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Abstract

We investigate the fairness issue in classification, where automated decisions are made
for individuals from different protected groups. In high-consequence scenarios, decision er-
rors can disproportionately affect certain protected groups, leading to unfair outcomes. To
address this issue, we propose a fairness-adjusted selective inference (FASI) framework and
develop data-driven algorithms that achieve statistical parity by controlling the false selec-
tion rate (FSR) among protected groups. Our FASI algorithm operates by converting the
outputs of black-box classifiers into R-values, which are both intuitive and computationally
efficient. These R-values serve as the basis for selection rules that are provably valid for
FSR control in finite samples for protected groups, effectively mitigating the unfairness in
group-wise error rates. We demonstrate the numerical performance of our approach using
both simulated and real data.
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1 Introduction

In a broad range of applications, artificial intelligence (AI) systems are rapidly replacing human
decision-making. Many of these scenarios are sensitive in nature, where the Al’s decision, cor-
rect or not, can directly impact one’s social or economic status. A few examples include a bank
determining credit card limits, stores using facial recognition systems to detect shoplifters, and
hospitals attempting to identify which of their patients has a specific disorder. Unfortunately,
despite their supposedly unbiased approach to decision-making, there has been increasing evi-
dence that Al algorithms often fail to treat equally people of different genders, races, religions,
or other protected attributes. Whether this is due to the historical bias in one’s training data,
or otherwise, it is important, for both legal and policy reasons, that we make ethical use of data
and ensure that decisions are made fairly for everyone regardless of their protected attributes.

Despite the significant efforts in developing supervised learning algorithms to improve the
prediction accuracy, making reliable and fair decisions in the classification setting remains a
critical and challenging problem for two main reasons. Firstly, Al algorithms are often required
to make classifications on all new observations without a careful assessment of associated uncer-
tainty or ambiguity. This limitation highlights the need for a more flexible framework to handle
intrinsically difficult classification tasks where a definitive decision carries high stakes. Such a
framework should enable decision-makers to wait and gather additional information with greater
confidence before making a final decision. Secondly, modern machine learning models, such as
neural networks, are often highly complex, making it challenging, if not impossible, to explicitly
quantify the uncertainty associated with their outputs or to provide guarantees on the fairness
of the decisions. Therefore, developing methods that can ensure both risk control and fairness
is crucial for Al systems to be reliable and trustworthy.

This article develops a “fairness-adjusted selective inference” (FAST) framework to address the
critical issues of uncertainty assessment, error rate control and statistical parity in classification.

We provide an indecision option for observations which cannot be selected into any classes with



confidence. These observations will then be separately evaluated. This practice often aligns
with the policy objectives in many real world scenarios. For example, incorrectly classifying a
low-risk individual as a recidivist or rejecting a well-deserving candidate for the loan request is
much more expensive than turning the case over for a more careful review. A mis-classification
is an error, the probability of which must be controlled to be small as its consequence can be
severe. By contrast, the cost of an indecision is usually much less. For example, the ambiguity
can be mitigated by collecting additional contextual knowledge of the convicted individual or
requesting more information from the loan applicant. Under the selective inference (Benjamini
2010) framework, we only make definitive decisions on a selected subset of all individuals; the less
consequential indecision option is considered as a wasted opportunity rather than an error. A
natural error rate notion under this framework is the False Selection Rate (FSR), which is defined
as the expected fraction of erroneous classifications among the selected subset of individuals. The
goal is to develop decision rules that aim to control and equalize the FSR across protected groups,
while minimizing the total wasted opportunities.

A critical issue is that a classification rule that controls the overall FSR may have disparate
impacts on different protected groups. We illustrate the point using the COMPAS data set
(Angwin et al. 2016, Dieterich et al. 2016). The COMPAS algorithm has been widely used in
the US to help inform courts about a defendant’s recidivism likelihood, i.e., the likelihood of a
convicted criminal recommitting a crime, so any prediction errors could have significant impli-
cations. The left panel of Figure 1 shows the False Selection Proportions (FSP), i.e. the fraction
of individuals who did not recommit a crime among those who were classified as recidivists.
The classification rule was constructed via a Generalized Additive Model (GAM) ! (Hastie et al.
2009, James et al. 2023) to achieve the target FSR of 25%. We first split the COMPAS data into
distinct training and test sets. The GAM was fitted using the training data set, and subsequently

applied to the test set to predict whether a defendant was a recidivist.

! Although a GAM was utilized for illustration purposes, we emphasize that the same issue can arise regardless
of the specific machine learning algorithm employed.
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Figure 1: The selection of recidivists from a pool of criminal defendants (Broward County, Florida).
The target FSR is 25%. Left: the unadjusted approach. Right: the proposed FASI approach.

We can see that the green bar, which provides the overall FSP for all races, is close to the
target value. Moreover, the rule appears to be “fair” for all individuals, regardless of their
protected attributes, in the sense that the same threshold has been applied to the confidence
scores (i.e. estimated class probabilities) produced by the same GAM fit. However, the blue and
orange bars show that the FSPs for different racial groups differ significantly from 25%, which
is clearly not a desirable situation.

This article introduces a new notion of fairness that requires parity in FSR control across
various protected groups. This aligns with the social and policy goals in a range of decision-
making scenarios such as selecting recidivists or determining risky loan applicants, where the
burden of erroneous classifications should be shared equally among different genders and races.
However, the development of effective and fair FSR rules is challenging. First, controlling the
error rate associated with a classifier, such as one built around the GAM procedure, critically
depends on the accuracy of the scores. However, the assessment of the accuracy/uncertainty of
these scores largely remains unknown. Second, we wish to provide practitioners with theoretical
guarantees on the parity and validity for FSR control, regardless of the algorithm being used,
including complex black-box classifiers.

To address these issues, we develop a data-driven FASI algorithm specifically designed to
control the FSRs of protected groups below a user-specified level a. The right panel of Figure 1

illustrates the FSPs of FASI on the recidivism data. All individual FSPs are controlled at 25%



approximately. FASI works by converting the confidence scores from a black-box algorithm to an
R-value, which is intuitive, easy to compute, and comparable across different protected groups.
We then show that selecting all observations with R-value no greater than o will result in an
FSR of approximately a. Hence, we can directly use this R-value to assign new observations a
class label or, for observations with high R-values, assign them to the indecision class.

This paper makes several contributions. Firstly, we introduce a novel notion of fairness within
the selective inference framework, incorporating an indecision option. In high-consequence sit-
uations, it is sensible to exercise caution, by either withholding or separately evaluating such
cases until additional evidence is gathered. This reduces the risk of making definitive deci-
sions without sufficient support, thus promoting cautious and fair decisions in these complex
scenarios. Secondly, a data-driven FASI Algorithm is developed based on the utilization of the
R-value. This algorithm, which can be deployed with user-specified learning algorithms (e.g.
random forest, neural networks), is intuitively appealing and easy to interpret. Thirdly, rigorous
theoretical justifications are provided for the FASI algorithm. The theory on FSR control is
established with mild assumptions on data exchangeability, accommodating scores generated by
black-box algorithms. Finally, the empirical performance of FASI is investigated through exten-
sive experimentation using simulated and real-world data sets, demonstrating the effectiveness
and practical utility of the proposed approach.

The rest of the paper is structured as follows. In Section 2 we define the FSR and describe
the problem formulation. Section 3 introduces the R-value and FASI algorithm. The numerical
results for simulated and real data are presented in Sections 4 and 5, respectively. Section 6
concludes the main article with a discussion of related works and possible extensions. The
Online Supplementary Material provides additional technical details about the methodology,

proof of theorems, and supplementary numerical results.



