τ )}=
1

n

n∑
i=1

∫ ∫ ∫
`(p)(µi, δi; τi)fmi(y, s

2 |ψi)dyds2dG(ψi), (4)

where ψi = (µi, τi), G(ψi) =Gµ(µi|τi)Hτ (τi), and fmi(y, s
2 |ψi) is the likelihood function of (Yi, S

2
i ).

The Bayes estimator that uniquely minimizes Equation (4) is given by δδδπ(p) = (δπ1,(p), . . . , δ
π
n,(p)),

where

δπi,(p) := δπ(p)(yi, s
2
i ,mi) =

E(τ pi µi | yi, s2
i ,mi)

E(τ pi | yi, s2
i ,mi)

. (5)

Denote ζi := τiµi. In Definition 1 we present the oracle NEST estimator of µ under the weighted

squared error loss which is the Bayes estimator δπ(1). The key idea is to exploit the exponential

family representation of the posterior distribution of (µi, τi) to construct a Tweedie-type formulae

for δπi,(1).

Definition 1. Consider hierarchical Model (1) with mi > 3. Then the oracle NEST estimator of

µi under the weighted squared error loss is δπi,(1) where

δπi,(1) := δπ(1)(yi, s
2
i ,mi) =

E(ζi|yi, s2
i ,mi)

E(τi|yi, s2
i ,mi)

= yi +
s2
i

mi

γ(yi, s
2
i ,mi)w1(yi, s

2
i ,mi), (6)

and γ(yi, s
2
i ,mi) =

mi− 1

mi− 3− 2s2
iw2(yi, s2

i ;mi)
.

We first discuss the oracle NEST estimator in Equation (6) and then explain its genesis.

In Equation (6) δπi,(1) is a ratio of ζ̂πi :=E(ζi|yi, s2
i ,mi) and τ̂πi :=E(τi|yi, s2

i ,mi), and it involves the

shrinkage factor γi := γ(yi, s
2
i ,mi) that should be applied to s2

i when τi is unknown. This shrinkage
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factor is, by construction, positive and depends on w2,i :=w2(yi, s
2
i ;mi) that controls the magnitude

of shrinkage that is applied to the sample variance s2
i . In practical applications, however, the score

functions w1,i and w2,i are unknown. In Section 3, we develop a data-driven NEST estimator with

estimated scores.

The particularly useful representation of δπi,(1) in Equation (6) relies on the construction of

Tweedie’s formulae for the natural parameters (ζi, τi) under Model (1). Specifically, we represent

the posterior distribution of (µi, τi) as a two-parameter exponential family with natural parameters

(ζi, τi) which allows one to explicitly compute the posterior means of ζi and τi as follows:

ζ̂πi := ζ̂π(yi, s
2
i ,mi) =E(ζi|yi, s2

i ,mi) = yiE(τi|yi, s2
i ,mi) +m−1

i w1(yi, s
2
i ;mi), (7)

τ̂πi := τ̂π(yi, s
2
i ,mi) =E(τi|yi, s2

i ,mi) =
mi− 3

(mi− 1)s2
i

− 2

mi− 1
w2(yi, s

2
i ;mi). (8)

Equations (7) and (8) represent the natural parameter Tweedie’s formulae for the parameters (ζi, τi)

under Model (1) and are significant for several reasons. First, they generalize Tweedie’s formula

with known variances (Equation (2)), which can be recovered from Equation (7) by treating τi

as a known constant and dividing both sides by τi. Second, τ̂πi in Equation (8) has an interesting

interpretation. Apart from being the Bayes estimate of τi under the squared error loss, 1/τ̂πi is the

Bayes estimate of 1/τi under Stein’s loss (James and Stein 1961). Third, Equations (7) and (8)

can be used for compound estimation of the parameters θi = T (ζi, τi,mi) where T (·) is a known

function of (ζi, τi,mi). For instance, in finance applications the Sharpe ratio for a portfolio i is given

by T (ζi, τi,mi) = ζi/
√
τi and one can construct an estimator θ̂i := T (ξ̂πi , τ̂

π
i ,mi) using Equations

(7) and (8) to estimate θi. In Section EC.4.2 of the EC we present a real data application that is

dedicated to the compound estimation of Sharpe ratios for a large number of mutual fund portfolios.

However we note that θ̂i contructed in the aforementioned fashion may not, in general, be the

optimal estimator of θi under the squared error or the weighted squared error loss considered here.

In Section EC.2.7 of the EC we provide a proof of Equations (7) and (8).
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3. The data-driven NEST estimator

In this section we discuss the estimation of the shrinkage factors and introduce the data-driven

NEST estimator in Definition 2. We begin by introducing some notation. Let x = (y, s2) be a

generic pair of observations from the distribution with marginal density fm(x), which we assume

is continuously differentiable with support on X ⊆R×R+. Denote the score function

w(x;m) =∇x log fm(x) := {w1(x;m),w2(x;m)} . (9)

Next, for i= 1, . . . , n, let zi = (xi,mi) where xi is an observation from a distribution with density

fmi(x).

3.1. Convex optimization

We first describe the methodology and then provide explanations. Let,

Kλ(zi,zj) = exp
{
− 1

2λ2
(zi−zj)TΩ(zi−zj)

}
, (10)

be the Radial Basis Function (RBF) kernel with bandwidth parameter λ > 0 and Ω3×3 being the

inverse of the sample covariance matrix of (z1, . . . ,zn). Denote

Wn×2
0 =

{
w(x1;m1), . . . ,w(xn;mn)

}T
, where (11)

w(xi;mi) =∇x log fmi(x)
∣∣∣
x=xi

:=
{
w1(xi;mi),w2(xi;mi)

}
.

We denote wk(x
i;mi) by wk,i, k= 1,2, for the remainder of this article.

Let ∇
z
j
k
Kλ(zi,zj) be the partial derivative of Kλ(zi,zj) with respect to the kth component of

zj. The following matrices are needed in our proposed estimator:

Kn×n
λ = [Kij,λ]1≤i≤n,1≤j≤n, ∇Kn×2

λ = [∇Kik,λ]1≤i≤n,1≤k≤2
,

where Kij,λ =Kλ(zi,zj) and ∇Kik,λ =
∑n

j=1∇zj
k
Kλ(zi,zj). Next we formally define our proposed

Nonparametric Empirical-Bayes Structural Tweedie (NEST) estimator.
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Definition 2. Consider hierarchical Model (1) with mi > 3. For a fixed bandwidth parameter

λ> 0, let Ŵn(λ) = {ŵλ,n(1), . . . , ŵλ,n(n)}T , where ŵλ,n(i) = {ŵ(1)
λ,n(i), ŵ

(2)
λ,n(i)}T , be the solution to

the following quadratic optimization problem:

min
W∈Rn×2

1

n2
trace

(
WTKλW + 2WT∇Kλ

)
. (12)

Then the NEST estimator for µi is

δdsi,n(λ) = yi +
s2
i

mi

γ̂i,n(λ)ŵ
(1)
λ,n(i), (13)

where γ̂i,n(λ) =
mi− 1

mi− 3− 2s2
i ŵ

(2)
λ,n(i)

, (14)

with the superscript ds denoting “double shrinkage”.

Although not immediately obvious, we show in Section 4 that, under the compound estimation

setting, minimizing the objective function (12) is asymptotically equivalent to minimizing the

kernelized Stein’s discrepancy (KSD; Liu et al. 2016, Chwialkowski et al. 2016). Roughly speaking,

the KSD measures how far a given n×2 matrixW is from the true score matrixW0. A key property

of the KSD is that it is always non-negative and is equal to 0 if and only if W and W0 are equal.

Hence, solving the convex program (12) is equivalent to finding a Ŵ that is as close as possible to

W0. Since the oracle NEST estimator in Definition 1 is constructed based on W0, we can expect

that the data-driven NEST estimator based on Ŵn(λ) would be asymptotically close to its oracle

counterpart. Theory underpinning this intuition are established in Section 4.

The bandwidth parameter λ in the RBF kernel Kλ (Equation (10)) controls the bias-variance

trade-off in the score function estimate. For instance, a small value of λ allows unbiasedness but

the resulting n−dimensional score function estimator has more variance compared to when λ is

large, which forces the estimated shrinkage factors towards 0, and in the limit the NEST estimate

is simply the unbiased estimate yi. In Section 3.2 we discuss a data-driven approach to choose λ

for practical implementation of the NEST estimator.

A key characteristic of δdsi,n(λ) in Equation (13) is that it exploits the joint structural information

available in both Yi and S2
i through Ŵn(λ). Since the weighted loss function involves both the
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mean and the variance, we perform shrinkage on both these dimensions. Inspecting Equations (13)

and (14), we expect that the improved accuracy achieved by γ̂i,n(λ) will lead to better shrinkage

factors for δdsi,n(λ) and hence additional reduction in the estimation risk. Our numerical results in

Sections 5 and EC.4 reveal that this is indeed true and the proposed NEST estimator dominates

other shrinkage estimators across many settings. In Section EC.5 of the EC we adopt a similar

strategy to extend the estimation framework presented in Definition 2 to other distributions in the

two-parameter exponential family where the nuisance parameter is known.

We end this section with a discussion of the simpler case of equal sample sizes, i.e. mi =m for all

i. For instance, the leukemia dataset analyzed in Jing et al. (2016a) consists of the expression levels

of n= 5,000 genes for m= 27 acute lymphoblastic leukemia patients. The heterogeneity across the

n units in this case is due to the intrinsic variability instead of the varied number of replicates.

When the mi’s are equal, the RBF kernel Kλ(·, ·) needs to be modified to avoid a singular sample

covariance matrix. DenoteKλ(xi,xj) = exp{−0.5λ−2(xi−xj)TΩ(xi−xj)} the modified RBF kernel

with Ω2×2 being the inverse of the sample covariance matrix of (x1, . . . ,xn). Correspondingly in

Definition 2, Ŵn(λ) are the estimates of the shrinkage factors Wn×2
0 = {w(x1;m), . . . ,w(xn;m)}T ,

where w(xi;m) = {w1(xi;m),w2(xi;m)}T := (w1,i,w2,i)
T .

3.2. Details around implementation

In this section we discuss details around the implementation of NEST. First note that Equation

(12) can be solved separately for the two columns of W, which respectively yield the estimates

for w1,i and w2,i. Next, the solution to Equation (12) is available in the closed form of Ŵn(λ) =

−K−1
λ ∇Kλ. However, in our implementation the closed form solution is replaced by a convex

program that directly solves (12) with the following two constraints: (1)Wa� b, where a= (0,1)T

and b= (b1, . . . , bn) with bi = 1
2
(mi− 3)/s2

i −κ for some κ> 0, and (2) 1TWek = 0, k= 1,2, where

ek is the canonical basis vector with 1 at coordinate k. Inspecting Equation (14) shows that adding

the first constraint guarantees that γ̂i,n(λ)<∞. This is desirable in both numerical and theoretical

analyses. Similar ideas have been used in the seminal work of Koenker and Mizera (2014). The
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second constraint ensures that the sample mean of the kth estimated shrinkage factor is zero since

the expectation of the gradient of the log marginal density is indeed zero.

The practical implementation requires a data-driven scheme for choosing λ. We propose to use a

variation of the modified cross validation scheme of Brown et al. (2013), which involves splitting Yij

into two parts: Uij = Yij − (1/α)εij and Vij = Yij +αεij, where εij ∼N(0, τ−1
i ), and Uij and Vij are

used to construct the estimator and to choose the tuning parameter, respectively. However in our

setup τi is unknown; hence we define Uij = Yij − (1/α)
√
S2
i εij, Vij = Yij +α

√
S2
i εij and sample εij

independently from N(0,1). Let V̄i =m−1
i

∑mi
j=1 Vij, Ūi =m−1

i

∑mi
j=1Uij, U = {Uij : 1≤ i≤ n,1≤ j ≤

mi} and V = {Vij : 1≤ i≤ n,1≤ j ≤mi}. Then conditional on (µi, τi), Ūi and V̄i are uncorrelated

with mean µi and variances (1 +α−2)/(miτi) and (1 +α2)/(miτi), respectively. Define

ϑn(λ;U ,V) =
1

n

n∑
i=1

{
V̄i− δdsi,n(Ūi;U , λ)

}2

S2
V,i

,

where δdsi,n(Ūi;U , λ) is the NEST estimator of µi based on U and S2
V,i is the sample variance of

{Vij : 1≤ j ≤mi}. The tuning parameter will be chosen as λ̂ := arg minλ∈Λ ϑn(λ). In our numerical

studies of Section 5, we set α= 1/2, Λ = [0.5,102]. The tuning parameter λ̂ is obtained from this

scheme and then used to estimate µi via Equation (13).

Remark 1. Note that for large m, V̄i and S2
V,i are independent and E[ϑn(λ;U ,V)] can be well

approximated by the sum n−1
∑n

i=1 E[`(1){µi, δdsi,n(Ūi;U , λ); τi/(1+α2)}]+n−1
∑n

i=1 E(V̄i−µi)2/S2
V,i

for any fixed λ> 0 and n. The first term depends on λ while the second term is independent of it.

We choose the value of λ that minimizes ϑn(λ;U ,V) to construct the data-driven NEST estimator

of µ based on the original sample (Y ,S). For α→ 0, this scheme is equivalent to choosing a value

of λ that minimizes the true weighted squared error loss of δdsi,n(Ūi;U , λ), i= 1, . . . , n. We note in

Section 5 that when m is small, the risk of the data-driven NEST estimator is generally higher

than the risk of the NEST estimator that chooses λ by minimizing the true weighted squared error

loss of δdsn (λ) based on (Y ,S) (see for example the left panels in Figures 2 and 3). This is not

unexpected since ϑn(λ;U ,V) is not an unbiased estimator of the true risk. However, ϑn(λ;U ,V)



Banerjee et al.: NEST
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

provides a practical criterion for choosing λ and works well empirically in our numerical studies

for larger m. The development of an unbiased risk estimate, such as a SURE-type criterion, for

this setting is a challenging topic requiring further research. See also Ignatiadis and Wager (2019)

for related discussions.

We are developing an R package, nest, to implement the NEST estimator in Definition 2. The

R code that reproduces the numerical results in this paper can be downloaded from the link:

https://www.dropbox.com/sh/5yptcj4epxdgbqs/AADAyHZNDCv4Hqagsi97vC2Da?dl=0.

4. Theory

In this section we introduce the Kernelized Stein’s Discrepancy (KSD) measure (Liu et al. 2016,

Chwialkowski et al. 2016) and discuss its connection to the quadratic program (12). While the

KSD has been used in various contexts including goodness of fit tests (Liu et al. 2016, Yang et al.

2018), variational inference (Liu and Wang 2016) and Monte Carlo integration (Oates et al. 2017),

its connections to compound estimation and empirical Bayes methodology was established only

recently (Banerjee et al. 2021, Luo et al. 2022). The analysis in this and following sections is geared

towards the case mi =m for i= 1, . . . , n. Under this setting, (x1, . . . ,xn) constitute an i.i.d random

sample from fm(x). The case of unequal mi’s can be analyzed in a similar fashion by assuming

that mi’s are a random sample from a distribution with mass function q(·). Then z = (x,m) has

distribution with density p(z) := q(m)fm(x), where zi = (xi,mi), (z1, . . . ,zn) are realizations of an

i.i.d random sample from p(z).