2 Problem Formulation

Suppose we observe a data set {(X;, A4;,Y:) : i € D}, where D = [n] = {1,...,n} is an index
set, X; € RP is a p-dimensional vector of features, A; € A is an additional feature representing
the protected or sensitive attribute, and Y; is a class label taking values in C = {1,...,C}. The
goal is to predict the classes for m new individuals indexed by D' = {n + 1,...,n + m}, with
observed features {(X;, 4;) : j € D'*'}. Denote D! = {j € D'**" : A; = a} for a € A. The

predicted values for their class labels {Y; : j € D'} are denoted by {Y; : j € D'},

2.1 Background: predictive parity in classification

We focus on scenarios where an individual’s membership to a particular protected group is
known. Group-fairness approaches, which explicitly enforce fairness across groups, have been
widely applied across various disciplines, ranging from medicine to the criminal justice system.
To provide context for our fairness notion, we start with the widely used predictive parity or
sufficiency principle in classification, as discussed in Crisp (2003), Barocas et al. (2017) and
Chouldechova (2017). According to this principle, the probability of misclassifying an individual

to class ¢ should be equal across all protected groups:

P(Y #Y|Y = ¢, A = a) are the same for all a € A. (1)

We highlight three primary issues related to machine learning methods developed under
the sufficiency principle (Zeng et al. 2022, Pleiss et al. 2017, Zafar et al. 2017). First, the
calibration by group method (Barocas et al. 2017), a popular approach for ensuring fair outcomes
for subgroups, does not offer a theoretical guarantee on controlling the misclassification rate at
a user-specified level. This lack of a guarantee can be particularly problematic in high-stakes
decision-making situations. Second, current classification methods only focus on the accuracy

of individual classifications, neglecting the complexities that arise when multiple individuals



are classified simultaneously. This oversight regarding multiplicity can lead to severe inflation
of misclassification errors. Finally, concurrent state-of-the-art classifiers typically exhibit high
complexity and analytical intractability, making it difficult to quantify the uncertainties around
their predictions. Even when such theoretical analyses are feasible, they often involve strong
assumptions about the underlying model and the accuracy of its outputs, which may not hold
in practice. In response to these challenges, we propose a comprehensive approach comprising
a selective classification framework (Section 2.2), a modified error rate criterion (Section 2.3),
and a novel class of model-free algorithms with strong theoretical guarantees (Sections 3.1-3.2).

Together, these components provide a highly effective solution to the identified issues.

2.2 A selective inference framework for binary classification

This article focuses on binary classification problems. The extension to the general multi-class
setting is discussed briefly in Section 6.

Consider an application scenario for predicting mortgage default, where Y = 2 indicates
default and Y = 1 otherwise. A common practice is to produce confidence scores, denoted
S¢(z,a) for ¢ € C = {1,2}, which are generated from a user-specified classifier and risk assessment
software. We focus on scores corresponding to the estimated class probabilities of ¥ = ¢ given
the covariates (X, A) = (x,a). The scores satisfy S'(z,a) + S2(z,a) = 1. Suppose we need to
classify m individuals with confidence scores {5’; = S°(X;, A;) : ¢ € C; j € D'} into “high,”

“medium,” or “low” risk classes. It is natural to consider a class of rules in the form of

YV, = > e ISi>t) = LIS <1—t)+2-1(S] >1), forjeD (2)
ceC={1,2}

where I(+) is the indicator function, and the thresholds ¢, satisfy t. > 0.5 for ¢ € C.

Remark 1. The constraint t. > 0.5 provides two benefits. First, it enhances interpretability by

ensuring that a definitive class assignment occurs only when the confidence score exceeds 50%.



Second, it prevents overlapping selections: since S; +Sj2 = 1, it ensures unique class assignments,

effectively avoid overlapping selections.

The predicted label f/] takes three possible values in the action space A = {1,2,0}, indicating
that an individual has low (Y; = 1), high (¥; = 2), and medium (Y; = 0) risks of default,
respectively. The value 0, referred to as an “indecision” or “reject option” in classification [cf.
Herbei & Wegkamp 2006, Sun & Wei 2011, Lei 2014, Lee et al. 2021], is used to express “doubt,”
indicating insufficient confidence to make a definitive decision. For example, an individual with
)>j = 1 will be approved for a mortgage, an individual with }7] = 2 will be rejected, while
an individual with 1}} = (0 will receive a pending decision and be asked to provide additional

information before resubmitting the application.

Remark 2. We can interpret (2) as a selective inference procedure that assigns individuals
with extreme scores to high- or low-risk classes while returning an indecision for the remainder.
Notably, in this framework the state space C = {1, 2} differs from the action space A = {1,2,0},
contrasting with the standard classification setup which mandates C = A = {1,2}. This flexible
framework provides a useful interface for practitioners: assigning individuals to Class 1 offers
economic benefits by preventing the misallocation of resources to low-risk candidates, thereby
reducing study costs associated with unnecessary follow-up. Moreover, the selection for Class 2 is
essential for identifying high-risk cases that require further intervention. The selective inference
perspective can be employed to handle various types problems including multi-class classification

and outlier detection; further discussion is provided in Section 6.

2.3 False selection rate and the fairness issue

In practice, it is desirable to avoid erroneous selections, which often have negative social or
economic impacts. In the mortgage example, approving an individual who will truly default
(i.e., Y =1buwtY = 2) would increase the financial burden of the lender, while rejecting an

individual who will not default (i.e., ¥ = 2 but ¥ = 1) would lead to a loss of profit. In situations
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where m is large, controlling the inflation of selection errors is a crucial task for policy makers.
A practically useful notion is the false selection rate (FSR), which is defined as the expected
fraction of erroneous decisions among all definitive decisions. We use the notation FSR®', where
C' € C ={1,2} is the set of class labels that we are interested in selecting.

Consider the two-class classification problem with selection rule (2). Denote S = {j € D™ :
Y; # 0} the index set of the selected cases and |S| its cardinality. The FSR that combines the

false selections from both classes is given by

~

ZjeDtest Zc€{1,2} I(Y; =¢Y; #¢)

FSRU =
SR SV , (3)

where x V y = max{z,y}, and the expectation E in Equation (3) [and later on in (4)-(6)] is
taken over both the observed data {(X;, A;,Y;) : i € D} and test data {(X;, A;,Y;) : j € D'}
Let 8¢ = {j € D't . }A/] = ¢} denote the index set of the cases assigned to class ¢. The FSRs
evaluated for individual classes are defined as:

ZjeDtﬁst H<YA; =G Y} 7£ C)

FSR = E
|S¢| v 1

, ceC. (4)

Incorporating the option of indecision facilitates the development of a decision rule that can
control the FSRs at a user-specified level. However, attaining this objective is challenging within
the conventional classification framework, which requires definitive decisions for every individual.
As demonstrated in Meinshausen & Rice (2006) and Cai & Sun (2017), if the minimum condition
on the classification boundary is not satisfied, it becomes impossible to simultaneously control
both FSR' and FSR” at low levels.

The FSR is a general concept for selective inference that encompasses important special
cases such as the misclassification rate, the false discovery rate (FDR, Benjamini & Hochberg
1995), among others. When both the state space and the action space are set to {1, 2}, thereby

eliminating the possibility of indecision, then the FSR defined in (3) simplifies to the misclas-



sification rate L {Z jeptest (Y; # Yj)} . The connection between our FSR framework, one-class
classification, and the FDR is discussed in detail in Section C of the Appendix.
In practical scenarios, minimizing the number of indecisions is highly desirable. To quantify

this concept, we introduce the expected proportion of indecisions:
EPT = (1/m)E{ 32, cpeea I(Y; = 0)} = 1 — E(S])/m. (5)

Under the same FSR level, a smaller EPI corresponds to greater statistical power.