4.1. Kernelized Stein’s Discrepancy

Suppose X and X ′ are i.i.d. copies from the marginal distribution of (Y,S2) that has density f

wherein the dependence on m is implicit. Denote w(X) and w(X ′), defined in Equation (9), to be

the score functions at X and X ′ respectively. Suppose f̃ is an arbitrary density function on the

support of (Y,S2), for which we similarly define w̃(X). The KSD, formally defined as

Sλ(f, f̃) =EX,X′∼f

[{
w̃(X)−w(X)

}T
Kλ(X,X ′)

{
w̃(X ′)−w(X ′)

}]
,

https://www.dropbox.com/sh/5yptcj4epxdgbqs/AADAyHZNDCv4Hqagsi97vC2Da?dl=0
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provides a discrepancy measure between f and f̃ in the sense that Sλ(f, f̃) tends to increase when

there is a bigger disparity between w and w̃ (or equivalently, between f and f̃), and

Sλ(f, f̃)≥ 0 and Sλ(f, f̃) = 0 if and only if f = f̃ .

The direct evaluation of Sλ(f, f̃) is difficult because w is unknown. Liu et al. (2016) introduced an

alternative representation of the KSD that does not directly involve w:

Sλ(f, f̃) = Efκλ[w̃(X), w̃(X ′)](X,X ′)

= Ef

{
1

n(n− 1)

n∑
i=1

n∑
j=1

κλ[w̃(X i), w̃(Xj)](X i,Xj)I(i 6= j)

}
= Ef

[
M̄λ,n(W̃)

]
:=Mλ(W̃), (15)

where {X1, . . . ,Xn} is a random sample from f , Ef denotes expectation under f and

κλ[w̃(x), w̃(x′)](x,x′) = w̃(x)T w̃(x′)Kλ(x,x′) + w̃(x)T∇x′Kλ(x,x′) +∇xKλ(x,x′)T w̃(x)

+ trace(∇x∇x′Kλ(x,x′)),

is a smooth and symmetric positive definite kernel function associated with the U-statistic M̄λ,n(W̃).

The implementation of the NEST estimator in Definition 2 boils down to the estimation of W0 via

the convex program (12), which corresponds to minimizing

M̂λ,n(W̃) =
1

n2

n∑
i=1

n∑
j=1

κλ[w̃(X i), w̃(Xj)](X i,Xj) (16)

w.r.t. W̃. A key observation is that if the empirical criterion M̂λ,n(W̃) is asymptotically equal to

the population KSD criterion Mλ(W̃), then minimizing M̂λ,n(W̃) with respect to W̃ is effectively

the process of finding a W̃ that is as close as possible to W0 in Equation (11). This intuitively

justifies the NEST estimator in Definition 2.

In Theorem 1, we formally establish the asymptotic consistency of the sample criterion M̂λ,n(W̃)

around the population criterion Mλ(W̃) for any fixed λ > 0. We impose the following regularity

condition where f denotes the density function of the joint marginal distribution of (Y,S2) and Ef

denotes expectation under f .



Banerjee et al.: NEST
18 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Assumption 1. Ef |κλ[w̃(X i), w̃(Xj)](X i,Xj)|2 <∞ for any (i, j)∈ {1, . . . , n}.

Assumption 1 is a standard moment condition on κλ[w̃(X i), w̃(Xj)](X i,Xj) [see, for example,

Section 5.5 in Serfling (2009)] , which is needed for establishing the Central Limit Theorem for the

U-statistic M̄λ,n(W̃) in Equation (15).

Theorem 1. Under Assumption 1 and for any fixed λ> 0, we have

∣∣M̂λ,n(W̃)−Mλ(W̃)
∣∣=Op

(
n−1/2

)
.

Moreover, along with the fact that Mλ(W0) = 0, Theorem 1 justifies M̂λ,n(W̃) as an appropriate

optimization criterion. Next we show that the NEST estimator in Definition 2 is asymptotically

close to its oracle counterpart.

4.2. Asymptotic Properties of NEST

This section studies the asymptotic properties of the NEST estimator under the setting where

λ := λ(n) varies with n. We begin by recalling the oracle NEST estimator δπ(1) = (δπ1,(1), . . . , δ
π
n,(1))

for µ in Equation (6), where

δπi,(1) := δπ(1)(yi, s
2
i ,m) =

ζ̂π(yi, s
2
i ,m)

τ̂π(yi, s2
i ,m)

= yi +
s2
i

m
γ(yi, s

2
i ;mi)w1(yi, s

2
i ,m),

and ζ̂π and τ̂π are respectively the Bayes estimators of τµ and τ as defined in Equations (7) and

(8). Viewing the proposed NEST estimator δdsi,n(λ) as a data-driven approximation to δπi,(1), we

study the quality of this approximation for large n and fixed m.

In Theorem 2 we first establish the consistency of the estimated score functions Ŵn(λ) obtained

as the solution to the quadratic optimization problem in Equation (12). In what follows, we denote

the Frobenius norm of a matrix A by ‖A‖F and for two sequences an and bn, we denote an � bn

to mean d1an ≤ bn ≤ d2an for large n and some constants d2 ≥ d1 > 0. The following regularity

condition is needed in our technical analysis.

Assumption 2. The joint density f and its score functions are Lipschitz continuous.
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Theorem 2. If limn→∞ cn(logn)4n−1/3 = 0 then under Assumption 2 and with λ� n−1/3, we have

lim
n→∞

P
{ 1

n

∥∥Ŵn(λ)−W0

∥∥2

F
≥ c−1

n ε
}

= 0, for any ε > 0.

We prove Theorem 2 for sub-exponential random variables X whose density f and the correspond-

ing score functions are Lipschitz continuous (Assumption 2). The assumption of Lipschitz continuity

is mild and allows a cleaner statement of our theoretical result. Theorem 2 reveals a slower than

parametric
√
n rate of convergence, barring the logarithmic terms. This is related to the observation

that the KSD approach for estimating the score functions essentially works by first mapping the

data into a reproducing kernel Hilbert space (RKHS) associated with the integrally strictly positive

definite kernel Kλ in Equation (10) and then estimating the scores by minimizing M̂λ,n(W̃) with

respect to W̃, where M̂λ,n(W̃) is a data-driven approximation to the squared RKHS norm Mλ(W̃).

The statement of Theorem 2, however, is based on the metric L2(W̃,W0) = n−1‖W̃ −W0‖2F and

not the RKHS norm. As such, it is not necessarily true that if Ŵn(λ) is a good estimate of W0 in

the RKHS norm then it is a good estimate of W0 in the L2 metric too for every λ> 0. Theorem 2

precisely tabulates how λ must behave as n→∞ to establish consistency of the estimated scores in

the L2 metric and the slower than
√
n rate of convergence is a consequence of the cost of inversion

from the RKHS norm to this L2 metric.

Next we provide decision theoretic guarantees on δdsn (λ) in relation to δπ(1). We impose the fol-

lowing moment condition on the prior distributions of µ and τ .

Assumption 3. For some εi ∈ (0,1), i = 1,2,3, EG{exp(ε1|µ|)} < ∞, EH{exp(ε2/τ)} < ∞ and

EH{exp(ε3τ)}<∞.

The moment conditions in Assumption 3 ensure that with high probability |µ| ≤ logn and 1/ logn≤

τ ≤ logn as n→∞. This is formalized in Lemma EC.4 in Section EC.2.6 of the EC. It is likely

that Assumption 3 can be further relaxed but we do not seek the full generality here.

Theorem 3. Suppose Assumptions 2 – 3 hold. If limn→∞ cnn
−1/3(logn)8 = 0, then as n → ∞

with λ � n−1/3, we have
cn
n

∥∥δdsn (λ) − δπ(1)

∥∥2

2
= op(1). Furthermore, under the same conditions,

c1/2
n

∣∣l(1)
n {µ,δdsn (λ);τ}− l(1)

n (µ,δπ(1);τ )
∣∣= op(1) as n→∞.
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Theorem 3 establishes the optimality theory of δdsn (λ) by showing that (a) the average squared error

between δdsn (λ) and δπ(1) is asymptotically small, and (b) the estimation loss of NEST converges in

probability to that of its oracle counterpart as n→∞.

5. Numerical experiments

In this section we assess the performance of the NEST estimation framework for compound estima-

tion of Normal means under the weighted squared error loss. We focus on the hierarchical Model

of Equation (1) and compare the following four approaches for estimating µ when the precisions

τ are unknown: (1) the proposed NEST method where the tuning parameter λ is chosen using a

modified cross-validation approach described in Section 3.2, (2) the NEST method which estimates

λ by minimizing the true loss (NEST Orc. λ), (3) the g-modelling approach of Gu and Koenker

(2017a,b) which first estimates the joint prior distribution of (µi, τi) using nonparametric maxi-

mum likelihood estimation (NPMLE) techniques (Kiefer and Wolfowitz 1956, Laird 1978) and then

plugs them into the Bayes rule for estimating µi under the weighted squared error loss, and (4)

the oracle Bayes estimator δπ(1) in Equation (6) that has full knowledge of the prior distributions

of (µi, τi). For NPMLE we use the R-function WGLVmix, available within the R-package REBayes

(Koenker and Gu 2017), to estimate the joint prior distribution of (µi, σ
2
i ). To compute δπ(1) we rely

on the R-package RStan (Stan Development Team 2022, Carpenter et al. 2017).

The aforementioned four approaches are evaluated on nine different simulation settings, with the

goal of assessing the relative performance of the competing estimators as the heterogeneity in the

variances σ2
i is varied while keeping the sample sizes mi fixed at m. The nine simulation settings

can be categorized into three types: two settings where mean and variances are independent, five

settings where mean and variance are correlated and two settings that represent departures from

the Normal data-generating model. For each setting we set n = 1,000 and compute the average

Bayes risk for each competing estimator of µ across 50 Monte Carlo repetitions. Figures 2 to 5

plot the relative risk of each competing estimator, which is the ratio of the average Bayes risk of

the competing estimator to that of the oracle Bayes estimator δπ(1).
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(a) Setting 1: µi
i.i.d∼ N(0,3) and σ2

i

i.i.d∼ U(0.25, u).
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(b) Setting 2: Here σ2
i

i.i.d∼ N(u,1) truncated below 0.1 and µi
i.i.d∼ Laplace(location= 0, scale= 1)

Figure 2 Comparison of relative risks when (µi, σ
2
i ) are independent. Plots show m= 10,15,20 left to right.

The first two settings, Figures 2a and 2b, correspond to the independent case. We describe the

two settings below.

� Setting 1: µi
i.i.d∼ N(0,3) and σ2

i

i.i.d∼ U(0.25, u) where we let u to vary across five levels,

{1,2,3,4,5}.

� Setting 2: µi
i.i.d∼ Laplace(location = 0, scale = 1) and σ2

i

i.i.d∼ N(u,1) truncated below 0.1 where

u varies across {0.25,0.5,0.75,1,1.25}.

The three plots in Figures 2a and 2b show the relative risks as u varies for m= 10,15 and 20 (left

to right). We see that under Setting 1, NEST and NEST Orc. λ have relative risks substantially

closer to 1 than NPMLE. As m increases, the performance of NEST and NEST Orc. λ improves

as their relative risks almost coincide with 1. The NPMLE, on the other hand, exhibits a slightly

higher relative risk at m= 20 than at m= 10 and 15.
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The next five settings, Figures 3 and 4, correspond to the correlated case. We describe these five

settings below.

� Setting 3: σ2
i

i.i.d∼ U(0.25,3) and µi | σ2
i

ind.∼ 0.5 N(−σ2
i , u

2)+0.5 N(σ2
i , u

2) where u varies across

{0.25,0.35,0.45,0.55,0.65,0.75}.

� Setting 4: σ2
i

i.i.d∼ U(0.25, u) and µi | σ2
i

ind.∼ 0.5 N(σ2
i , σ

2
i ) + 0.5 N(−σ2

i , σ
2
i ) where we let u ∈

{1,2,3,4,5}.

� Setting 5: we sample σ2
i from an Inverse Gamma (IG) distribution with shape parameter fixed

at 5 and rate at u where u ∈ {1,1.5,2,2.5,3}. Conditional on the variances, the means µi are

sampled from the design described in Setting 4.

� Setting 6: σ2
i

i.i.d∼ U(0.1, u) and µi | σ2
i

ind.∼ Laplace(location = 0, scale =
√
σ2
i /2) where u ∈

{1,1.5,2,2.5,3}.

� Setting 7: σ2
i are independently sampled from a two component mixture of truncated Normal

distributions that are truncated below 0.1 with means 0.5 and u, standard deviation 0.1 and mixing

weights 0.5. Conditional on the variances, the means µi are sampled from a Logistic distribution

with location σ2
i and scale

√
σ2
i . We let u to vary across five levels, {1,1.5,2,2.5,3}.

Setting 3 is presented in Figure 3a where u controls the spread of the prior distribution of µi given

σ2
i and reveals that when u is small, NPMLE has a relatively better risk performance than NEST.

This is expected because when u is small, the prior distribution of µi can be well approximated

by a discrete distribution with just two mass points and the NEST estimator finds it particularly

difficult to estimate the means well in these scenarios because such a discrete prior on µi introduces

potential multimodality of the underlying marginal distribution of (Yi, S
2
i ) in which case the true

score functions may no longer be Lipschitz continuous, an assumption that is needed for the

KSD approach to produce consistent estimates of the true scores in Section 3. The NPMLE, on

the other hand, has a near parametric rate of convergence in Gaussian denoising problems when

the underlying prior on the means is discrete (Saha and Guntuboyina 2020), which explains its

improved performance in Setting 3, especially when u→ 0.
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(a) Setting 3: σ2
i

i.i.d∼ U(0.25,3) and µi | σ2
i

ind.∼ 0.5 N(−σ2
i , u) + 0.5 N(σ2

i , u).
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(b) Setting 4: σ2
i

i.i.d∼ U(0.25, u) and µi | σ2
i

ind.∼ 0.5 N(σ2
i , σ

2
i ) + 0.5 N(−σ2

i , σ
2
i ).
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(c) Setting 5: σ2
i

i.i.d∼ IG(shape= 5, rate= u) and µi | σ2
i

ind.∼ 0.5 N(σ2
i , σ

2
i ) + 0.5 N(−σ2

i , σ
2
i ).

Figure 3 Comparison of relative risks when (µi, σ
2
i ) are dependent - Settings 3, 4 and 5. Plots show m= 10,15,20

left to right.
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(a) Setting 6: σ2
i

i.i.d∼ U(0.1, u) and µi | σ2
i

ind.∼ Laplace(location= 0, scale=
√
σ2
i /2)
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(b) Setting 7: σ2
i

i.i.d∼ 0.5 Trunc.N(0.5,0.12; 0.1) + 0.5 Trunc.N(u,0.12; 0.1) where Trunc.N(a, b; c)

represents a truncated Normal distribution with mean a, variance b and truncated below c. Here

µi|σ2
i

ind.∼ Logistic(location= σ2
i , scale=

√
σ2
i ).