Next we turn to the important fairness issue in selective inference. A major concern is that
the rate of erroneous decisions might be unequally shared between the protected groups, as
illustrated in the COMPAS example. To address this issue, it is desirable to control the FSR for
each protected attribute in A. Therefore, we aim to find a selective classification rule obeying

the following constraint on group-wise FSRs:

~

ZjeDflﬁst I(Y; =c¢,Y; #¢)

FSR{Y = E -
{Zjebgest I(Y; = C)} V1

< ., forallaeA, (6)

where . is a user-specified tolerance level, ¢ € {1,2}. The fairness-adjusted error rate constraint
(6) equally bounds the fraction of erroneous decisions among protected groups. We aim to develop

a selective classification rule that solves the following constrained optimization problem:
minimize the EPI subject to FSR{? < a., for ¢ € {1,2} and a € A. (7)

Although our problem formulation (7) only sets upper bounds for group-wise FSR levels, min-
imizing the EPI enforces the exhaustion of allowable FSR levels for each group. This leads
to algorithms that closely align all group-wise FSR levels with the designated nominal level,

ensuring comparability of error rates across all protected groups.

Remark 3. Controlling group-wise FSRs (6) does not imply controlling the overall FSR (4),
which combines individuals from all sensitive groups. While we did not observe violations of the

overall FSR in our numerical experiments (see also Section H.2 in the Supplement), developing
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new methodologies and theories that equalize group-wise FSRs while controlling the overall FSR

is challenging, and we leave this for future research.

2.4 The construction of fair classifiers: issues and roadmap

We investigate the important issue of what makes a “fair” classifier. In most classification tasks,
the standard operation is to first construct a confidence score, and then secondly to turn this score
into a decision by setting a threshold. Consider selection rule (2). We present two approaches
for constructing confidence scores. The notation S(z,a) is used instead of S(x,a) to indicate
the ideal setting in which an oracle, possessing knowledge of the true data-generating model,
computes the scores analytically without estimation.

The two approaches, respectively referred to as the “full covariate classifier” (FCC) and

“reduced covariate classifier” (RCC), employs the following scores:

S]c',FCC(x7 a) — IED (}/; — C‘XJ e x’ AJ = G,) s (8)

S; ) = PLY; = dX; = a}, (9)

for ¢ € {1,2} and j € D***. Consider the high-risk class ¢ = 2. Then S?’Fcc(x, a) denotes the
(oracle) class probability of an individual belonging to class 2 based on all available covariates.
In contrast, S?’Rcc(x) is employed to estimate the same probability after removing the sensitive
attribute from the covariate set. However, as will be demonstrated, both the FCC and RCC
approaches may be inadequate for effectively addressing the fairness concern.

Consider the mortgage example where we simulate a data set that contains a sensitive at-
tribute “gender”. The goal is to select individuals into the high risk class with FSR. control
at 10%; the simulation setup is detailed in Section 4. We highlight here that the proportions
of individuals with label “2” are different across the protected groups: for the male group, the

proportion of individuals with label “2”, denoted as |y, is fixed at 50%, whereas for the female
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Figure 2: For FCC and RCC, the degree of unfairness increases as |3y and 7o p become more disparate.
FASI ensures that the group-wise FSRs are effectively controlled and approximately equalized.

group the proportion 7y varies from 15% to 85%.

We apply the FCC approach and plot the overall FSR and group-wise FSRs as functions
of myr on the left panel of Figure 2. We can see that FCC controls the overall FSR but not
the group-wise FSRs. Hence thresholding rules based on (8) are harmful in the sense that the
burden of erroneous decisions is not shared equally among the two gender groups. The RCC
approach can be harmful as well, as illustrated in the middle panel of Figure 2. While the
overall FSR is still controlled at 10%, the issue of unfairness is in fact aggravated rather than
mitigated, with widened gaps in the group-wise FSRs. In addition, the RCC approach has two
further drawbacks. Firstly, disregarding a sensitive attribute can result in significant power loss.
Secondly, if feature X is highly predictive of sensitive attribute A, then the RCC approach can
still lead to unfair decisions due to the issue of surrogate encoding (Kusner et al. 2017, Long &
Albert 2021). Concretely, in fairness research, surrogate encoding pertains to the circumstance
where the sensitive attribute A is absent from the list of predictors, but its information is encoded
or concealed within other predictors, causing A to still influence the outcome Y.

We emphasize that the patterns in Figure 2 are not specific to any particular classification
algorithm but indicate a systematic bias. In our simulation, where perfect scores are available,
the unfairness depicted in Figure 2 still persists. In contrast, our proposed FASI algorithm,
shown in the right panel of Figure 2, effectively controls the FSR and nearly equalizes the error

rates across all protected groups.
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3 Methodology

This section develops a fairness-adjusted selective inference (FASI) procedure for two-class clas-
sification with state space C = {1,2}. We focus on the error rate FSRI?} defined in (6), which
is more relevant for addressing fairness issues in high-stakes decision-making scenarios. The
methodologies for the more complex tasks of controlling FSR*?' and handling multinomial
classification are briefly discussed in Section 6 and Section G of the Supplement.

A major challenge in our methodological development is that many state-of-the-art machine
learning algorithms are complex and offer no performance guarantees on their outputs. This
limitation renders uncertainty quantification and error rate control challenging, if not intractable.
To address this issue, we develop a model-free framework that is applicable to any black-box

algorithm and relies solely on the exchangeability of the data points.

3.1 The R-value and FASI algorithm

We first introduce a significance index, called the R-value, for ranking individuals and then
discuss how the R-values can be employed for selective classification.

The R-value is computed via the FASI algorithm, which consists of three steps: training,
calibrating and thresholding. The observed data set {(X;, A;,Y;) : i € D} is randomly divided
into a training set and a calibration set: D = D" U D Further we let D = {i € D :
A; = a} for a € A. Let n, = |D| and m, = |Det|.

In the first step, we train score functions Sc(x,a), c € {1,2}, using data {(X;, 4;,Y;) : i €
Direinl  The scores, representing estimated class probabilities, can be generated from any user-
specified classifier satisfying S Yz, a) + 3'2(37, a) = 1. We make no assumptions on the accuracy
of these scores.

In the second step, we use the scores {S¢ = S¢(X;, 4;) : i € D U D'} to calculate

{ Xiepea H(gf > S¢,Y; # c) +1}/(na +1)
Q5 = S I(Ay = a) - LD hize
k ;4 (A = a) {Ziemf“ I(Se > S¢)}/mg

AL, (10)
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for k € D U D*st. The operation A indicates that Q¢ is set to 1 if it exceeds 1. As discussed
in Section 3.2, ()5 represents the estimated fraction of falsely selected cases among all cases
selected using the cutoff 5’,?; a lower value of (Jf indicates greater confidence in classifying the
kth individual to class ¢. To enhance the algorithm’s stability, one may modify (10) to include

both D and D!t in the denominator:

e peat 1 S52§C7K & 1 Ng 1
QZ:ZJKAk:a) {ZZEDa ( k 7é )+ }/( + )

: — Al (11)
oy { Xicpgatiprest L(SF > S5) + 1}/ (ng +mg +1)

The subsequent steps of the algorithm are identical whether (10) or (11) is used, so we denote

both by ()5 and provide a unified discussion.

Remark 4. The adjustment in Equation (11) is useful when m, is small; numerical evidence in
Section H.1 of the Appendix demonstrates the benefits of a larger sample size (i.e. m, + n,) in
calibrating Q%. Although (11) offers numerical advantages, it introduces additional theoretical

complexity; accordingly, we develop separate theories for (10) and (11) in Theorem 1 below.

In practical scenarios, higher-scoring individuals may not consistently correspond to smaller

Q% values. To eliminate this inconsistency, we propose the following monotonicity adjustment:

G-Yld=a)  min Q. jeD™ (12)

] {keDgrlUDLest: 55 <S¢
The R-value, with more explanations provided in Remark 5 below, is defined as

RS = max {I(S5 < 0.5), Q5}, for c € {1,2} and j € D', (13)

In the third step, we compare the R-values against the designated level a:
;= > ¢ I(R{<a), jeD (14)

Remark 5. In binary classification, the jth individual is associated with two R-values, le- and

R?. Definition (13) provides a preliminary adjustment to ensure that only one R-value is used for

14



Algorithm 1 The FASI Algorithm

Input: {(X;,A;,Y;) :i € D}, {(X;, A;) : j € D*'}, FSR levels {a, : ¢ = 1,2}.
Output: a selective classification rule {Y; € {0,1,2} : j € D'},

Randomly split D into D"%" and D,

Train a machine learning model on {(X;, A;,Y;) : ¢ € D"},

Predict confidence scores S¢ for i € D U Dlest,

Compute the R-values { RS : ¢ = 1,2;j € D'} according to Equations (10) to (13).
Make decisions by comparing the R-values with «, using (14), for all j € D',

decision-making. Specifically, if 5']‘3 < 0.5, we set R = 1. Since 0 < a. < 1 is a small constant,
this adjustment guarantees that any R} = 1 is effectively discarded, meaning the jth individual
is never assigned to class ¢ when SJC < 0.5. Moreover, because Sjl + sz = 1, one of the two
R-values in {RS : ¢ = 1,2} must equal 1, thereby preventing overlapping selections. Finally, if

A~

both R-values exceed a., we output an indecision, Y; = 0.

The FASI algorithm, summarized in Algorithm 1, offers several attractive properties. First,
the R-value serves as an estimate of a proportion, making it easily interpretable and comparable
across groups. Second, the FSR analysis based on R-values is straightforward: practitioners
can directly make decisions by comparing the R-values with a user-specified FSR level. Third,
fairness notion is integrated into the R-value. As demonstrated in Lemma 1 in Section D.1 of
the Supplement, the decision rule in (14) involves finding the smallest group-wise threshold for
SYJC that satisfies FSRL{ZC} < a,, thereby approximately aligning the group-wise FSR levels with
the nominal level. Finally, FASI is model-free, providing a robust framework for FSR control, as

discussed in the next subsection.

Remark 6. There are two potential strategies to achieve fairness across protected groups. The
first strategy, as adopted in the FASI algorithm, involves modifying the current confidence scores
to generate new scores (R-values) that are directly comparable across groups. The second
strategy, on the other hand, involves retaining the original confidence scores and implement-
ing group-adjusted thresholds. As demonstrated in Lemma 1 in Appendix D.1, this strategy is

mathematically equivalent to the first. However, in practical applications, this approach may be
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seen as confusing or even controversial because it applies different thresholds to various protected
groups. Such disparate treatment is difficult to interpret and could be perceived as introducing
an alternative form of discrimination. In contrast, FASI employs a universal threshold for all
individuals, with the R-value serving as a statistical wrapper that distills complex factors — such

as error rate control and fairness — into a single, easy-to-use index.

3.2 Why FASI works?

We start by explaining why the R-value provides a sensible estimate of the FSR. To simplify
the discussion, we focus on a specific group A = a and consider a thresholding rule of the form

A~

{I(S¢ > t) : j € Di*'}. Consider the false selection proportion (FSP) process:

2jepgest I (Sf 2tY; # C)
{Cjempn IS5 2 )} v

with FSP(¢) = 0 if no individual is selected. The FSP cannot be computed from data because

FSPl¢(t) = (15)

we do not observe the true states {Y; : j € D'}, The effectiveness of the FASI algorithm relies

on the following exchangeability condition:
Assumption 1. The data points {(X;,Y;) : i € D¢ U DI} are exchangeable for all a € A.

As FASI uses the same fitted model to compute the scores (Assumption 1), the confidence
scores are exchangeable. Consequently, the unobserved process Zjebgest I (SJC >t,Y; # c) is
strongly resembled by its “mirror process” in the calibration data Ziepgal I <§f >t,Y;, # c).
Constructing a mirror process and exploiting its symmetry for inference is a powerful idea that
has been explored in recent works (cf. Barber & Candes 2015, Weinstein et al. 2017, Lei &
Fithian 2018, Leung & Sun 2022, Du et al. 2023). To account for the unequal sample sizes

between D¢ and D*!, we derive the mirror FSP process as follows:

} _ { ZieDgal ]I(Szc >t,Y; # C) + 1}/(”:1 + 1)

FSP i
{3 jepen 1(S¢ > 1)} /ma

(t)

(16)
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This provides insight into why (10) (and similarly (11)) has been employed in constructing the
R-value. When computing the R-values, (16) is only evaluated at values in {S§ : j € D'},

hence the denominator is always greater or equal to 1.

Remark 7. When inspecting the numerator in (16), we observe that a “+1” has been included
in > jepeal ]I(S’]c >t,Y; # c) and n,. This technical adjustment has only a minor impact on the
empirical performance of FASI but guarantees that (16) corresponds to a martingale, which is

crucial for proving the theory.

The FSP process (15) and its mirror process (16) together provide an intuitive interpretation
of the R-value. Roughly speaking, the R-value represents the smallest estimated FSP at which
the 7" individual is just selected. In other words, if we set the threshold at R = r and select all
individuals with R-values less than or equal to r into class ¢, then we expect that, for every group
a € A, approximately 100r% of the selections will be incorrect decisions. The fairness notion is
inherently integrated into the R-value, enabling the calibration of a universal threshold to align
all group-wise FSRs with the nominal level. Moreover, our interpretation resembles the g-value
(Storey 2003) in FDR analysis; further details are provided in Section C of the Supplement. We
emphasize that while Storey’s g-value relies on the empirical distribution of p-values, our R-value

is derived from calibration data through a carefully designed mirror process.

3.3 Theory on FSR control

We now present a theorem establishing the validity of FASI for FSR control. Our theory differs
from existing work in that we make no assumptions about the accuracy of S'f Instead, the
accuracy of the scores influences only the power of FASI, leaving its validity (for FSR control)
unaffected. Practical guidelines on constructing more accurate confidence scores (and, hence,

effective R-values) are provided in Section B.4.

test l test l ..
Theorem 1. Define 7., = E (pcezu’ﬁ pian’ua”>, where p.>on and pioo are the empirical propor-
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tions of individuals in group a that do not belong to class ¢ in the test and calibration data,

respectively. Then under Assumption 1, for all a € A, we have:

(a). The FASI algorithm with R-value defined via (10), (12) and (13) satisfies FSR\Y < 7, q0v..