Figure 4 Comparison of relative risks when (µi, σ
2
i ) are dependent - Settings 6 and 7. Plots show m= 10,15,20

left to right.

Settings 4 to 7, Figures 3b, 3c and 4, represent scenarios where NEST dominates NPMLE

uniformly for all values of u and m. The relative risk of NPMLE in these scenarios is sometimes as

high as 1.6 while NEST and NEST Oracle λ exhibit relative risk profiles substantially closer to 1.

The eight and ninth settings, Figures 5a and 5b, correspond to the scenarios where the data

Yij|(µi, σ2
i ) are not normally distributed. In Figure 5a, (µi, σ

2
i ) are sampled according to Setting 5

but Yij|(µi, σ2
i ) are generated independently from a Laplace distribution with location µi and scale√

σ2
i /2. Similarly, in Figure 5b, (µi, σ

2
i ) are sampled according to Setting 4 but Yij|(µi, σ2

i ) = µi+ξi
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(a) Setting 8: (µi, σ
2
i ) generated according to Setting 5 and Yij|(µi, σ2

i )
i.i.d.∼ Laplace(location =

µi, scale=
√
σ2
i /2).
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(b) Setting 9: (µi, σ
2
i ) generated according to Setting 4 and Yij|(µi, σ2

i ) = µi + ξi where ξi are

independently sampled from a central t−distribution with 4 degrees of freedom.

Figure 5 Comparison of relative risks when the data Yij |(µi, σ2
i ) are not normally distributed. Plots show m=

10,15,20 left to right.

where ξi are independently sampled from a central t−distribution with 4 degrees of freedom. Across

both these settings the proposed NEST method demonstrates robustness to departures from the

Normal model. Proposition 7 in Barp et al. (2019) guarantees that, in general, the influence function

of minimum KSD estimators, such as the NEST estimator, is bounded under data corruption

and the behavior of the NEST estimator in Settings 8 and 9 is potentially an example of such

a robustness property. The scenario in Setting 9 is particularly interesting because we note from

Figure 5b that the NEST estimator exhibits a smaller estimation risk than the Bayes oracle across

all values of u. This is not surprising because in Settings 8 and 9, the Bayes oracle estimator δπ(1)



Banerjee et al.: NEST
26 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

in Equation (6), while having full knowledge of the underlying prior distributions, continues to

rely on the incorrect Gaussian data generation process for Yij to estimate the means. The NEST

estimator, on the other hand, exhibits potential robustness to such mis-specification for estimating

the shrinkage factors from the data.

Overall, the results of the preceding nine simulation settings reveal that when the variances

are unknown, the NEST estimation framework, in general, enjoys a relatively better risk perfor-

mance for estimating µ under the weighted squared error loss than the NPMLE based g-modeling

approach. However, as Setting 3 reveals, the NPMLE may exhibit a substantially better risk perfor-

mance when the underlying prior distribution on the means can be well approximated by a discrete

mixture with a finite number of mass points. In this scenario, the NEST estimator is unable to

effectively account for the potential multimodality of the marginal distribution while estimating

the shrinkage factors and therefore may return a poorer estimate of the means.

In Section EC.3 of the EC, we present additional numerical experiments for the following cases:

compound estimation of Normal means under the squared error loss (Section EC.3.1), under

unequal and small sample sizes mi (Section EC.3.2) and compound estimation of ratios under the

squared error loss (Section EC.3.3). Two real data examples are discussed in Section EC.4.

6. Discussion

In this article we propose a nonparametric empirical Bayes framework, NEST, for large scale

estimation of normal means when the corresponding precisions are unknown. We show that the

data-driven NEST estimator is asymptotically as good as the optimal Bayes rule for estimating

the means under the weighted squared error loss. Under the usual squared error loss our analysis

in Section EC.1 reveals that the oracle NEST estimator dominates Tweedie’s formula that relies

on sample variances for shrinkage estimation of the means. Furthermore, in our numerical experi-

ments and real data examples NEST delivers a better risk performance, often substantially, than

competing shrinkage estimators under both the weighted squared error loss and the squared error

loss.
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A key component of the NEST framework is the consistent estimation of the bivariate shrinkage

factors that appear in the oracle NEST estimator. Our approach for estimating these shrinkage

factors relies on the KSD measure and we solve a convex optimization problem to derive the

shrinkage factors. However, the advantage of the KSD approach for empirical Bayes methods

extends far beyond the hierarchical Model (1) considered in this paper. For instance, a natural

extension of Model (1) is in large-scale regression problems where the goal is to estimate a large

number of low-dimensional regression coefficients when some potentially useful side information on

these unknown regression coefficients are available. In this setting the KSD approach is a natural

candidate for estimating the multivariate shrinkage factors that arise in this context. Our future

research will be directed towards studying this problem and developing empirical Bayes methods

for the same.
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Electronic Companion for “Nonparametric Empirical Bayes
Estimation On Heterogeneous Data”

This Electronic Companion (EC) is organized as follows: in Section EC.1 we present an analysis of

the oracle NEST estimator (Definition 1) under the squared error loss. The proofs of all theoretical

results in the paper are presented in Section EC.2. In Section EC.3, we provide additional numerical

experiments for the following cases: compound estimation of Normal means under the squared error

loss (Section EC.3.1), under unequal and small sample sizes mi (Section EC.3.2) and compound

estimation of ratios under the squared error loss (Section EC.3.3). Two real data examples are

presented in Section EC.4. In Section EC.5 we discuss extensions of our methodology to several well

known members in the two-parameter exponential family when the nuisance parameter is known.

We conclude with a discussion on the computational complexity of NEST in Section EC.6.

EC.1. Analysis under the squared error loss

In this section we present an analysis of the oracle NEST estimator δπ(1) with respect to the squared

error loss. We first introduce a counterpart to Tweedie’s formula for µi (Equation (2)) that relies

on the sample variances S2
i instead of the unknown variances. Thereafter, we compare these two

shrinkage estimators under the squared error loss.

When the precisions are unknown existing shrinkage methods, such as Xie et al. (2012), Weinstein

et al. (2018), usually rely on the sample variance S2
i , a consistent estimator of the unknown popu-

lation variance 1/τi, for practical implementation. For instance, in Definition EC.1 we present the

oracle Pseudo-Tweedie’s formula with sample variance which is a natural counterpart to Equation

(2) when the variance is unknown.

Definition EC.1. (Oracle Pseudo-Tweedie’s formula with sample variances) Consider the hier-

archical Model (1). Then an estimator for µi is δTFi where,

δTFi := δTF(yi, s
2
i ,mi) = yi +

s2
i

mi

w1(yi, s
2
i ;mi),

and w1(y, s2;m) :=
∂

∂y
log fm(y, s2).
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The oracle Pseudo-Tweedie’s formula in Definition EC.1 has a striking similarity to the oracle

NEST estimator δπi,(1) (Definition 1) in the sense that both δTFi and δπi,(1) involve an unbiased

estimate yi of µi plus a shrinkage factor. The key difference, however, is that (1) while the shrinkage

factor in δπi,(1) relies on γi, δ
TF
i directly uses sample variances s2

i , and (2) while it is not immediately

clear what is the underlying loss function that δTFi is minimizing for estimating µi, δ
π
i,(1) uniquely

minimizes the expected weighted squared error loss.

Notwithstanding, Proposition EC.1 establishes that the oracle Pseudo-Tweedie’s estimator δTF =

(δTF1 , . . . , δTFn ) dominates the sample mean estimator under a squared error loss function.

Proposition EC.1. Denote w
′
1(y, s2;m) as the partial derivative of w1(y, s2;m) with respect to

y. Suppose fm(y, s2) is a log-concave density and w1
′(y, s2;m) is a non-decreasing function of s2.

Then under Model (1) and for mi > 3, we have,

r0(δπ(0),G)≤ r0(δTF,G)< r0(Y ,G).

However, when a large number of units are investigated simultaneously, traditional sample variance

estimators may suffer from selection bias (Jing et al. 2016a, Kwon and Zhao 2022), and their direct

use may lead to severe deterioration in the MSE for estimating the means. We present Proposition

EC.2 which shows that under the squared error loss function the risk of the oracle NEST estimator

is uniformly smaller than that of the Pseudo-Tweedie’s estimator δTF (Definition EC.1).

We impose the following regularity conditions for comparing the estimation risks of δπ(1) and δTF

in Proposition EC.2.

Assumption EC.1. The shrinkage factor γ(y, s2,m) is non-increasing in s2.

Assumption EC.2. Let ω(y, s2;m) :=w1(y, s2;m)
∂

∂y
w2(y, s2;m). Then, ω(y, s2;m)≤ 0.

Assumptions EC.1 and EC.2 are regularity conditions on the behavior of the shrinkage factor γ

and the score functions w1,w2. For instance, Assumptions EC.1 enforces monotonicity on shrinkage

factor γ(y, s2,m), which is satisfied, for example, when (µ, τ) have a conjugate prior under Model

(1). Similarly, Assumption EC.2 holds under conjugate priors and is also true when the prior on τ
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is discrete with just one mass point. In Remarks EC.1 and EC.2 we discuss these assumptions in

more details. Proposition EC.1 can be extended as follows.

Proposition EC.2. Suppose fm(y, s2) is a log-concave density and w1
′(y, s2;m) is a non-

decreasing function of s2. If Assumptions EC.1 – EC.2 hold then, under Model (1) and for mi > 5,

we have,

r0(δπ(0),G)≤ r0(δπ(1),G)≤ r0(δTF,G)< r0(YYY ,G).

Note that the oracle NEST estimator δπi,(1) is, in general, different from δπi,(0): δ
π
i,(1) is the Bayes

estimator under the weighted squared error loss, while δπi,(0) is the Bayes estimator under the usual

squared error loss. This follows since from Equation (3), and dropping subscript i,

δπ(1) =
E(τµ|y, s2)

E(τ |y, s2)
=

E[τE(µ|y, s2, τ)|y, s2]

E(τ |y, s2)
6=E(µ|y, s2) = δπ(0).

However, r0(δπ(0),G) = r0(δπ(1),G) when µ and τ are conditionally independent given y and s2, in

which case δπ(1) = δπ(0). In particular, Corollary EC.1 shows that when E(µi|yi, s2
i , τi) is independent

of τi then the data-driven NEST estimator is asymptotically close to δπ(0).

Corollary EC.1. Consider hierarchical Model (1) and suppose E(µi|yi, s2
i , τi) is independent of

τi. Then, under the conditions of Theorem 3, we have
cn
n

∥∥δdsn (λ)− δπ(0)

∥∥2

2
= op(1) as n→∞. Fur-

thermore, under the same conditions, c1/2
n

∣∣l(0)
n {δdsn (λ),µ;τ}− l(0)

n {δπ(0),µ;τ}
∣∣= op(1) as n→∞.

Corollary EC.1 is a straightforward consequence of Theorem 3 and the fact that when E(µi|yi, s2
i , τi)

is independent of τi, δ
π
i,(1) = δπi,(0). A popular setting where E(µi|yi, s2

i , τi) is indeed independent of

τi is the scenario where Gµ(·|τ) and Hτ (·) belong to the family of conjugate priors under Model (1).

Under this setting the posterior expectation of µ is a linear combination of the prior expectation

of µ and the maximum likelihood estimate y (Diaconis and Ylvisaker 1979), and the weights in

this linear combination are proportional to m and the prior sample size. For instance, if Gµ(·|τ)

is N(µ0,1/τ) and Hτ (·) is Γ(shape = α, rate = β) in Model (1) then standard calculations give

δπ(0) = (µ0 +my)/(m+1) where µ0 is the prior expectation of µ and m0 = 1 is the prior sample size.

Moreover, in this setting we also have

log fm(yi, s
2
i ) = c0 +

m− 3

2
log s2

i − (α+m/2) log
{
β+ 0.5(m− 1)s2

i + 0.5
m

m+ 1
(yi−µ0)2

}
,
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where c0 is a constant independent of (yi, s
2
i ). From the above display,

w1(yi, s
2
i ) = − (α+m/2){m/(m+ 1)}(yi−µ0)

β+ 0.5(m− 1)s2
i + 0.5{m/(m+ 1)}(yi−µ0)2

w2(yi, s
2
i ) =

(m− 3)

2s2
i

− 0.5(α+m/2)(m− 1)

β+ 0.5(m− 1)s2
i + 0.5{m/(m+ 1)}(yi−µ0)2

.

Substituting these expressions for w1(yi, s
2
i ),w2(yi, s

2
i ) in Equation (6) gives δπi,(1) = δπi,(0). Another

example where δπ(1) = δπ(0) is when Gµ(·|τ) and Hτ (·) are independent discrete distributions with just

one mass point, respectively. These two examples are also the settings, among others, under which

the first inequality in the left hand side of Proposition EC.1 is strict, that is, r0(δπ(0),G)< r0(δTF,G).

In Section EC.3.1 we present several numerical experiments to compare the data-driven NEST

estimator against other shrinkage estimators for compound estimation of the Normal means from

Model (1) under the squared error loss. Our empirical results corroborate Proposition EC.2 and

suggest that the efficiency gain of the data-driven NEST estimator over competing linear shrinkage

methods (Jing et al. 2016b, Weinstein et al. 2018) and Pseudo-Tweedie’s formula (Definition EC.1)

is substantial across many settings. We end this section with the following remarks:

Remark EC.1. Here we provide three examples of G that satisfy Assumptions EC.1 and EC.2.

1. Gµ(·|τ) and Hτ (·) belong to the family of conjugate priors under Model (1).

2. Hτ (·) is a distribution with just one mass point, say τ0, and Gµ(·|τ0) has a log-concave density.

3. Hτ (·) has a log-concave density and Gµ(·|τ) is a discrete distribution with just one mass point,

say µ0.

In Figure EC.1 we consider specific choices of G for each of these three examples. In particular, the

left panel of Figure EC.1 provides a contour plot of G for example 1 where Gµ(·|τ) is N(0,1/τ) and

Hτ (·) is Γ(shape= 10, rate= 5). The center panel presents the contour plot of the marginal density

fm for example 2 where Gµ(·|τ) is N(0,1/τ) and Hτ (·) has all its mass concentrated at τ0 = 1.

Finally, the right panel presents the contour plot of fm for example 3 where µ0 = 0 and Hτ (·) is

Γ(shape= 10, rate= 5).
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Figure EC.1 Remark EC.1 contour plots with m = 5. Left to Right: contour plot of G for example 1 where

Gµ(·|τ) is N(0,1/τ) and Hτ (·) is Γ(shape = 10, rate = 5). Contour plot of the marginal density fm

for example 2 where Gµ(·|τ) is N(0,1/τ) and Hτ (·) has all its mass concentrated at τ0 = 1. Contour

plot of fm for example 3 where µ0 = 0 and Hτ (·) is Γ(shape = 10, rate = 5).

Remark EC.2. Here we provide two examples of G that induce marginal densities fm which are

no longer log-concave and, hence, do no satisfy Assumption EC.1. In these examples, log-concavity

of fm is lost because w
′
1(y, s2;m) may be positive on its domain.

1. Hτ (·) is a distribution with just one mass point, say τ0, and Gµ(·|τ0) has mass points at 2τ0

and −2τ0 with equal probability.

2. Hτ (·) has mass points at 1 and 2 with equal probability, and µ= 4/τ .

Figure EC.2 presents the contour plots of fm for these two examples.