(b). The stable version of the FASI algorithm with R-value defined via (11) — (13) satisfies

FSRI* < v, a0 + %]E IRES(7¢) — 1], (17)

where TS is a stopping time defined in Appendixz D.2,

~

et WY =0, Y # ¢
FSR{M = E Ziepp M5 =05 7 ) . and (18)

ZjeDfl@St H(YJ = C) +1

i CaHS’z{:Zﬂ;Y’i:C i test]ISQZTg,Y' C
RES(TS) _ ZZGDQ l A( ) ) Z]GDa A( j J 7é ) ' (19)
Zjep(tlest H(S]C 2 Tg’ Y] — C) + 1 Ziepgal I[(SZC 2 Tg’ Y] # C) + 1

Assumption 1 on exchangeability implies that +., is typically close to 1, allowing nearly ex-
act control, as confirmed by our numerical studies (Section H.3 of the Supplement). Moreover,
Assumption 1 implies that both factors in the product on the right-hand side of (19) are stochas-
tically close to 1. Specifically, let 7* € (0,1) be a constant. If 7¢ “* 7* one can show that
lim p,, m,)—oo E [Res(75) — 1| = 0. Hence, (17) indicates that the stable version of FASI controls
the FSR at o+ o(1). Appendix D.3 of the Supplement provides sufficient conditions for strong

convergence of 7¢.

Remark 8. In the modified FSR definition (18), the “4+1” adjustment is utilized. A similar
modification was employed in Theorem 1 of Barber & Candeés (2015), but for different reasons.
The difference between FSR({ZC}’* and FSR;{LC} is usually negligible. Moreover, in Section 77, we
present a corollary demonstrating that a conservative version of the R-value guarantees FSR
control below «, eliminating 7., from the bound. However, the conservative version tends to
result in a higher proportion of indecisions (or decreased power). As a result, we recommend
the R-value (13) presented in Section 3.1, which is more powerful while providing almost exact

control in practical situations.
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Three major challenges in proving Theorem 1 are (i) handling the dependence between the
scores S¢ (since the same training data were used to compute (16)), and (i) evaluating the FSR
without any knowledge about the quality of the scores. Inspired by elegant ideas in the FDR
literature (Storey et al. 2004, Barber & Candes 2015), we have carefully designed the R-values
so that the corresponding FSP process (16) is stochastically dominated by a supermartingale.
We then apply the optional stopping theorem and leverage the exchangeability assumption to
establish an upper bound for the FSR. We stress that, in Theorem 1, part (a) guarantees validity
in finite samples, and both parts (a) and (b) do not rely on any assumptions regarding the

underlying models or the quality of the scores.

3.4 Connections to existing work

This section explores the connections and distinctions between FASI and existing methods de-
veloped under the sufficiency principle in fairness research. Additionally, we provide insights
about recent developments in conformal inference relevant to FASI.

Our formulation in (6) is closely related to the sufficiency principle (1) in the fairness litera-
ture, but it overcomes several of its limitations. First, (6) operates within a selective classification
framework by offering an indecision option for cases requiring further review, thereby enabling
effective error rate control at user-specified levels. Second, we define the FSR notion to aggregate
decision errors over m new individuals, which addresses the sufficiency principle’s limitation of
only pertaining to the error rate of an individual decision. Lastly, many algorithms developed
under the sufficiency principle are complex and computationally intensive, lacking finite sample
guarantees when applied to outputs from black-box models. In contrast, the FASI algorithm ef-
fectively controls the FSR in finite samples without relying on assumptions about the underlying
model, classification algorithm, or score accuracy. A detailed comparison with related works,
including Zeng et al. (2022) and Lee et al. (2021), is provided in Section F of the Supplement.

The R-value has a compelling interpretation under the conformal inference framework (Vovk

19



et al. 2005, Lei & Wasserman 2014). In Section C of the Supplement, we show that a variation
of our R-value corresponds to the Benjamini-Hochberg (BH) adjusted g-value of the conformal
p-values (Mary & Roquain 2022, Bates et al. 2023) under the one-class classification setting
(Moya & Hush 1996, Khan & Madden 2009, Kemmler et al. 2013). The connection to conformal
inference and the BH method provides valuable insights into why the FASI algorithm is model-
free and offers effective FSR control in finite samples, as claimed in Theorem 1.

The theory presented in Bates et al. (2023) encounters a complication similar to ours, as
the conformal p-values are dependent. To address this, Bates et al. (2023) first shows that the
conformal p-values satisfy the condition of positive regression dependence on a subset (PRDS)
and then applies the theory in Benjamini & Yekutieli (2001) to establish the validity of FDR
control. While we conjecture that the PRDS approach may be relevant, its extension to our
specific context is non-trivial because our R-values do not explicitly utilize conformal p-values
under the binary classification setup. Therefore, our martingale-based theory appears to be a
suitable and equally effective alternative. Moreover, incorporating conformal p-values—which
rely on one-class classifiers—directly into our binary classification problem would entail discard-
ing labeled outliers and consequently lead to information loss; this issue has been explored in a
recent study by Liang et al. (2024).

Our mirror process leverages a calibration set containing data from both classes, unlike the
counting knockoff approach (e.g., Weinstein et al. 2017, Bates et al. 2023), which relies solely
on null training data (see Section C of the Supplement for further discussion). Using data from
both classes eliminates the need for Storey’s adjustment, which is required by both the counting
knockoff and conformal BH methods (Bates et al. 2023, Jin & Candes 2023) to mitigate the
conservativeness of the BH procedure. Additionally, our method addresses fairness in FSR

control — a topic that the aforementioned conformal methods have not explored.
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3.5 Theoretical R-value and optimality theory

We briefly discuss the theoretical R-value and its optimality theory, which extends the work of
Sun & Cai (2007) and Cai et al. (2019) from multiple testing to selective binary classification.
Details are deferred to Section B of the Supplement due to space limitations. Despite being
developed under an idealized setup, the theory offers practical insights for training score functions
to construct more powerful R-values that aim to minimize the number of indecisions while
controlling the FSR rates for all sensitive groups. We emphasize two key messages.

First, the choice of an optimal score function indicates that, during the training stage, we
should utilize all features, including the sensitive attribute A, to best capture individual-level
information. Scores trained without the sensitive attribute are suboptimal. Fairness adjustments
should not be made during the training stage but rather in the calibration stage, where the fully
informative scores can be converted into R-values to adjust the disparity in error rates across
groups. This strategy shares the same spirit as the selection-by-prediction or learn-then-test
framework advocated by Jin & Candes (2023) and Angelopoulos et al. (2025).

Second, the optimal selection rule equalizes group-wise error rates. To minimize the EPI, the
pre-specified marginal FSR (mFSR, defined in the Appendix, Equation B.7) must be exhausted
in every group, making the mFSRs equal to the nominal level. In other words, the constrained
optimization formulation (6) leads to asymptotic equality of error rates. Our numerical studies
support this claim, although a complete analysis is hindered by the dependence among scores,

which we leave for future research.

4 Simulations

This section presents two simulations under the binary classification setup. The objective is
to compare the performance of FASI against the Full Covariate Classifier (FCC). We did not

include the Restricted Covariate Classifier (RCC) in these simulations, as RCC has consistently

21



demonstrated larger deviations from the target group-wise FSR levels. We demonstrate that
both the oracle and data-driven versions of FASI can control the group-wise FSRs, while RCC
fails to do so. The oracle versions of FASI and FCC use the exact class probabilities, defined in
Equation 8, while the data-driven procedures employ the softmax scores via the GAM method
(Hastie et al. 2009, James et al. 2023, Chen & Guestrin 2016).

In all simulations, we set |Dr | = 1,500, |D!| = 1,000 and |D's!| = 1,000. Gender is our
protected attribute taking two values A = F' (females) and A = M (males). The feature vectors

X € R? are simulated according to the following model:

F(-) = ma{mym P (¢) + o Fone ()} + mpi{myp Frp(c) + mopfor(0) } (20)

where 7, = P(A = a), 7o = P(Y = ¢|A = a) and F,, is the conditional distribution of X
given Y = cand A = a. Let mpyy = 0.5, and 7p = 1 — mp; = 0.5. The Supplement (Section
H.2) includes a setup with markedly imbalanced group sizes (e.g., mps > mp). Although only
the GAM method is employed in our simulation, we report that our findings remain consistent
regardless of the specific learning algorithms utilized. For a comparison of different machine
learning algorithms, please refer to Section H.4 of the Supplement. We consider two scenarios.

In the first scenario, the conditional distributions of X given class Y are assumed to be

multivariate normal and are identical for males and females:

Fl,M = FI,F = N(Ml; 2- 13)7 Foy = Fop = N(IJ2>2 : 13)»

where I3 is a 3 x 3 identity matrix, u; = (0,1,6)" and po = (2,3,7)". The only difference
between the group-wise distributions lies in the conditional proportions: we fix mo = P(Y =
2|A = M) = 0.5, while varying myp = P(Y = 2|A = F) from 0.15 to 0.85. We shall see that in
the asymmetric situation (i.e., when 7y is very large or small), the unadjusted FCC rule leads

to unfair policies (i.e. we observe disparate FSRs across the male and female groups).

We simulate 1,000 data sets and apply both the FCC and FASI methods at an FSR level
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Figure 3: Simulation 1. Top row: the oracle procedure. Bottom row: the data-driven procedure using
GAM. Left and middle columns: FSR! and FSRZ levels for both females and males. Right column: the
EPI levels.

of 0.1 to these simulated data sets. The FASI method is implemented with R-values defined
in (11)—(13). For the FCC method, the protected attributes are ignored when computing the
fractions in (11), and these fractions are denoted as Q?FCC. Then, the QE’FCC values are adjusted

c,FCC
Rj

according to (13) to obtain the R-values, denoted as . The corresponding selection rule is

}“/jFCC — Z c- ]I(R;,FCC < 0_1)’ je plest
ce{1,2}

The FSR levels are computed by averaging the respective false discovery proportions (FSPs)
from 1,000 replications. The simulation results are summarized in Figure 3. The first and second
rows respectively correspond to the oracle and data-driven versions of each method. The first
two columns respectively plot the group-wise F'SRs for class 1 and class 2 as functions of 5.
The final column plots the EPI (5), obtained by averaging the results from 1,000 replications.

The following patterns can be observed.

e F'CC fails to control the group-wise F'SRs. As 7y moves away from myp; = 0.5, the gap

between the FSR control for Females and Males dramatically widens due to the asymmetry
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Figure 4: Simulation 2. Comparable setup to Simulation 1 except that the female and male distribu-
tions now differ from each other.

in the proportions of the signals (true class 2 observations) in the male and female groups.

Both the oracle and data-driven FASI procedures consistently control the FDR at the
nominal level. However, when 7y is high, the number of selections decreases, resulting
in a reduced total number of selections from both groups. Consequently, both methods
exhibit increased conservativeness. This pattern can be attributed to the conservative
nature of the R-value, which includes a “41”7 adjustment and functions as an estimate of
the true false selection proportion: the level of conservativeness becomes more pronounced

as the proportion 7y become close to either 0 or 1.

Both oracle and data-driven FASI algorithms are able to roughly equalize the group-wise
FSRs between the Female and Male groups. The data-driven FASI is able to closely mirror

the behavior of the oracle method.

The parity in FSR control is achieved at the price of slightly higher EPI levels.

Our second simulation considers the setting where F,); # F.r. Denoting the mean for

class ¢ and protected attribute a as .., the data is generated from F., = N (ttcq,2 - I3), with
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Figure 5: 90% quantiles of the FSPs. Red region: female group; Blue region: male group.

components g1 = (0,1,6)", porr = (2,3,7)", pir = (1,2,7)" and por = (3,4,8)". In all
other respects Simulations 1 and 2 are identical. The results for the second simulation scenario
are provided in Figure 4. We notice very similar patterns to our first simulation setup. FASI
controls the group-wise FSRs for all values of 7y while the FCC fails to do so. The data-driven
FASI closely emulates the oracle procedure, for both the FSR and EPI levels.

Finally, we examine the variability of the false discovery proportions (FSP), which can fluc-
tuate across replications. Specifically, the FSR is derived as the average of the FSPs. While
our theory ensures that the FSR can be controlled under the nominal level «, it is important to
note that the FSP may deviate significantly from «. To investigate this variability, we focus on
the same experimental setting in Simulation 1 used to generate Figure 3, and present the 90%
quantiles of the group-wise FSPs. The summarized results are depicted in Figure 5.

The group-wise FSRs, represented by solid blue and dot-dashed red lines, are effectively
controlled at the desired 10% level. The quantiles are visually depicted by blue/red regions,
corresponding to the male/female groups, respectively. For the male group, where sy remains
constant, the 90% quantiles range between 5% and 15%. In contrast, the FSP variability for the
female group is more pronounced, with greater variability when 7y is larger, as few selections

are made from the female group.
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5 Real Data Examples

This section demonstrates the application of FASI on two real data sets. Sections 5.1 and 5.2
respectively analyze the COMPAS data (Angwin et al. 2016) and US census data (Dua & Graff
2017). For the COMPAS and census data, we have employed GAM and Adaboost models,
respectively, to construct confidence scores. It is important to note that users have the flexibility
to choose the best model for their specific application by utilizing their own training data. To
facilitate the implementation of FASI with user-specified models, the R package fasi has been

developed and is readily available on CRAN.

5.1 COMPAS data analysis

In 2016, ProPublica’s investigative journalists curated a data set of 6,172 individuals, where 3,175
were Black and the remaining 2,997 belonged to other racial categories, who had been arrested
in Broward County, Florida. These racial categories, Black and Other, serve as our protected
attributes in this study. Within the data set, the “Black” group consisted of 1,773 individuals
who were identified as having recidivated within the 2-year time frame considered in the study,
while the “Other” group consisted of 1,217 individuals who also recidivated during this period.
This 2-year window was chosen as a proxy for the true label of identifying recidivists.

All individuals were assigned a risk score by the COMPAS algorithm (a whole number between
1 and 10) developed by NorthPointe Inc. This score was used to inform the judge of each person’s
risk of recidivating during their bail hearing. The data set contains demographic information
about each person including their race, age, number of previous offenses, sex, number of prior
offenses, and their assigned COMPAS risk score.

In this analysis, our objective is to utilize FASI to address potential disparities in FSRs
among different racial groups. The literature has extensively examined various fairness notions,

such as disparate treatment (Zafar et al. 2017), as well as studies specifically related to the
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Figure 6: COMPAS data analysis for predicting recidivists. Left and Middle: False Selection Rate
minus the desired control level for varying levels of a for the FCC and FASI method respectively.
Right: The EPI for both the FCC and FASI method.

COMPAS data set (Angwin et al. 2016, Dieterich et al. 2016). While our approach is highly
relevant and sensible in this context where high-stake consequences are involved, it is crucial
to carefully evaluate and scrutinize its implementation, bearing in mind the societal trade-offs
associated with different definitions of fairness.

We performed 100 random splits of the data set, where for each protected group and class
label Y (our proxy for recidivism), 90% of the data was assigned to D and the remaining 10%
to D!, Furthermore, we evenly split D into D" and D°*. To assess the performance, we
present the results across a range of o values from 0.15 to 0.30. The first two columns in Figure 6
illustrate the difference between the true and target FSRs for the FCC and FASI algorithms,
respectively. The last column of the figure plots the EPI levels.