EC.2. Proofs

EC.2.1. Proof of Proposition EC.1

Recall from Definition EC.1 that

δTFi := δTF(yi, s
2
i ,mi) = yi +

s2
i

mi

w1(yi, s
2
i ;mi),

where w1(y, s2;m) :=
∂

∂y
log fm(y, s2). Since the n study units are independent, we will focus on

unit i.

We note that the inequality in the left hand side of Proposition EC.1 follows from the fact that

δπi,(0) is the Bayes estimator of µi that uniquely minimizes the expected squared error loss under
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Figure EC.2 Remark EC.2 contour plots. Left: contour plot of the marginal density fm for example 1 where

τ0 = 1 and m= 5. Right: contour plot of fm for example 2 with m= 5.

Model (1). To prove the inequality in the right hand side of Proposition EC.1, we proceed as

follows.

Denote w1,i :=w1(yi, s
2
i ;mi). We have,

E(µi− δTFi )2 =
1

mi

E(1/τi) +
1

m2
i

E(S2
iw1,i)

2 +
2

mi

E(Yi−µi)S2
iw1,i

= E(µi−Yi)2 +
1

m2
i

E(S2
iw1,i)

2 +
2

m2
i

E
S2
i

τi
w
′

1,i, (EC.1)

where w
′
1,i := w

′
1(yi, s

2
i ;mi) and w

′
1(y, s2;m) =

∂

∂y
w1(y, s2;m). The equality in Equation (EC.1)

follows from integration by parts and the fact that Yi|µi, τi ∼N(µi,1/(miτi)). Consider the term

T1 :=
1

m2
i

E(S2
iw1,i)

2 +
2

m2
i

E
(S2

i

τi
w
′
1,i

)
and note that

T1 =
1

m2
i

E
(
S2
iw1,i

)2

+
1

m2
i

E
[
(S2

i )
2w
′

1,i

]
+

2

m2
i

E
(S2

i

τi
w
′

1,i

)
− 1

m2
i

E
[
(S2

i )
2w
′

1,i

]
=

1

m2
i

E
[2S2

i

τi
− (S2

i )
2
]
w
′

1,i. (EC.2)

The equality in Equation (EC.2) follows because, dropping subscript i,

E
[
(S2)2(w2

1 +w
′

1)
]

=E
[
(S2)2

f
′′
m,(1)(Y,S

2)

fm(Y,S2)

]
= 0,
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where f
′′
m,(1)(y, s

2) is the second order partial derivative of fm(y, s2) with respect to y. Now, we can

re-write Equation (EC.2) as

T1 =
1

m2
i

Eµi,τiEYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]
w
′
1,i

}
=

1

m2
i

Eµi,τi
(
T2

)
+

1

m2
i

Eµi,τi
(
T3

)
, (EC.3)

where Eµ,τ is the expectation with respect to the joint distribution of (µ, τ), EY,S2|µ,τ is the expec-

tation with respect to the joint distribution of (Y,S2) conditional on (µ, τ) and

T2 = EYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]
w
′

1,i

∣∣∣S2
i <

2

τi

}
P
(
S2
i <

2

τi

∣∣∣τi),
T3 = EYi,S2

i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]
w
′

1,i

∣∣∣S2
i >

2

τi

}
P
(
S2
i >

2

τi

∣∣∣τi).
Denote p := P(S2

i > 2/τi | τi) and let ci be the partial derivative of w1(y, s2;m) with respect to y

and evaluated at (yi,2/τi,mi). Now, using equations (EC.2) and (EC.3) in Equation (EC.1), we

get

E(µi− δTFi )2 =E(µi−Yi)2 +
1

m2
i

Eµi,τi(T2 +T3). (EC.4)

We will show that T2 + T3 < 0 which will be enough to prove the statement of Proposition EC.1

using Equation (EC.4).

We first state a few results that are straightforward consequences of Model (1) and the assump-

tions of Proposition EC.1. We have,

1. Under Model 1, (mi− 1)S2
i τi ∼ χ2

mi−1.

2. Additionally,

EYi,S2
i |µi,τi

[2S2
i

τi
− (S2

i )
2
]

=
mi− 3

(mi− 1)τ 2
i

> 0,

since mi > 3 in the statement of Proposition EC.1.

3. Since fm(y, s2) is a log-concave density, w
′
1,i ≤ 0 and so T2 ≤ 0 while T3 ≥ 0.

Assume, without loss of generality, w
′
1,i < 0. Since EYi,S2

i |µi,τi
[2S2

i /τi− (S2
i )

2]> 0, we have

(1− p)EYi,S2
i |µi,τi

[2S2
i

τi
− (S2

i )
2
∣∣∣S2
i <

2

τi

]
>−pEYi,S2

i |µi,τi

[2S2
i

τi
− (S2

i )
2
∣∣∣S2
i >

2

τi

]
> 0. (EC.5)
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Furthermore, as w
′
1,i < 0 and w

′
1,i is a non-decreasing function of s2

i ,

T2 ≤ (1− p)EYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]
ci

∣∣∣S2
i <

2

τi

}
, (EC.6)

Note that ci < 0, and as defined earlier, it is the partial derivative of w1(y, s2;m) with respect to y

and evaluated at (yi,2/τi,mi). Therefore, using equations (EC.5) and (EC.6),

T2 ≤ (1− p)EYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]
ci

∣∣∣S2
i <

2

τi

}
<−pEYi,S2

i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]
ci

∣∣∣S2
i >

2

τi

}
< 0.(EC.7)

Now, we consider the term T3. Recall that

T3 = pEYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]
w
′

1,i

∣∣∣S2
i >

2

τi

}
> 0.

Since w
′
1,i < 0 and w1,i

′ is a non-decreasing function of s2
i ,

0<T3 ≤−pEYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
]
|ci|
∣∣∣S2
i >

2

τi

}
. (EC.8)

So, using equations (EC.7) and (EC.8)

T2 +T3 <−pEYi,S2
i |µi,τi

{[2S2
i

τi
− (S2

i )
2
](
ci + |ci|

)∣∣∣S2
i >

2

τi

}
= 0,

Hence the desired result follows from the display above and Equation (EC.4). �

EC.2.2. Proof of Proposition EC.2

We will first collect a few notations that will be used throughout the proof. Denote w1,i :=

w1(yi, s
2
i ;mi), w2,i := w2(yi, s

2
i ;mi) and γi := γ(yi, s

2
i ,mi). Let w

′
1(y, s2;m) =

∂

∂y
w1(y, s2;m) and

denote w
′
1,i := w

′
1(yi, s

2
i ;mi). Similarly, ν(y, s2;m) =

1

fm(y, s2)

∂2

∂y2
fm(y, s2) and denote νi :=

ν(yi, s
2
i ;mi). Finally, let γ

′
(y, s2,m) =

∂

∂y
γ(y, s2,m) and denote γ

′
i := γ

′
(yi, s

2
i ,mi).

The proof of Proposition EC.2 will use the following two lemmata.

Lemma EC.1. Suppose fm(y, s2) is a log concave density and Assumption EC.1 holds. Then under

Model (1) and mi > 5, we have,

E
{[2S2

i

τi

(
1− γi

)
−
(
S2
i

)2(
1− γ2

i

)]
w
′
1,i

}
≥ 0.
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Lemma EC.2. Under Assumption EC.2 and Model (1), we have,

1

m2
i

E
[
S2
i

(
S2
i γ

2
i νi + 2

w1,iγ
′
i

τi

)]
≤ 0.

Lemmata EC.1 and EC.2 are proved in Sections EC.2.2.1 and EC.2.2.2 respectively. We now prove

Proposition EC.2. Recall from Definition 1 that the oracle NEST estimator for µi is

δπi,(1) = yi +
s2
i

mi

γ(yi, s
2
i ,mi)w1(yi, s

2
i ,mi),

where

γ(yi, s
2
i ,mi) =

mi− 1

mi− 3− 2s2
iw2(yi, s2

i ;mi)
.

Since the n study units are independent, we will focus on unit i.

Under the squared error loss, δπi,(0) is the Bayes estimator of µi in Model (1). This establishes

the first inequality on the left hand side of Proposition EC.2. Together with Proposition EC.1, we

only need to show r0(δπ(1),G)≤ r0(δTF,G). First note that

r0(δTF,G)− r0(δπ(1),G) =
1

m2
i

E
[
(S2

i )
2
(

1− γ2
i

)
w2

1,i

]
+

2

mi

E
[
(Yi−µi)S2

i

(
1− γi

)
w1,i

]
=

1

m2
i

E
[
(S2

i )
2
(

1− γ2
i

)
w2

1,i

]
+

2

m2
i

E
{S2

i

τi

[
(1− γi)w

′

1,i−w1,iγ
′

i

]}
. (EC.9)

The equality in equation (EC.9) follows from integration by parts and the fact that Yi ∼

N
(
µi,

1
miτi

)
. We can re-write Equation (EC.9) as,

1

m2
i

E
[
(S2

i )
2
(

1− γ2
i

)
w2

1,i

]
+

1

m2
i

E
[
(S2

i )
2
(

1− γ2
i

)
w
′

1,i

]
− 2

m2
i

E
(S2

i

τi
w1,iγ

′

i

)
+

1

m2
i

E
{[2S2

i

τi

(
1− γi

)
−
(
S2
i

)2(
1− γ2

i

)]
w
′

1,i

}
.

(EC.10)

From Lemma EC.1, the last term in Equation (EC.10) is non-negative. Let us consider the first

three terms in Equation (EC.10) and denote them by,

T :=
1

m2
i

E
[
(S2

i )
2
(

1− γ2
i

)
w2

1,i

]
+

1

m2
i

E
[
(S2

i )
2
(

1− γ2
i

)
w
′
1,i

]
− 2

m2
i

E
(S2

i

τi
w1,iγ

′

i

)
.

As shown in the proof of Proposition EC.1, E[(S2)2(w2
1 +w

′
1)] = 0. The above display involving the

term T can be written as

T =− 1

m2
i

E
[
(S2

i )
2γ2
i νi

]
− 2

m2
i

E
(S2

i

τi
w1,iγ

′
i

)
. (EC.11)
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From Lemma EC.2, the term T in Equation (EC.11) is non-negative. This establishes the inequality

on the right hand side of r0(δπ(1),G) in Proposition EC.2 and completes the proof. �

EC.2.2.1. Proof of Lemma EC.1 - Denote

Zi :=
2S2

i

τi
(1− γi)− (S2

i )
2(1− γ2

i ) =
Qi

τi
,

where Qi = 2S2
i (1− γi)− (S2

i )
2(1− γ2

i )τi. Since fm(y, s2) is a log-concave density, w
′
1,i ≤ 0. We will

show that Qi ≤ 0 which will be sufficient to prove Ziw
′
1,i ≥ 0 and hence the statement of Lemma

EC.1.

Dropping subscript i,

E(Q) =EY,S2

[
2S2(1− γ)− (S2)2(1− γ2)τ̂π

]
=EY,S2 [R(Y,S2)],

where τ̂π =E(τ |y, s2,m) = (s2γ)−1 from Equation (8) and EY,S2 is expectation with respect to the

joint marginal distribution of (Y,S2). Suppose, if possible, Qi > 0 for all (τi, yi, s
2
i )∈R+×R×R+.

We will show that E(Q)≤ 0 which will present a contradiction to Q> 0 for all (τ, y, s2)∈R+×R×

R+. Fix a y ∈R and consider the following cases.

Case 1 – Suppose 0 < γ(y, s2,m) ≤ 1/(2c) where c ≥ 1 is a constant. Then, we have s2τ̂π ≥ 2c

and consequently s2(1 + γ)τ̂π > 2. So R(y, s2)< 0. Now, from Assumption EC.1, γ is a continuous

and non-increasing function of s2. Therefore, there exists c1(y) ∈ R+, depending on y, such that

s2 > c1(y) whenever 0<γ(y, s2,m)≤ 1/(2c). Thus, R(y, s2)< 0 for s2 > c1(y).

Case 2 – Next, suppose 1/2< γ(y, s2,m)≤ (m− 1)/(2m− 6). Then (2m− 6)/(m− 1)≤ s2τ̂π < 2

and s2(1 + γ)τ̂π ≥ (3m− 7)/(m− 1). Since m> 5, (3m− 7)/(m− 1) > 2 and so s2(1 + γ)τ̂π > 2.

Thus R(y, s2)< 0 and using Assumption EC.1, R(y, s2)< 0 for c2(y)< s2 ≤ c1(y), where c2(y) is

such that s2 > c2(y) whenever γ(y, s2,m)≤ (m− 1)/(2m− 6).

The remaining four cases proceed in a similar manner as follows:

Case 3 – Suppose (m−1)/(2m−6)<γ(y, s2,m)≤ (2m−6)/(3m−11). Then (3m−11)/(2m−6)≤

s2τ̂π. So s2(1 + γ)τ̂π ≥ (5m − 17)/(2m − 6). Since (5m − 17)/(2m − 6) > 2 if m > 5, we have
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s2(1 + γ)τ̂π > 2 and so R(y, s2)< 0 for c3(y)< s2 ≤ c2(y). Similarly, we can show that R(y, s2)≤ 0

for c4(y)< s2 ≤ c3(y) where s2 ∈ (c4(y), c3(y)] whenever (2m− 6)/(3m− 11)<γ(y, s2,m)≤ 1.

Case 4 – Now suppose, 1< γ(y, s2,m)≤ (2m− 5)/(2m− 6). Then (2m− 6)/(2m− 5)≤ s2τ̂π < 1

and s2(1 + γ)τ̂π < 2. Note that here γ > 1 as opposed to γ ≤ 1 in the earlier cases. Therefore,

s2(1 + γ)τ̂π < 2 implies R(y, s2)< 0 for c5(y)< s2 ≤ c4(y).

Case 5 – Similarly, if γ is in the intervals ((2m− 5)/(2m− 6), (m− 2)/(m− 3)], ((m− 2)/(m−

3), (m−1)/(m−3)] and ((m−1)/(m−3), (m+1)/(m−3)] then we have γ ≥ 1 and s2(1+γ)τ̂π < 2.

Thus, on each of the corresponding intervals for s2, R(y, s2)< 0.

Case 6 – Denote r1 = 1 and rt = 2rt−1 +3 for t= 2,3, . . .. Suppose (m+rt−1)/(m−3)<γ(y, s2,m)≤

(m+ rt)/(m− 3). Then for each of these intervals indexed by t≥ 2, we have γ ≥ 1, s2(1 + γ)τ̂π < 2

and so R(y, s2)< 0 on the corresponding intervals for s2.

So from these six cases, R(y, s2)≤ 0 for all s2 > 0 and consequently EY,S2 [R(Y,S2)]≤ 0. Therefore,

E(Q)≤ 0 which contradicts that Q> 0 for all (τ, y, s2)∈R+×R×R+. Now suppose that for some

Ω⊂R+×R×R+, Q> 0 whenever (τ, y, s2)∈Ω. However, Assumption EC.1 and the aforementioned

six cases imply that E(Q|Ω)≤ 0. Thus, Q≤ 0 for all (τ, y, s2)∈R+×R×R+. So, we have Zw
′
1 ≥ 0

and this completes the proof of Lemma EC.1. �

EC.2.2.2. Proof of Lemma EC.2 - Dropping subscript i, denote,

T :=− 1

m2
E
[
(S2γ(Y,S2,m))2ν(Y,S2,m)

]
− 2

m2
E
[S2

τ
w1(Y,S2,m)γ

′
(Y,S2,m)

]
.