While the FCC approach effectively controls the overall FSR, it falls short in controlling
the FSRs across different racial groups. In the left panel of Figure 6, we can observe that the
race-wise FSRs deviate substantially from the nominal level, and the FSR levels for the Black
group are significantly lower compared to those of the Other group. This discrepancy persists
consistently across all values of a. In contrast, the middle panel of Figure 6 demonstrates that
by employing the FASI algorithm, the race-wise FSR levels are effectively controlled below the
nominal level and are approximately equalized across the sensitive groups. Moreover, the right

panel illustrates that FASI achieves a nearly identical EPI level as the FCC approach.
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Figure 7: Census income prediction. Class 1 (top row) comprises individuals earning less than $50,000
per year, while Class 2 (bottom row) includes individuals earning more than $50,000 per year. Left and
Middle: False Selection Rate minus varying levels of a. Right: The EPI levels.

5.2 1994 census income data analysis

The US census is a primary source of information for generating data concerning the American
population. Consequently, the data they collect plays a direct role in informing future policy
decisions, such as allocating resources for programs that offer economic assistance to vulnerable
populations. These resources encompass necessities such as food, healthcare, job training, hous-
ing, and other forms of economic aid, which rely on accurate estimates of income levels within
the population. The potential consequences of making unfair decisions when predicting income
levels can be significant, as these predictions contribute to determining how hundreds of billions
of dollars in federal funding will be allocated over the next decade. In this case study, we utilize
the 1994 US Census Data set from the UCI Machine Learning Repository to predict whether an
individual earns above or below $50,000 per year, with Class 1 representing individuals earning
less than $50,000 and Class 2 representing those earning more than $50,000. To avoid overlapping
selections, we utilize the two-stage procedure described in Section G of the Supplement.

The data set in this study comprises 32,561 observations on 14 variables, predominantly
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demographic factors such as education level, age, and hours worked per week, among others.
The protected attributes under consideration are Female and Male. Specifically, the Female
group consists of a total of 10,771 observations, with 1,179 individuals earning over $50,000 per
year. Similarly, the Male attribute encompasses the remaining 21,790 observations, with 6,662
individuals earning over $50,000 per year.

We applied the FCC and FASI algorithms at different FSR levels, ranging from 0.05% to
10%. We performed 100 random splits of the dataset, where for each gender and class label,
70% of the data was randomly assigned to D, and the remaining 30% was assigned to D't
Furthermore, D was evenly divided into D%" and D, The left and middle panels of Figure 7
respectively show the FSR levels for both the FCC and FASI.

From the left column, we can observe that the group-wise FSR levels of FCC consistently
deviate from the nominal level «, resulting in unfair decisions for the sensitive groups. This
pattern is observed in both Class 1 and Class 2, although in opposite directions. The disparity
in group-wise FSR levels becomes more pronounced as « increases. In contrast, the middle
column demonstrates that for Class 1, the group-wise FSR levels of FASI remain close to «. For
Class 2, the group-wise FSR levels of FASI exhibit conservativeness but are roughly equalized
across the two sensitive groups. The conservativeness can be attributed to the R-value, which
provides a conservative estimate of the true FSP. Furthermore, the right column highlights that
FASI effectively achieves approximate parity, ensuring that the burden is roughly equally shared

across the two genders, with only a slight increase in the EPI level.

6 Discussions and Extensions

This section concludes the article by discussing additional fairness notions and extensions of the
FSR concept, highlighting limitations in existing research and suggesting future directions.

Fairness in machine learning presents a complex challenge. Multiple studies focus on address-
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ing representation or sampling bias, which arises when data are collected in a non-representative
fashion (Mehrabi et al. 2021). By contrast, algorithmic bias emerges when the model itself in-
troduces bias beyond the inherent biases in the input data. This article addresses the issue of
algorithmic bias, with the objective of ensuring an equitable distribution of erroneous decisions
across different groups. FASI is model-free, allowing for deployment with any user-specified
model. It achieves fairness by aligning group-wise FSRs to the same designated level, requiring
only mild conditions on data exchangeability.

In addition to the sufficiency principle, the separation principle (Barocas et al. 2017) has
been widely used. It requires that P(Y # Y|Y = ¢, A = a) are the same for all @ € A. This
principle differs from the sufficiency principle (1), whereby Y and Y interchange positions in
the conditional probability expression. A third notion on fairness, in the context of prediction
intervals, has been considered in Romano, Barber, Sabatti & Candes (2020). Rather than
conditioning on either Y or }A/, this fairness criterion is concerned with the joint probabilities
of (Y,Y), requiring that the misclassification rates are equalized across all protected groups
P(Y # }A/|A = a) are the same for all @ € A. The fourth notion, known as demographic parity
(Jiang et al. 2020) requires that P(Y # ¢|A = a) are the same for all a € A. Other popular
fairness notions include equalized odds (Hardt et al. 2016, Romano, Bates & Candes 2020) and
equalized risks (Corbett-Davies et al. 2023).

Zafar et al. (2017) proposed the use of cost-sensitive classifiers with group-specific costs
(Menon & Williamson 2018) to address a fairness issue comparable to our work. However, their
technique forces a decision to be made on all individuals, whereas our approach is a selective
inference procedure that only makes confident judgments on a subset of subjects. Given human
intervention, FASI can achieve higher accuracy than cost-sensitive classifiers, as practitioners
are aware of the undecided cases that merit additional scrutiny, ultimately reducing erroneous
decisions with potentially extensive societal costs.

Our fairness criterion, as described in Equation 6, constitutes a group fairness notion that
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presupposes full knowledge of the protected groups. This approach is widely adopted in the
literature and finds applications across diverse domains, including medicine and the criminal
justice system (Manrai et al. 2016, Angwin et al. 2016), often facilitated by specialized software
tools (Bellamy et al. 2018, Saleiro et al. 2018). However, situations may arise where the protected
groups lack clear delineation, such as when the sensitive attribute pertains to age or income.
New ideas, such as individual fairness and counterfactual fairness, provide useful alternatives.
Specifically, individual fairness aims to ensure that comparable individuals receive commensurate
outcomes (Mukherjee et al. 2020), while counterfactual fairness posits that fairness should not be
exclusively contingent on observable attributes but should also consider potential counterfactual
factors. Given the substantial complexities associated with individual and counterfactual fairness
algorithms, we leave exploration of this promising avenue in future research.

A highly contentious matter is that disparate fairness criteria often yield distinct algorithms
and different decisions in practice. For instance, the sufficiency and separation principles can
be incompatible with one another (Kleinberg et al. 2017, Friedler et al. 2021), and classification
parity or group calibration can potentially harm the very groups that these algorithms are
intended to protect (Corbett-Davies et al. 2023). Despite growing awareness of fairness concerns
in decision-making, a consensus is yet to be reached on the best approaches for achieving fairness
in machine learning. While we do not claim that FASI is ubiquitously superior to competing
approaches, adjusting group-wise FSRs appears to be an effective and suitable fairness criterion
for high-stake applications, overcoming several limitations of the widely used sufficiency principle.
Much research is still needed for understanding the trade-offs and applicability of different fairness
notions across diverse contexts and applications.