We will show that T ≥ 0.

Let γ := γ(y, s2,m), ν := ν(y, s2,m),w1 :=w1(y, s2,m) and γ
′
:= γ

′
(y, s2,m). First note that using

standard integration by parts, we have

− 1

m2
E
[
(S2γ)2ν

]
=

2

m2
E
[
(S2)2γw1γ

′
]
.

So, we can write

T =
2

m2
E
{
S2w1γ

′
[
S2γ− 1

τ

]}
.
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Furthermore, from Definition 1,

γ
′
=

2

m− 1
γ2s2w

′
2,

where w
′
2 :=

∂

∂y
w2(y, s2,m). So, we have

T =
4

m2(m− 1)
E
{

(S2γ)2w1w
′

2

[
S2γ− 1

τ

]}
.

Now conditional on (Y,S2), note that from Jensen’s inequality,

s2γ =
1

E(τ | y, s2)
≤E

(1

τ

∣∣∣y, s2
)
.

Furthermore, since w1w
′
2 ≤ 0 from Assumption EC.2, we have

T =
4

m2(m− 1)
EY,S2

{
(S2γ)2w1w

′

2

[
S2γ−E

(1

τ

∣∣∣Y,S2
)]}
≥ 0.

This completes the proof of Lemma EC.2. �

EC.2.3. Proof of Theorem 1

Consider the sample criterion M̂λ,n(W̃) (Equation (16)) and population criterion Mλ(W̃) (Equation

(15)). We have∣∣∣M̂λ,n(W̃)−Mλ(W̃)
∣∣∣≤ ∣∣∣ 1

n2

n∑
i=1

n∑
j=1

κλ[w̃(X i), w̃(Xj)](X i,Xj)I(i 6= j)−Mλ(W̃)
∣∣∣+

∣∣∣ 1

n2

n∑
i=1

κλ[w̃(X i), w̃(X i)](X i,X i)
∣∣∣

:= I1 + I2.

(EC.12)

Define M̄λ,n(W̃) = [n(n− 1)]−1
∑n

i=1

∑n

j=1 κλ[w̃(X i), w̃(Xj)](X i,Xj)I(i 6= j). Then

I1 ≤ |M̄λ,n(W̃)−Mλ(W̃)|+n−1|M̄λ,n(W̃)|.

By Assumption 1, n−1|M̄λ,n(W̃)| is Op(n
−1). Now, note that M̄λ,n(W̃) is an unbiased estimator of

Mλ(W̃) and is a U-statistic with a symmetric kernel function κλ[w̃(X i), w̃(Xj)](X i,Xj). From

Assumption 1, κλ[w̃(X i), w̃(Xj)](X i,Xj) has finite second moments. Moreover, from theorem 4.1

of Liu et al. (2016), M̄λ,n(W̃) is a non-degenerate U-statistic whenever f 6= f̃ . Thus, from the

CLT for U-statistics (Serfling (2009) section 5.5), |M̄λ,n(W̃)−Mλ(W̃)| is Op(n−1/2). Moreover, from

Assumption 1, I2 is Op(n
−1). Theorem 1 is thus proved by combining these results. �
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EC.2.4. Proof of Theorem 2

We begin by introducing some notations and a lemma that will be useful for proving Theorem 2.

Recall from Equation (11) that wk,i denotes the (i, k)th element of the true score matrix W0

where k = 1,2. Similarly, from Definition 2, ŵ
(k)
λ,n(i) denotes the (i, k)th element of the estimated

score matrix Ŵn(λ). Let

∆
(p)
λ,n(i, k) =E

∣∣∣ŵ(k)
λ,n(i)−wk,i

∣∣∣p and ∆̄λ,n(i, k) =E
{∣∣∣ŵ(k)

λ,n(i)−wk,i
∣∣∣2f(Xi)

}
,

where the expectation is taken with respect to the joint distribution of X1, . . . ,Xn and Xi’s are

i.i.d with density f . Denote w
(k)
0 and ŵ

(k)
λ,n as, respectively, the kth columns of W0 and Ŵn(λ). Let

M̂
(k)
λ,n(w

(k)
0 ) = [w

(k)
0 ]TKλw

(k)
0 + 2[w

(k)
0 ]T∇K(k)

λ +
1

n2

n∑
i=1

n∑
j=1

{[∇Xi
∇Xj
Kλ(Xi,Xj)]ek},

where ∇K(k)
λ is the kth column of ∇Kλ which was introduced in Section 3.1 and ek is the canonical

basis vector with 1 at coordinate k. So from Equation (16), M̂λ,n(W0) = M̂
(1)
λ,n(w

(1)
0 ) + M̂

(2)
λ,n(w

(2)
0 ).

Similarly, denote

M
(k)
λ (ŵ

(k)
λ,n) =E[Dλ(Xi,Xn)],

where Dλ(Xi,Xn) = {wk,n−ŵ(k)
λ,n(n)}Kλ(Xi,Xn){wk,i−ŵ(k)

λ,n(i)}. Notice that from the definition of

the KSD in Equation (15), Mλ{Ŵn(λ)}=M
(1)
λ (ŵ

(1)
λ,n) +M

(2)
λ (ŵ

(2)
λ,n). Finally, for any two sequences

an and bn, we will use an . bn to denote an/bn =O(1) as n→∞.

Lemma EC.3. Under Assumption 2, the following statements hold:

(a) We have,

∆
(1)
λ,n(i, k).

√
{logn}2∆̄λ,n(i, k) +

1

n
as n→∞.

(b) For any λ> 0 and some constant c > 0,

∆̄λ,n(i, k). λ−2M
(k)
λ (ŵ

(k)
λ,n+1) +λ2(logn)4 +λ(logn)∆

(2)
λ,n(i, k) +

λ−2

nc logn
.

(c) If Kλ(·, ·) is the RBF kernel with bandwidth parameter λ ∈ Λ and Λ is a compact subset of R+

bounded away from zero, then

M
(k)
λ (ŵ

(k)
λ,n)≤

E{wk,i}2−E{ŵ(k)
λ,n(i)}2

n− 1
.
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The proof of Lemma EC.3 is available in Section EC.2.5. We will now begin the proof of Theorem

2.

The main idea of the proof of Theorem 2 is to construct an appropriate bound for ∆
(2)
λ,n(i, k).

As we will see, this bound depends on ∆
(1)
λ,n(i, k), ∆̄λ,n(i, k) and M

(k)
λ (ŵ

(k)
λ,n+1). Once this bound is

established, Markov’s inequality will provide the desired convergence in probability in the statement

of Theorem 2. Our approach for analyzing ∆
(2)
λ,n(i, k) relies on the technique developed in Luo et al.

(2022) for proving their Theorem 1. We first note that since the density f is a convolution with a

Gaussian density, there exists some constant c > 0 such that for all large ‖Xi‖2, |wk,i|/‖Xi‖2 ≤ c.

Furthermore, we will consider a constrained version of our optimization problem such that the

solution satisfies |ŵ(k)
λ,n(i)|=O(‖Xi‖2). So, |ŵ(k)

λ,n(i)−wk,i| is bounded above by O(‖Xi‖2). Thus,

E
[{
ŵ

(k)
λ,n(i)−wk,i

}2∣∣∣‖Xi‖2 ≤ 2c0 logn
]
.∆

(1)
λ,n(i, k) logn, (EC.13)

where c0 > 0 is a constant. Similarly,

E
[{
ŵ

(k)
λ,n(i)−wk,i

}2∣∣∣‖Xi‖2 > 2c0 logn
]
.E

[
‖Xi‖22

∣∣∣‖Xi‖2 > 2c0 logn
]
. (EC.14)

Since Xi is sub-exponential, the right hand side of Equation (EC.14) is bounded by O(n−1).

Therefore, from equations (EC.13) and (EC.14),

∆
(2)
λ,n(i, k).∆

(1)
λ,n(i, k) logn+

1

n
. (EC.15)

But, from statements (a) and (b) of Lemma EC.3

∆
(1)
λ,n(i, k).

√
(logn)2

[
λ−2M

(k)
λ (ŵ

(k)
λ,n+1) +λ2(logn)4 +λ logn∆

(2)
λ,n(i, k) +

λ−2

nc logn

]
+

1

n
.(EC.16)

So, using Equation (EC.15) and λ� n−1/3 in Equation (EC.16) we get

∆
(1)
λ,n(i, k).

√
(logn)2

[
n2/3M

(k)
λ (ŵ

(k)
λ,n+1) +n−2/3(logn)4 +n−1/3(logn)2∆

(1)
λ,n(i, k)

]
. (EC.17)

Now, from statement (c) of Lemma EC.3, we have

M
(k)
λ (ŵ

(k)
λ,n+1)≤

E{wk,i}2−E{ŵ(k)
λ,n(i)}2

n
. (EC.18)



e-companion to Banerjee et al.: NEST ec15

Note that in Equation (EC.18), the numerator E{wk,i}2−E{ŵ(k)
λ,n(i)}2 .∆

(1)
λ,n+1(i, k) logn using the

arguments developed for equations (EC.13) and (EC.14). Therefore,

M
(k)
λ (ŵ

(k)
λ,n+1).

logn

n
∆

(1)
λ,n+1(i, k).

Substituting the above display in Equation (EC.17) we get

∆
(1)
λ,n(i, k).

√
(logn)2

[
n−1/3 logn∆

(1)
λ,n+1(i, k) +n−2/3(logn)4 +n−1/3(logn)2∆

(1)
λ,n(i, k)

]
.

Since ∆
(1)
λ,n(i, k) is bounded, the above display implies that that ∆

(1)
λ,n(i, k)→ 0 as n→∞.

We will now establish the rate of convergence of ∆
(1)
λ,n(i, k). Let An =

max{∆(1)
λ,n(i, k), n−1/3(logn)4}. Using equations (EC.17) and (EC.18), we can derive the following

inequality for all large n:

An ≤C(logn)3/2n−
1
6

√
An+1, (EC.19)

where the constant C is independent of n. Recursively applying Equation (EC.19) s > 0 times, we

get

An ≤
[
C(logn)3/2n−1/6

]1+···+2−s

A
1

2s+1
n+s+1.

But for large n, An < 1 and this implies An ≤ [C(logn)3/2n−1/6]1+···+2−s . Therefore, letting s→∞,

we have An ≤C(logn)3n−1/3 and so ∆
(1)
λ,n(i, k). (logn)3n−1/3. Moreover, using Equation (EC.15),

∆
(2)
λ,n(i, k). (logn)4n−1/3. The statement of Theorem 2 then follows using Markov’s inequality and

by noting that E‖Wn(λ)−W0‖2F =
∑n

i=1{∆
(2)
λ,n(i,1) + ∆

(2)
λ,n(i,2)}. �

EC.2.5. Proof of Lemma EC.3

Proof of statement (a) – From Cauchy-Schwartz inequality we get,

E
[
|ŵ(k)

λ,n(i)−wk,i|I{‖Xi‖2 ≤ 2c0 logn}
]
≤
[
c1(logn)2∆̄λ,n(i, k)

]0.5

,

where c1 is a constant depending only on c0. Also, using arguments similar to that of Equation

(EC.14), we have

E
[
|ŵ(k)

λ,n(i)−wk,i|I{‖Xi‖2 > 2c0 logn}
]

=O(n−1).
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Thus, the proof of statement (a) then follows by combining the above two displays. �

Proof of statement (b) – Suppose we have an i.i.d sample (X1, . . . ,Xn+1) of size n+ 1 from f .

Now, the definition of Dλ(Xi,Xn+1) implies

Dλ(Xi,Xn+1) =Kλ(Xi,Xn+1){wk,n+1− ŵ(k)
λ,n+1(n+ 1)}{wk,i− ŵ(k)

λ,n+1(i)},

where ŵ
(k)
λ,n+1(i) is the (i, k)th element of the estimated score matrix Ŵn+1(λ) that is constructed

based on the sample of size n+1. Denote ‖Xi−Xn‖=
√

(Xi−Xn)T (Xi−Xn) and fix ε= λ logn.

To prove statement (b), we will analyze the following four terms:

I1 := E
[
Dλ(Xi,Xn+1)I{‖Xi−Xn+1‖< ε}

]
(EC.20)

I2 := E
[
Kλ(Xi,Xn+1){wk,i− ŵ(k)

λ,n+1(i)}2I{‖Xi−Xn+1‖< ε}
]

(EC.21)

I3 := E
[
Kλ(Xi,Xn+1){wk,i− ŵ(k)

λ,n(i)}2I{‖Xi−Xn+1‖< ε}
]

(EC.22)

I4 := E
∫
f(Xi)Kλ(Xi,Xn+1){wk,i− ŵ(k)

λ,n(i)}2I{‖Xi−Xn+1‖< ε}dXn+1. (EC.23)

For our analyses, we will assume that the eigen values of Ω are finite and bounded away from zero.

We begin by analyzing the term I1 in Equation (EC.20). Now,

E[Dλ(Xi,Xn+1)]− I1 =E[Dλ(Xi,Xn+1)I{‖Xi−Xn+1‖ ≥ ε}].

Since Kλ in Equation (10) is the RBF kernel and ε = λ logn, we have Kλ(Xi,Xn+1)I{‖Xi −

Xn+1‖ ≥ ε} . n−c logn for some constant c > 0. Thus E[Dλ(Xi,Xn+1)I{‖Xi − Xn+1‖ ≥ ε}] .

∆
(2)
λ,n+1(i, k)n−c logn. Since ∆

(2)
λ,n+1(i, k) is bounded, we have established,

I1 .E[Dλ(Xi,Xn+1)] +O(n−c logn). (EC.24)

Consider term I2 in Equation (EC.21). We will show that

I2 . I1 +O(ε2). (EC.25)

From Assumption 2, the score function wk,i is Lf− Lipschitz continuous. Moreover, for small ε and

when ‖Xi−Xn+1‖< ε, ŵ(k)
λ,n+1(n+ 1) is Ln,ε− Lipschitz continuous since∣∣∣ŵ(k)

λ,n+1(n+ 1)− ŵ(k)
λ,n+1(i)

∣∣∣≤Ln,εε,
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where EL2
n,ε <∞. Then I2− I1 is bounded above by

E
[
ε(Lf +Ln,ε)Kλ(Xi,Xn+1)

∣∣∣wk,i− ŵ(k)
λ,n+1(i)

∣∣∣I{‖Xi−Xn+1‖< ε}
]
.

Using Cauchy-Schwartz inequality, the square of the above display has the following upper bound:

ε2E
[
(Lf +Ln,ε)

2I{Xi−Xn+1‖< ε}
]
E
[
K2
λ(Xi,Xn+1)

∣∣∣wk,i− ŵ(k)
λ,n+1(i)

∣∣∣2I{‖Xi−Xn+1‖< ε}
]
.

But, E[(Lf +Ln,ε)
2I{‖Xi−Xn+1‖< ε}] is bounded above by

Cf
π

Γ(2)
ε2E
[
(Lf +Ln,ε)

2
]
,

where Γ(·) is the Gamma function. Finally, noticing that K2
λ(Xi,Xn+1)≤Kλ(Xi,Xn+1), we have

I2 . I1 + ε

√
ε2∆

(2)
λ,n+1(i, k),

which establishes Equation (EC.25).

Similarly the difference between I3 (Equation (EC.22)) and I2 can be bounded by

4ε2E[L2
n,εKλ(Xi,Xn+1)I{‖Xi−Xn+1‖< ε}], which implies that

I3 . I2 +O(ε4). (EC.26)

Next, we will show that for the term I4 in Equation (EC.23), the following holds:

λ2∆̄λ,n(i, k). I4 . I3 +λ3∆
(2)
λ,n(i, k) logn. (EC.27)

This inequality along with equations (EC.26), (EC.25) and (EC.24) will establish statement (b).

First, note that

I4 =E
[{
wk,i− ŵ(k)

λ,n(i)
}2

f(Xi)
]∫
Kλ(Xi,Xn+1)I{‖Xi−Xn+1‖< ε}dXn+1,

since ŵ
(k)
λ,n(i) is independent of Xn+1 for i < n+ 1. Now, with ε= λ logn, we have

∫
Kλ(Xi,Xn+1)I{‖Xi−Xn+1‖< ε}dXn+1 ≥ cλ2, (EC.28)
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for some constant c > 0 when n is large. So, Equation (EC.28) implies λ2∆̄λ,n(i, k). I4 and estab-

lishes the lower bound in Equation (EC.27). To establish the upper bound we will assume that the

density f is Lf− Lipschitz continuous (Assumption 2). We have,

f(Xi)

∫
Kλ(Xi,Xn+1)I{‖Xi−Xn+1‖< ε}dXn+1 .∫

Kλ(Xi,Xn+1)I{‖Xi−Xn+1‖< ε}f(Xn+1)dXn+1 +Lfε

∫
Kλ(Xi,Xn+1)I{‖Xi−Xn+1‖< ε}dXn+1.

Then, pre-multiplying the above display with {wk,i− ŵ(k)
λ,n(i)}2 and taking expectations, we get

I4− I3 .Lfε∆
(2)
λ,n(i, k)

∫
Kλ(Xi,Xn+1)I{‖Xi−Xn+1‖< ε}dXn+1 ≤Lfε∆(2)

λ,n(i, k)Cλ2,

for some constant C and n large. This implies, I4 . I3 + λ3∆
(2)
λ,n(i, k) and establishes the upper

bound in Equation (EC.27). �

Proof of statement (c) – We first note that M̂
(k)
λ,n(ŵ

(k)
λ,n) and M̂

(k)
λ,n(w

(k)
0 ) are, respectively V-

statistics of M
(k)
λ (ŵ

(k)
λ,n) and M

(k)
λ (w

(k)
0 ). Moreover, we have

M̂
(k)
λ,n(ŵ

(k)
λ,n)≤ M̂ (k)

λ,n(w
(k)
0 ).

So, taking expectations on both sides of the above display we get

n2−n
n2

M
(k)
λ (ŵ

(k)
λ,n) +

1

n
E{ŵ(k)

λ,n(i)}2 ≤ n2−n
n2

M
(k)
λ (w

(k)
0 ) +

1

n
E{wk,i}2.

But M
(k)
λ (w

(k)
0 ) = 0 and so from the above display, we have

M
(k)
λ (ŵ

(k)
λ,n)≤

E{wk,i}2−E{ŵ(k)
λ,n(i)}2

n− 1
,

which completes the proof of statement (c). �

EC.2.6. Proof of Theorem 3

We first state two lemmata that are needed for proving Theorem 3. Denote c0, c1, . . . some generic

positive constants which may vary in different statements.

Lemma EC.4. If Assumption 3 holds, then with probability tending to 1, C1/ logn≤ τ ≤ C2 logn

and |µ| ≤C3 logn for some positive constants C1,C2 and C3.



e-companion to Banerjee et al.: NEST ec19

Lemma EC.5. Consider Model (1). Suppose Assumption 3 holds. Then with probability tending to

1, E(τi|yi, s2
i )≥ c0/ logn.

Lemmata EC.4 and EC.5 are proved in Sections EC.2.6.1 and EC.2.6.2, respectively. We now

prove Theorem 3.

To establish the first part of Theorem 3, note that

1

n
‖δdsn (λ)− δπ(1)‖22 =

1

nm2

n∑
i=1

∣∣∣w1,i

τ̂πi
−
ŵ

(1)
λ,n(i)

τ dsi,n(λ)

∣∣∣2
≤ 2

nm2

n∑
i=1

1

[τ dsi,n(λ)]2

∣∣∣w1,i− ŵ(1)
λ,n(i)

∣∣∣2 +
2

nm2

n∑
i=1

∣∣∣w1,i

∣∣∣2 ∣∣∣ 1

τ dsi,n(λ)
− 1

τ̂πi

∣∣∣2
:= T1 +T2.

Consider the first term T1. From the discussion in Section 3.2, there is a positive constant c0 such

that τ dsi,n(λ)> c0 > 0 for all i= 1, . . . , n. It follows that for some constant c1 > 0 depending on the

fixed m,

T1 ≤
c1

n

∥∥∥w(1)
0 − ŵ

(1)
λ,n

∥∥∥2

2
≤ c1

n

∥∥∥W0−Ŵn(λ)
∥∥∥2

F
, (EC.29)

where ŵ
(1)
λ,n and w

(1)
0 are , respectively, the first column of Ŵn(λ) and W0. From Theorem 2 the

last term on the right hand side of the inequality in equation (EC.29) is Op{n−1/3(logn)4}.

Next consider the second term T2. We have

T2 ≤
c2

n

n∑
i=1

∣∣∣w1,i

τ̂πi

∣∣∣2∣∣∣w2,i− ŵ(2)
λ,n(i)

∣∣∣2. (EC.30)

We will use Lemma EC.5 to bound the terms |w1,i/τ̂
π
i | in equation (EC.30). First note that since

Xi is sub-exponential, |w1,i| ≤ c1 logn with high probability from the discussion in the proof of

Theorem 2. Next, Model (1), Assumption 3 and Lemma EC.4 imply that with probability tending

to 1, |Yi| ≤ c2 logn and (m− 1)n−1 ≤ (m− 1)S2
i τi ≤ (m− 1) + 2

√
(m− 1) logn+ 2 logn [cf. Lemma

1 of Laurent and Massart (2000)]. So conditional on these events, we have, from Lemma EC.5,

|w1,i/τ̂
π
i | ≤ c3(logn)2. Thus,

T2 ≤
c4(logn)4

n

n∑
i=1

∣∣∣w2,i− ŵ(2)
λ,n(i)

∣∣∣2,
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which is Op{n−1/3(logn)8} from Theorem 2. Thus n−1‖δdsn (λ)− δπ(1)‖22 is Op{n−1/3(logn)8}.

Now we will prove the second part of Theorem 3. Observe that |l(1)
n (µ,δπ(1);τ )− l(1)

n {µ,δdsn (λ);τ}|

equals

∣∣∣√l(1)
n (µ,δπ(1);τ )−

√
l
(1)
n {µ,δdsn (λ);τ}

∣∣∣ ∣∣∣√l(1)
n (µ,δπ(1);τ ) +

√
l
(1)
n {µ,δdsn (λ);τ}

∣∣∣
and Triangle inequality implies

∣∣∣√l(1)
n (µ,δπ(1);τ )−

√
l
(1)
n {µ,δdsn (λ);τ}

∣∣∣ ≤ ∣∣∣
√√√√ 1

n

n∑
i=1

τi
{
δπi,(1)− δdsi,n(λ)

}2
∣∣∣

≤ c0

√
logn

n

∥∥δdsn (λ)− δπ(1)

∥∥
2
, (EC.31)

where the last inequality in Equation (EC.31) follows from Lemma EC.4. Thus, from the first part

of Theorem 3 and Lemma EC.4, the quantity on the right hand side of the inequality in equation

(EC.31) is Op{(logn)9/2n−1/6}. Thus, it follows from equation (EC.31) that

√
l
(1)
n {µ,δdsn (λ);τ} ≤

√
l
(1)
n (µ,δπ(1);τ ) +Op{(logn)9/2n−1/6}, and

∣∣l(1)
n (µ,δπ(1);τ )−l(1)

n {µ,δdsn (λ);τ}
∣∣≤ 4

√
l
(1)
n (µ,δπ(1);τ )

∣∣√l(1)
n (µ,δπ(1);τ )−

√
l
(1)
n {µ,δdsn (λ);τ}

∣∣{1+op(1)
}
.

Now δπ(1) is the Bayes estimator of µ under the weighted squared error loss and so its risk

El(1)
n (µ,δπ(1);τ ) <∞. This implies l(1)

n (µ,δπ(1);τ ) is Op(1). Thus, from equation (EC.31), the first

part of Theorem 3 and the display above, we have the desired result. �

EC.2.6.1. Proof of Lemma EC.4 The proof of Lemma EC.4 follows directly from Assump-

tion 3 and Markov’s inequality. For example, fix a ν > 0 and note that, for r= ε−ν2 > 1,

P
(
τ ≤ ε1+ν

2

logn

)
≤

EH
{

exp(ε2/τ)
}

nr
.

�



e-companion to Banerjee et al.: NEST ec21

EC.2.6.2. Proof of Lemma EC.5 Recall that f(yi, s
2
i ) =∫

R+

∫
R f1(yi|µ, τ)f2(s2

i |τ)g(µ|τ)h(τ)dµdτ, where g(·|τ) and h(·) are, respectively, the density

functions associated with the distribution functions Gµ(·|τ) and Hτ (·) in Model (1), f1 is the

density of a Gaussian random variable with mean µ and variance 1/(mτ) and f2 is the density of

S2 where (m− 1)S2τ ∼X 2
m−1.

We will first analyze the behavior of f(yi, s
2
i ). Gaussian concentration implies that with high

probability {(Yi−µi)2mτi} ≤ 2 logn and so, conditional on this event,

f1(yi|µ, τ)≥ c0

√
τ

n
. (EC.32)

Moreover, using the Chi-square concentration in Lemma 1 of Laurent and Massart (2000), (m−

1)S2
i τi ≤ (m− 1) + 2

√
(m− 1) logn+ 2 logn and S2

i τi ≥ n−1 with high probability. It follows that

f2(s2
i |τ)≥ c1τ

an
n(m−1)/2

, (EC.33)

conditional on this event, where an = exp{−
√

(m− 1) logn}. Using equations (EC.32) and (EC.33),

we have

f(yi, s
2
i )≥ c2

an
n(m+1)/2

∫
R+

τ 3/2h(τ)dτ. (EC.34)

Now, use Assumption 3 and Lemma EC.4 on the quantity
∫
R+ τ

3/2h(τ)dτ in equation (EC.34) to

conclude that ∫
R+

τ 3/2h(τ)dτ ≥ c3

(logn)3/2
P
(
τ ≥C2/ logn

)
. (EC.35)

So, with equations (EC.35), (EC.34) and Lemma EC.4, we have with high probability,

f(yi, s
2
i )≥ c4

an
n(m+1)/2(logn)3/2

. (EC.36)

Now we proceed to prove the statement of Lemma EC.5. Fix ν > 0 such that ε−ν > 2m in

Lemma EC.4 and let C1 = ε1+ν . First note that from Assumption 3, P(τ ≤ C1/ logn) ≤ c0/n
2m.

Now, Markov’s inequality implies,

E(τ |yi, s2
i )≥

C1

logn

{
1−P

[
τ ≤C1(logn)−1

∣∣∣yi, s2
i

]}
.
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Moreover,

P
(
τ ≤ C1

logn

∣∣∣yi, s2
i

)
= {f(yi, s

2
i )}−1

∫ C2/ logn

0

h(τ)
{∫

R
g(µ|τ)f1(yi|µ, τ)f2(s2

i |τ)dµ
}

dτ.

Now f1(yi|µ, τ) ≤ c0

√
τ and f2(s2

i |τ) ≤ c1τ where c0, c1 > 0 are constants. So for some positive

constant c2,

P(τ ≤C2/ logn|yi, s2
i ) ≤

c2

f(yi, s2
i )

∫ C2/ logn

0

τ 3/2h(τ)
{∫

R
g(µ|τ)dµ

}
dτ

≤ c3

f(yi, s2
i )(logn)3/2

∫ C2/ logn

0

h(τ)dτ =
c3

f(yi, s2
i )(logn)3/2

P(τ ≤C2/ logn).

Thus, from the above display, Assumption 3 and Lemma EC.4,

E(τ |yi, s2
i )≥

C2

logn

{
1− c3

n−2m

f(yi, s2
i )(logn)3/2

}
.

Finally, equation (EC.36) and the above display prove the statement of Lemma EC.5. �

EC.2.7. Proof of Equations (7) and (8)

The proof follows by first recalling that under the hierarchical model of Equation (1),

fmi(yi, s
2
i |µi, τi)∝ exp

{
−τi

2

[
miy

2
i + (mi− 1)s2

i

]
+miτiµiyi−

mi

2
τiµ

2
i +

mi− 3

2
log s2

i

}
.

Therefore from Bayes theorem,

fmi(µi, τi|yi, s
2
i ) =

fmi(yi, s
2
i |µi, τi)

fmi(yi, s
2
i )

g(µi|τi)h(τi)∝ exp
{
ηTi T (µi, τi)−A(ηi)

}
g(µi|τi)h(τi).

Here ηi = (miyi,−miy
2
i − (mi− 1)s2

i ) := (η1i, η2i), T (µi, τi) = (τiµi, τi/2) and

A(ηi) = −0.5(mi− 3) logγ(η1i, η2i) + log fmi
{
m−1
i η1i, γ(η1i, η2i)

}
,

γ(η1i, η2i) =
−η2i−m−1

i η2
1i

mi− 1
,

with fm(y, s2) =
∫ ∫

fm(y, s2|µ, τ)gµ(µ|τ)hτ (τ)dµdτ being the marginal density function of (Y,S2).

So the posterior distribution of (µi, τi) belongs to a 2-parameter exponential family and using the

properties of exponential family distributions we have, dropping subscript i,

τ̂π := τ̂π(y, s2,m) =E(τ |y, s2,m) = 2
∂A(η)

∂η2

=
m− 3

(m− 1)s2
− 2

m− 1
w2(y, s2;m).
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Furthermore, with ζ = τµ,

ζ̂π := ζ̂π(y, s2,m) = E(ζ|y, s2,m) =
∂A(η)

∂η1

=
(m− 3)y

(m− 1)s2
+m−1w1(y, s2;m)− 2

m− 1
yw2(y, s2;m)

= yE(τ |y, s2,m) +m−1w1(y, s2;m).

�

EC.3. Additional Numerical Experiments

EC.3.1. Compound estimation of Normal means under squared error loss

We focus on the hierarchical Model of Equation (1) and compare six approaches for estimating

µ under the squared error loss when the variances σi = 1/τi are assumed to be unknown. These

approaches can be categorized into three types: the first consists of the NEST method (NEST Orc.

λ), which estimates λ by minimizing the true loss, the proposed data-driven NEST method and

Tweedie’s formula (TF) that uses sample variances. For both NEST and TF, λ is chosen using the

modified cross-validation approach described in Section 3.2 with ϑn(λ;U ,V) defined as

ϑn(λ;U ,V) =
1

n

n∑
i=1

{
V̄i− δdsi (Ūi;U , λ)

}2
,

to reflect the squared error loss. The second are linear shrinkage methods: the group linear estimator

(Grp Linear) of Weinstein et al. (2018) and the semi-parametric linear shrinkage rule (Jing.SM)

from Jing et al. (2016b). Finally, the third type is the g-modelling approach of Gu and Koenker

(2017a,b). For Grp. Linear we use code provided by Weinstein et al. (2018) while for Jing.SM

we write our own routine in R. We continue to rely on the function WGLVmix in the R package

REBayes (Koenker and Gu 2017) for NPMLE. We note that amongst the six methods considered

here, NEST and NEST Orc. λ are designed to estimate the means under the weighted squared

error loss while the remaining four approaches target the squared error loss. Furthermore, with

the exception of Grp. Linear, all other methods considered here estimate µ when the variances are

unknown. Grp. Linear, on the other hand, assumes full knowledge of the unknown variances for

shrinkage estimation of the means and here we use sample variances for its implementation.



ec24 e-companion to Banerjee et al.: NEST

The aforementioned six approaches are evaluated on five different simulation settings, with the

goal of assessing the relative performance of the competing estimators as the heterogeneity in the

variances σ2
i is varied while keeping the sample sizes mi fixed at m. The five simulation settings

can be categorized into three types: a setting where mean and variances are independent; three

settings where mean and variance are correlated; and a setting that represents departure from the

Normal data-generating model. For each setting we set n= 1,000 and compute the average squared

error risk for each competing estimator of µ across 50 Monte Carlo repetitions. Figures EC.3 to

EC.7 plot the relative risk which is the ratio of the average squared error risk for any competing

estimator to that of oracle Bayes estimator δπ(0) of µ (Equation (5)) so that a ratio bigger than 1

represents a poorer risk performance of the competing estimator relative to the Bayes oracle.

The first setting, Figure EC.3, corresponds to the independent case. Here, for each i= 1, . . . , n,

µi
i.i.d∼ 0.7 N(0,0.1) + 0.15 N(1,3) + 0.15 N(−1,3) and σ2

i

i.i.d∼ U(0.5, u) where we let u vary across

five levels, {1,2,3,4,5}. The three plots in Figure EC.3 show the relative risks as u varies for

m= 10,15 and 20 (left to right). We see that for m= 10, the competing methods split into two

levels of performance. The group with the lowest relative risks consists of NPMLE, TF and NEST

while the two linear shrinkage methods exhibit substantially higher relative risks. Moreover, we also

see that as heterogeneity increases with increasing u, the gap between the two groups’ relative risks

increases, indicating that NPMLE, TF and the proposed NEST method are particularly useful for

compound estimation of normal means when the variances are unknown and heterogeneous, and the

sample size for estimating those variances are themselves small. As m increases, the performance

of the two linear shrinkage methods and TF improve which is expected as there are now more

replicates per unit of study to construct a relatively reliable estimate of the unknown variances.

However, the performance of NEST improves too and particularly at m= 20 (Figure EC.3 right),

NPMLE exhibits a slightly higher relative risk than NEST and TF.

The second setting, Figure EC.4, corresponds to the correlated case. The precisions τi =

1/σ2
i are generated independently from a gamma mixture, with an even chance of drawing
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Figure EC.3 Comparison of relative risks when (µi, σ
2
i ) are independent. Here µi

i.i.d∼ 0.7 N(0, .1)+0.15 N(1,3)+

0.15 N(−1,3) and σ2
i
i.i.d∼ U(0.5, u). Plots show m= 10,15,20 left to right.

Γ(20, rate= 20) or Γ(20, rate= u) and given τi, the means µi are independently 0.5 N(0.5/τi,0.5
2)+

0.5 N(−0.5/τi,0.5
2). In this setting, the magnitude of the variances increase with u and the means

grow with the variances. We note from Figure EC.4 that Grp. Linear and Jing.SM exhibit improved

performance particularly for small values of u. As u increases, TF, NPMLE and NEST perform

well although their relative risk profiles are substantially away from 1 as u increases. For TF

and NEST this behavior is expected given the statements of Propositions EC.1 and EC.2. The

improved performance of Jing.SM in this setting is potentially related to the observation that when

u is small, the rate mixture of Gamma distributions on τi can be well approximated by a single

Gamma distribution and that coincides with the parametric prior that Jing et al. (2016b) use on

the precision to derive their empirical Bayes estimator for the means.

In the third setting, Figure EC.5, (µi, τi) continue to be correlated and have a conjugate prior

distribution under Model (1). The precisions τi are drawn from Γ(20, rate = u) and conditional on

τi, µi are independently N(0,0.5/τi). Under this data generating scheme, the posterior mean of µi

is myi/(m+2) which is independent of u. This is the reason that the relative risks of the competing

estimators in Figure EC.5 do not vary with the heterogeneity in the variances. Compared to the

first two settings, we see that the linear shrinkage estimators have a relatively better performance

and Jing.SM dominates all other shrinkage estimators. This is expected because in this setting the

posterior mean of µi is indeed a linear function of the sample mean yi. For m = 10 and 15, we
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Figure EC.4 Comparison of relative risks for correlated (µi, τi). Here τi
i.i.d∼ 0.5Γ(20,rate= 20)+0.5Γ(20,rate=

u) and µi|τi
ind.∼ 0.5 N(0.5/τi,0.5

2) + 0.5 N(−0.5/τi,0.5
2). Plots show m= 10,15,20 left to right.

notice that the relative risk of NEST is marginally better than the competing estimators while at

m= 20 Grp Linear and NEST have similar risk performance.
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Figure EC.5 Comparison of relative risks when (µi, τi) have conjugate priors. Here µi|τi
ind.∼ N(0,0.5/τi) and

τi
i.i.d∼ Γ(20,rate= u). Plots show m= 10,15,20 left to right.

Figure EC.6 presents the fourth setting where the precisions τi are drawn from the gamma

mixture of Setting 2 and µi|τi
ind.∼ 0.7 N(0,0.01) + 0.15 N(0.5/τi,1) + 0.15 N(−0.5/τi,1). We see a

similar pattern to that in Figure EC.3 at m= 10. For m= 15 and 20, we notice that the relative

risks of the linear shrinkage methods are now higher than their levels at m = 10. This is not

surprising for in this setting, while the risk performance of all methods have improved with larger

sample sizes, NPMLE, TF and NEST exhibit a bigger improvement in risk than those of Grp

Linear and Jing.SM.
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Figure EC.6 Comparison of relative risks when µ is sparse. Here τi
i.i.d∼ 0.5 Γ(20,rate= 20)+0.5 Γ(20,rate= u)

and µi|τi
ind.∼ 0.7 N(0,0.01) + 0.15 N(0.5/τi,1) + 0.15 N(−0.5/τi,1). Plots show m= 10,15,20 left

to right.
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Figure EC.7 Comparison of relative risk for non-normal data. Here Yij |µi, σi
i.i.d∼ U(µi −

√
3σ2

i , µi +
√

3σ2
i ), σ2

i

are sampled independently from N(u,1) truncated below at 0.1 and µi|σ2
i
ind.∼ 0.8 N(0.25σ2

i ,0.25)+

0.2 N(σ2
i ,1). Plots show m= 10,15,20 left to right.

The fifth setting, Figure EC.7, corresponds to the setting where the data Yij|(µi, σ2
i ) are not

normally distributed. Here the proposed NEST method demonstrates robustness to departures

from the Normal model particularly in comparison to TF, Grp. Linear and Jing.SM.

Overall, the results of the preceding five simulation settings corroborate the statement of Propo-

sition EC.2 and reveal that when the variances are unknown, the NEST estimation framework

enjoys a relatively better risk performance for estimating the means under the squared error loss

than the linear shrinkage methods and Tweedie’s formula that rely on sample variances.
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(a) Simulation settings 4 (left) and 7 (right) from Section 5 where estimation is conducted under

the weighted squared error loss.
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(b) Simulation settings 2 (left) and 5 (right) from Section EC.3.1 where estimation is conducted

under the squared error loss.

Figure EC.8 Compound estimation of means under small and unequal sample sizes m. Here m is a fixed vector

of size n with elements sampled randomly from (4,5,6) with replacement.

EC.3.2. Numerical Experiments with unequal sample sizes mi

In this section, we present the risk performance of the competing approaches of sections 5 and

EC.3.1 when the sample sizes mi are small and differ across the n = 1000 units of study. We

use the following four simulation settings: Settings 4 and 7 from Section 5 and Settings 2 and 5
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from Section EC.3.1. However, we change how m= (m1, . . . ,mn) are generated in these settings.

Figures EC.8a and EC.8b present the relative risks of the competing estimators across these four

scenarios. Here m is generated as a fixed vector of size n with elements sampled randomly from

{4,5,6} with replacement. The case where m∈ {4,5} represents a particularly challenging scenario

for NEST which is based on the following observation: in Equation (8) (mi − 3){(mi − 1)S2
i }−1

is an unbiased estimator of τi which follows from the fact that {(mi − 1)S2
i τi}−1 has an inverse

Chi-square distribution with mi− 1 degrees of freedom. However the variance of this distribution

does not exist unless mi > 5.

Figure EC.8a represents Settings 4 (left) and 7 (right) from Section 5. We note that NEST

continues to dominate NPMLE under the weighted squared error loss even when mi are small.

However, at such small sample sizes the risk of the NEST estimator is relatively larger than that

of δπ(1).

Figure EC.8b exhibits Settings 2 (left) and 5 (right) from Section EC.3.1 where the estimation

is conducted under the squared error loss. Here, we use the semi-parametric monotonically con-

strained SURE estimator that shrinks towards the grand mean, XKB.SG, from Xie et al. (2012)

in place of Jing.SM from Section EC.3.1 as the latter was originally designed for the case mi =m.

While the extension of Jing.SM to unequal mi is straightforward, we do not pursue that direction

in this article and, instead, use XKB.SG in its place.

In Figure EC.8b we note that NPMLE dominates NEST and NEST exhibits a relatively better

risk performance than TF, Grp. Linear and XKB.SG. However, in Setting 5 (right panel of Figure

EC.8b), where the data Yij|(µi, σ2
i ) are not normally distributed, the performance of NEST is

substantially poorer than NPMLE when u is large. The two main reasons for this behavior are

related to (1) Proposition EC.2 where the oracle NEST estimator δπ(1) is not, in general, the optimal

estimator of the means under the squared error loss, and (2) when the sample size mi is less than

6 the variance of {(mi− 1)S2
i τi}−1 under Model (1) does not exist.
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EC.3.3. Compound Estimation of Ratios

In this section we demonstrate the use of the NEST estimation framework for compound estimation

of n ratios θi =
√
miµi/σi which represent a popular financial metric for assessing mutual fund

performance (see Section EC.4.2 for a related real data application involving compound estimation

of mutual fund Sharpe ratios.). We evaluate the performance of the same six methods under the
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Figure EC.9 Comparison of relative risk for estimating θ. Here σ2
i
i.i.d∼ U(0.1, u) and µi|σi

ind.∼ 0.5 N(0.5σ2
i ,0.5

2)+

0.5 N(−0.5σ2
i ,0.5

2). Plots show m= 10,15,20 left to right.

squared error loss with n fixed at 1000 and mi = m for i = 1, . . . , n. We consider two simulation

settings and plot the risk performance of the competing estimators of θ = (θ1, . . . , θn) relative to

the optimal Bayes estimator that estimates θ using the vector of posterior means E(θi|yi, s2
i ) for

i = 1, . . . , n. Note that amongst the six methods considered here, NPMLE is the only method

that is designed to estimate these posterior means. The other methods estimate θi by separately

estimating µi and σi, and then take their ratio to construct an estimate. Grp. Linear and TF,

in particular, rely on the sample standard deviation for estimating σi while NEST and Jing.SM

employ their respective empirical Bayes estimators of σ2
i .

Setting 1 is presented in Figure EC.9. The data Yij are generated independently from N(µi, σ
2
i ),

the variances σ2
i are simulated uniformly between 0.1 and u, and the means are independently

drawn from a mixture model with half chance N(−σ2
i /2,0.5

2) and the other half N(σ2
i /2,0.5

2).

We continue to see that NEST has a lower relative risk than Grp. Linear and TF, both of which
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use sample variances. NEST also dominates Jing.SM for almost all values of u while NPMLE

dominates NEST for small values of u. As u increases the heterogeneity in the data grows and we

see that the relative risks of Grp. Linear and Tweedie’s Formula across all m first decrease and

then increase. The shift in the behavior of these estimators is related to the observation that as u

increases, the centers of the mixture model that generates µi, are on average, further away from

one another. This makes estimating the numerator of the ratio easier for all methods up until a

point. As heterogeneity increases further, the risks of these methods that use the sample standard

deviation in the denominator of θi are relatively worse than the risk of NEST and NPMLE.
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Figure EC.10 Comparison of relative risk for estimating θ. Here τi
i.i.d∼ 0.5Γ(20,rate = 20) + 0.5Γ(20,rate = u)

and µi|τi
ind.∼ 0.5 N(0.5/τi,0.5

2) + 0.5 N(−0.5/τi,0.5
2). Plots show m= 10,15,20 left to right.

Setting 2 is presented in Figure EC.10 where the means are generated according to Setting 1 but

the precisions are independently drawn from a mixture model with half chance Γ(shape= 20, rate=

20) and the other half Γ(shape = 20, rate = u). We note that while NEST dominates TF and Grp.

Linear, NPMLE and Jing.SM dominate NEST when the heterogeneity is relatively smaller and

when m= 10. The improved performance of Jing.SM in this setting is potentially related to the

observation that when u is small, the rate mixture of Gamma distributions on τi can be well

approximated by a single Gamma distribution and that coincides with the parametric prior that

Jing et al. (2016b) use on the precision to derive their empirical Bayes estimator for the variances.

In Figures EC.9 and EC.10 we note that for m = 10, the relative risk of NEST is substantially
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higher than NEST Orc. λ. This is not unexpected because NEST Orc. λ estimates λ by minimizing

the true squared error loss involving θ while the data-driven NEST estimator relies on the modified

cross-validation approach described in Section 3.2 with ϑn(λ;U ,V) defined as

ϑn(λ;U ,V) =
1

n

n∑
i=1

{
V̄i− δdsi (Ūi;U , λ)

}2
,

to choose λ.

EC.4. Real Data Analyses

EC.4.1. Baseball Data

We analyze the monthly data on the number of “at bats” and “hits” for all U.S Major League

baseball players over the regular seasons from 2002 until 2011. In this analysis we focus on both

pitchers and non-pitchers using an approach similar to that of Gu and Koenker (2017a). The data

are available from the R package REBayes and have been aggregated into half seasons to produce an

unbalanced panel. It includes observations on 932 players who have at least ten at bats in any half

season and appear in no fewer than five half-seasons (note that there are a total of 20 half-seasons

that a player can appear in).

Following Brown (2008), let the transformed batting average Yij for player i(= 1, . . . , n) at time

j(= 1, . . . ,mi) be denoted by Yij = arcsin

(√
Hij + 0.25

Nij + 0.5

)
where Hij denotes the number of “hits”

and Nij denotes the number of “at bats” at time j for player i. We assume that Yij ∼N(µi, v
2
ij/τi)

where µi = arcsin(
√
pi), pi being player i’s batting success probability, and v2

ij = 1/(4Nij). Here

1/τi are player specific scale parameters as described in Gu and Koenker (2017a). Under this setup,

the sufficient statistics are

µ̂i =

(
mi∑
j=1

1/v2
ij

)−1 mi∑
j=1

Yij/v
2
ij ∼N(µi, v

2
i /τi) with v2

i =

(
4

mi∑
j=1

Nij

)−1

,

S2
i =

1

mi− 1

mi∑
j=1

(Yij − µ̂i)2/v2
ij with (mi− 1)S2

i τi ∼X 2
mi−1.

In this analysis, the goal is to use the 2002-2011 data to predict the batting averages of the players

in 2012. Players are divided into three categories: all, non-pitchers, and pitchers. We consider
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Table EC.1 Performance of the competing estimators relative to the performance of the naive estimator Y2011.

Here R-TSE(δ) = TSE(δ)/TSE(Y2011) with similar definitions for R-NSE and R-TSEp. The smallest two relative

errors are bolded

NPMLE-Indep NPMLE-Dep µ̂ Ȳ 2011 NEST NEST orc λ

All

n for estimation: 932 R-TSE 0.463 0.491 0.352 1.958 0.350 0.350

n for prediction: 370 R-NSE 0.668 0.678 0.676 1.495 0.670 0.670

R-TSEp 0.582 0.610 0.501 1.783 0.498 0.498

Nonpitchers

n for estimation: 792 R-TSE 0.535 0.559 0.503 0.551 0.488 0.484

n for prediction: 325 R-NSE 0.656 0.665 0.679 0.973 0.667 0.659

R-TSEp 0.651 0.677 0.619 0.682 0.604 0.601

Pitchers

n for estimation: 140 R-TSE 0.659 0.662 0.629 0.804 0.628 0.620

n for prediction: 45 R-NSE 0.659 0.663 0.649 0.769 0.649 0.638

R-TSEp 0.124 0.124 0.133 0.337 0.133 0.122

the following seven estimators of µi: two non-parametric maximum likelihood based estimators,

denoted NPMLE-Indep and NPMLE-Dep which assume, respectively, independent and dependent

priors on (µi,1/τi), the sufficient statistics µ̂= (µ̂1, . . . , µ̂n) of µ, the grand mean across all players

in the 2011 season Ȳ 2011 = n−1
∑n

i=1 Yi,2011, the proposed NEST estimator and its counterpart with

an oracle choice for the tuning parameter λ (NEST orc λ), and the naive estimator that uses

2011 batting averages Y2011 = (Y1,2011, . . . , Yn,2011). To assess how well these methods predict 2012

batting averages Y2012 = (Y1,2012, . . . , Yn,2012), we consider three criteria for evaluating any estimate

δi of µi: total squared error from Brown (2008) and defined as TSE(δ) =
∑n

i=1

{
(Yi,2012 − δi)2 −

(4Ni,2012)−1
}

, normalized squared error from Gu and Koenker (2017a) and defined as NSE(δ) =∑n

i=1

{
4Ni,2012(Yi,2012 − δi)2

}
, and total squared error on a probability scale from Jiang et al.

(2010) which is defined as TSEp(p̂) =
∑n

i=1

{
(pi,2012 − p̂i)2 − pi,2012(1− pi,2012)(4Ni,2012)−1

}
. Here

p̂i = sin2(δi) and pi,2012 = sin2(Yi,2012).
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In Table EC.1, we report the performance of the competing estimators relative to the performance

of the naive estimator Y2011 wherein R-TSE(δ) = TSE(δ)/TSE(Y2011) with similar definitions for

R-NSE and R-TSEp. Thus, a smaller value of R-TSE, R-NSE or R-TSEp indicates a relatively

better prediction error. Across “All” and “Nonpitchers”, NEST exhibits the best relative risk for

two of the three performance metrics. It is interesting to note that the sufficient statistics µ̂ are

quite competitive in this example while NPMLE with independent priors dominate the one with

dependent priors across “All”, “Nonpitchers” and “Pitchers”. The compound estimation problem

for “Pitchers” is an example of a setting where n is relatively small and NEST demonstrates a

better risk performance than NPMLE for total squared error and normalized squared error losses.

EC.4.2. Mutual Fund Sharpe Ratios

In this section we analyze a dataset on n1 = 5,000 monthly mutual fund returns spanning 12

months from January 2014 to December 2014. This data are sourced from the Wharton research

data services (Wharton School 1993). The goal in this analysis is to use Sharpe ratios constructed

using the data on the first m1 = 6 months, January 2014 - June 2014, to predict the corresponding

Sharpe ratios for the next 6 months. Formally, let Yij denote the excess return of fund i(= 1, . . . , n1)

in month j(= 1, . . . ,m1) over the return on the 3 month treasury yield. Denote Ȳi =m−1
1

∑m1

j=1 Yij,

S2
i = (m1 − 1)−1

∑m1

j=1(Yij − Ȳi)2 and δnaivei = Ȳi/
√
S2
i to be, respectively, the sample mean, the

sample variance and the observed Sharpe ratio of the monthly excess returns. Of the 5,000 funds

available during these first 6 months, there are n2 = 4,958 funds that appear in the next 6 months,

July 2014 - December 2014, and have at least 3 months of returns available during this period.

For our prediction, we consider these n2 funds to assess the performance of various estimators for

predicting θi = µi/σi where µi and σi are the sample mean and sample standard deviation of the

excess returns of the n2 funds during the next 6 months.

We consider the following estimators of θ= (θ1, . . . , θn): NEST, NEST orc. λ, Tweedie’s formula

(TF), Grp Linear, Jing.SM and NPMLE from Section EC.3.1. Additionally, we consider the SURE

estimators XKB.SG and XKB.G from Xie et al. (2012). Note that for predicting θi, TF, Grp
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Table EC.2 Performance of the competing estimators relative to the performance of the naive estimator δnaive.

Here R-TSE(δ) = TSE(δ)/TSE(δnaive) with similar definitions for R-WSE and R-WAE. The smallest two relative

errors are bolded

n1 n2 Grp Lin. XKB.G XKB.SG NPMLE Jing.SM TF NEST NEST orc. λ

R - TSE 5000 4958 0.896 0.931 0.922 0.842 0.720 0.997 0.688 0.686

R - WSE 5000 4958 0.893 0.930 0.920 0.837 0.716 0.997 0.686 0.684

R - WAE 5000 4958 1.067 0.974 0.983 0.479 0.171 0.999 0.782 0.780

Linear, XKB.SG and XKB.G rely on the sample variances S2
i . To evaluate the performance of

these estimators for predicting θ, we consider the following three criteria with mi,2 ∈ [3,6]: Total

Squared Error : TSE(δ) =
∑n2

i=1(θi−δi)2; weighted Squared Error : WSE(δ) =
∑n2

i=1mi,2(θi−δi)2;

and weighted Absolute Error : WAE(δ) =
∑n2

i=1mi,2|1 − δi/θi|. In Table EC.2, we present the

performance of the competing estimators relative to the performance of the naive estimator δnaive =

(δnaivei : 1≤ i≤ n) so that a smaller value of R-TSE, R-WSE or R-WAE indicates a relatively better

prediction error.

Along the performance measures of Total Squared Error and Weighted Squared Error, NEST

has the smallest relative risk among all competing estimators considered in this example. With

respect to the Weighted Absolute Error, Jing.SM has a substantially smaller relative risk than

NEST while Grp Linear appears to be doing relatively worse and exhibits an R-WAE bigger than

1. When compared against the three linear shrinkage methods considered here, NEST and NPMLE

demonstrate an overall value in joint shrinkage estimation of the means µi and the variances σ2
i

for predicting θ.

EC.5. Extensions

This section considers the extension of our methodology to several well known members in the two-

parameter exponential family. We will focus on examples where the nuisance parameter is known.

Our proposed estimation framework is motivated by the double shrinkage idea, but the approach

nonetheless handles the case with known nuisance parameters. We discuss four examples, in each
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of which we derive the Bayes estimator of the natural parameter under the squared error loss. The

Bayes estimator in these examples relies on the unknown score function (of the marginal density

of the sufficient statistic), which can be consistently estimated using the ideas in Section 3.

Example EC.1 (Location mixture of Gaussians). Consider the following hierarchical

model

Yi | µi, τi
ind.∼ N(µi,1/τi), µi

i.i.d∼ Gµ(·), for i= 1, . . . , n, (EC.37)

where τi are known and Gµ(·) is an unspecified prior. Equation (EC.37) represents the heteroskedas-

tic normal means problem with known variances 1/τi [see for example Weinstein et al. (2018)]. In

this setting, the sufficient statistic for µi is Yi and the Bayes estimator of µi under the squared

error loss is given by

µπi :=E(µi|yi, τi) = yi +
1

τi

∂

∂yi
log f(yi|τi),

where f(·|τi) is the pdf of the distribution of Yi given τi marginalizing out µi. From Section 3 and

with mi = 1, xi = (yi, τi), the NEST estimate of µi is given by δnesti,n (λ) = yi +
1

τi
ŵ

(1)
λ,n(i).

Example EC.2 (Scale mixture of Gamma distributions). Consider the following model

Yij | αi,1/βi
i.i.d∼ Γ(αi,1/βi), 1/βi

i.i.d∼ G(·),

where the shape parameters αi are known and G(·) is an unspecified prior distribution on scale

parameters 1/βi. Here Ti =
∑m

j=1 Yij is a sufficient statistic and Ti|αi, βi
ind.∼ Γ(mαi,1/βi). The

posterior distribution of 1/βi belongs to a one-parameter exponential family with density

f(1/βi|Ti, αi)∝ exp
{
−Tiβi + (mαi− 1) logTi− log f(Ti|αi)

}
, (EC.38)

where f(·|αi) is the pdf of the distribution of Ti given αi (marginalizing out 1/βi). From Equation

(EC.38), the Bayes estimator of βi under the squared error loss is given by

βπi :=E(βi|Ti, αi) =
mαi− 1

Ti
− ∂

∂Ti
log f(Ti|αi).

With xi = (Ti, αi), the NEST estimate of βi is given by δnesti,n (λ) =
mαi− 1

Ti
− ŵ(1)

λ,n(i).
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Example EC.3 (Shape mixture of Gamma distributions). We consider the following

model:

Yij | αi,1/βi
i.i.d∼ Γ(αi,1/βi), αi

i.i.d∼ G(·),

where the scale parameters 1/βi are known and G(·) is an unspecified prior distribution on the

shape parameters αi. Let Yi =
∑m

j=1 Yij. Then Yi|αi, βi
ind.∼ Γ(mαi,1/βi) and Ti = logYi is a sufficient

statistic. Moreover, the posterior distribution of αi belongs to a one-parameter exponential family

with density

f(αi|Ti,1/βi)∝ exp
{

(mαi)Ti−βiexp (Ti)− log f(Ti|1/βi)
}
, (EC.39)

where f(·|1/βi) is the density of the distribution of Ti given 1/βi marginalizing out αi. From

Equation (EC.39), the Bayes estimator of αi under the squared error loss is given by

απi :=E(αi|Ti,1/βi) =
βi exp (Ti)

m
+

1

m

∂

∂Ti
log f(Ti|1/βi).

With xi = (Ti,1/βi), the NEST estimate of αi is δnesti,n (λ) =
βi exp (Ti)

m
+

1

m
ŵ

(1)
λ,n(i).

Example EC.4 (Scale mixture of Weibulls). We consider the following model:

Yij | ki, βi
i.i.d∼ Weibull(ki, βi), βi

i.i.d∼ G(·). (EC.40)

We have f(y| k,β) = βkyk−1 exp(−βyk). In Equation (EC.40) the shape parameters ki are known,

G(·) is an unspecified prior distribution on the scale parameters βi, Ti =
∑m

j=1{Yij}ki is a sufficient

statistic, and Ti|ki,1/βi
ind.∼ Γ(m,1/βi). From Example 2, the Bayes estimator of βi is

βπi :=E(βi|Ti, ki) =
m− 1

Ti
+

∂

∂Ti
log f(Ti|ki).

With xi = (Ti, ki), the NEST estimate of βi is given by δnesti (λ) =
m− 1

Ti
− ŵ(1)

λ,n(i).

The preceding examples present a setting with known nuisance parameter. When both parameters

are unknown, extensions of our estimation framework to an arbitrary member of the two-parameter

exponential family is difficult. The main reason is that in the Gaussian case the sufficient statistics
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Figure EC.11 Running time comparison of NEST and NPMLE. Left: r fixed at 30. Right: n fixed at 5000.

are independent and their marginal distributions are known. However, for other distributions such

as the Gamma and Beta, the joint distribution of the two sufficient statistics is generally unknown.

This impedes a full generalization of our approach. We anticipate that an iterative scheme that

conducts shrinkage estimation on the primary and nuisance coordinates in turn may be developed

by combining the ideas in Examples EC.3 and EC.4 above. We do not pursue those extensions in

this article.

EC.6. Computational complexity

Here we discuss the computational complexities of NEST and NPMLE, and provide a comparison

of their running time.

In contrast to the linear shrinkage estimators, such as Group Linear Weinstein et al. (2018),

SURE estimators of Xie et al. (2012) and Jing et al. (2016b), NEST and NPMLE are similar in

the sense that both these approaches rely on solving a convex optimization problem to estimate

the means. An implementation of the convex optimization problem for estimating the joint prior

distribution of the means and the variances via the NPMLE is available in the R package REBayes

(Koenker and Gu 2017). This package relies on interior point methods for solving the convex

problem. See Koenker and Mizera (2014) for more details. The main effort in solving this problem

depends on computing a Hessian and the computational complexity of that is O(n2r2) where r
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is the number of grid points at which the prior masses for each of the two prior distributions

will be estimated. Usually n� r. Recently, Kim et al. (2020) propose a fast sequential quadratic

programming based algorithm for estimating a one dimensional prior distribution using the NPMLE

however their algorithm is not available for the case where the prior is two dimensional, such as the

scenario when both mean and variances are unknown. For NEST, the convex quadratic optimization

problem described in Equation (12) depends on the n× n matrix Kλ and uses the interior-point

optimizer in MOSEK. The worst case computational complexity for evaluating the hessian of the

underlying objective function is O(n3), which is substantially larger than that of NPMLE. Figure

EC.11 provides a comparison of the running time of NEST and NPMLE for increasing n and r.

In the left panel of Figure EC.11 we fix r = 30, the default choice implemented in the function

WGLVmix in REBayes, and vary n. In the right panel, n is fixed at 5000 with r varying. We see that

for problems with large n and r fixed, NPMLE is substantially faster than NEST and NEST, in

its current implementation, may not be as scalable as NPMLE is to large n problems. Our future

research efforts will be geared towards developing faster first-order methods to solve Equation (12)

rather than relying on the interior-point solver in MOSEK.
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