The selective inference framework and FSR concepts can be extended beyond the binary
classification setting. Denote the collection of all class labels by C = {1,...,C}. The case
with C' = 1 corresponds to the one-class classification problem, as recently explored in Guan

& Tibshirani (2022) and Bates et al. (2023), which can be encompassed within our general
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framework. For situations with C' > 2, denote the set of classes to be selected by C’, and assume
C' € C. With indecisions being allowed, the action space is given by A = {0,C’}. Denote the
selection rule {Y; : i € D'***} € A™. Then the FSR with respect to subset C' is defined as the

expected fraction of erroneous selections among all selections:

Zjethest H(?j G CI? }A/‘; # Y])

FSR® = E N :
{Ziepmt I(Y; € C’)} V1

The group-wise FSRs taking into account the protected attribute A can be defined analogously
to (6) by restricting the selections to specific groups. The EPI definition remains the same. The
extension of the R-value in this setup is briefly discussed in Section G of the Supplement, with

some remaining issues left for future research.
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Online Supplementary Material for “A Burden Shared is a Burden

Halved: A Fairness-Adjusted Approach to Classification”

This supplement provides a comparison of various R-value notions (Section A), additional
technical details of the methodology (Sections B-C), technical proofs (Sections D-E), discussion

of related fairness algorithms (Section F), and supplementary numerical results (Section H).

A Variants of the (empirical) R-value

The R-value (13) has been proposed as the basic operational unit of our FASI algorithm; we
discusses its practical and theoretical variants in this section and Section B.

First, while including both D and D'**! in the denominator of (11) enhances the algorithm’s
stability, the resulting FASI algorithm can only control a modified version of the FSR [cf. (18)]
asymptotically. The simpler version, which only includes D' in the denominator of (10), is
particularly relevant for readers who prefer a validity theory in finite samples.

Secondly, one consideration, pertaining to the multiplicative factor 7., = E <piezzz / piaéqfl» in
the theorem, is that FASI fails to provide precise FSR, control due to the possible fluctuations in
Vea- While this issue is also minor (as under Assumption 1, this constant is approximately 1 and
numerically negligible, cf. Section H.3 of this Supplement), we present a conservative version of
the R-value next. We demonstrate that this multiplicative factor ~,, can be eliminated from the
theory when the conservative version is employed. It is important to note that the conservative
R-value is primarily of theoretical interest, as it leads to a substantial loss in power in many
practical scenarios.

We summarize related results in the subsequent corollary. The proof of the corollary follows

directly from the proof of Theorem 1 and is therefore omitted.



Corollary 1. Suppose we apply the FASI algorithm with the conservative R-value:

. cal 1 -
RY™ = max ¢ I(S§ <0.5), % ; (A.1)
an7ull + 1

for 7 € D't where Q; is defined via (10) and (12), n& = 3", pea I(4; = a) and nche

a a,null =

> iepea L(Ai = a,Y; # ¢). Further define nif™ = 3. piew 1(Aj = a) and nleste — > jeprest L(Aj =

a,null

a,Y; # c). Then we have, for all a € A, FSRYY < E (n/% /ntet) a < a.

a,null

test,c

amutt/ 16>, in Corollary 1 is referred to as the null proportion in multiple testing,

The ratio n
also appears in the classical Benjamini-Hochberg (BH) procedure for FDR control. In Section
C.3 of this supplement, we will elaborate the connection between the FASI algorithm and the

BH algorithm implemented with conformal p-values.

It is expected that the FASI algorithm with conservative R-values (A.1) can be enhanced

test

st /it into the analysis. This approach has been

by incorporating the unknown ratio n
successfully adopted in various works, such as Benjamini & Hochberg (2000) and Storey (2002),
to boost the power of the conservative BH algorithm in the context of FDR control. The FASI

algorithm with R-value defined in (13) can be roughly regarded as such an approach. Specifically,

test,c
a,null

/ntest is initially estimated as (n““¢, +1)/(n< +1). This estimated

the unknown ratio n a,null

ratio is then incorporated into the FASI algorithm by utilizing the conservative version of FASI
at the modified level of (n + 1)/(n%*, 4+ 1)a. This practice leads to improved power at the

a,nul

expense of the additional factor 7., in Theorem 1.

B Theoretical R-value and Optimality Theory

In this section, we introduce the theoretical R-value and derive the optimal score function under
a simplified setup. Our theory provides practical insights for practitioners on how to train score

functions to construct informative R-values.



B.1 The mixture model under an oracle setting

Our subsequent discussions are purely theoretical, where we assume an oracle with access to
all distributional information and make several simplifying assumptions. Our primary goal is
to develop a theoretical version of the R-value and an optimality theory for FSR control. This
theoretical framework serves as a foundation for our practical algorithm and provides valuable
insights into the properties of the R-value.

Denote 7, = P(A; = a) and 7., = P(Y; = c|[A; = a). We assume that (Xj;, A;) are

independent observations obeying the following random mixture model:

Pz, Aj) = I(A; = a) - {mjaFija(@) + moaFo(z) } (B.2)
acA

where Fjj,(x) and Fy.(x) are the conditional CDFs of X coming from classes 1 and 2 given
that A; = a, respectively. Let feq(x) be the corresponding density function. For our analysis,

we consider a class of oracle rules of the form

Y, =Yi(X5,4;) = D I(Aj=a)- 4 Y - I(S>1t5) s, forje D, (B.3)

acA ce{1,2}

where the thresholds satisfy ¢; > 0.5 to avoid overlapping selections. We assume that an oracle

has knowledge of the conditional probabilities and conditional density functions defined above.

B.2 The conversion algorithm

In this section, we present a systematic approach for converting an arbitrary score S¢(z,a) into
a fair score R°(S¢), which we refer to as the theoretical R-value. Although the discussion is
theoretical in nature, it highlights the existence of a fair score corresponding to every confidence
score. This algorithm can be regarded as a method of calibration by group, a widely used

technique in the fairness literature (see Barocas et al. (2017) for an example). Our discussion



assumes that (a) the score function is known and (b) the distributional information of the scores
is available; this is referred to as the oracle setup, which does not involve utilizing labeled training
and calibration data D! %" and D,

The conversion algorithm consists of three steps. In Step 1, we define and derive important
quantities for S§ = S°(Xj, A;), where j € D'est. Suppose that the score function S¢(+) is known.
Then, under the random mixture model (B.2), the scores S¢ obey the following random mixture

model:

Go(s) = Y W(A;=a)-Gils) = Y (A =a) {mpuG5(s) + muG5a(s)}
acA acA

where G, (s) denotes the conditional CDF of S given A = a and YV = ¢, and 7y, = P(Y; =
c|A; = a) are the conditional probabilities for ¢ = 1, 2.

Under the oracle setup, the conditional probabilities and conditional CDF's defined above are
assumed to be known. In Step 2, we compute the conditional error probabilities for individuals

from group a when the threshold for S% is ¢ using decision rule (B.3):

ol {1 — Gapalty) } |
1-Gi(th) 7
(
)

erri(t) = P(Y =2/S! >}, A=a)=

1
Mja {1 = Gua(t3) }
1—G2(t2 ’

err?(t?) = P(Y =1|?> 2, A=a) =

Finally, in Step 3 we compute a pair of fair scores for every individual from group a with

1_ 1 Q2 _ 2.
observed scores (S} = s, 95 = s7):

TQ; = TQ;(s;) = Z]I(Aj =a)- tigsfq {erri(t) = P(Y; #clsS>t, A=a)}, (B.4)
acA -
for ¢ € {1,2} and j € D' If the confidence score satisfies the monotone likelihood ration

condition (MLRC, Sun & Cai 2007), then the infimum is achieved at s§ exactly. To avoid



overlapping selections, we define the theoretical R-values as

TR = max {I(S§ < 0.5), TQS}, ce {1,2}, j € D" (B.5)

B.3 Theoretical R-value and fairness

Consider random mixture model (B.2). Let {S§ = S°(X}, 4;) : ¢ € {1,2},j € D"*'} be the
confidence scores and {TR : ¢ € {1,2},j € D'} denote the corresponding theoretical R-values.
The goal is to assign labels “0”, “1” and “2” to new instances {(Xj;, 4;) : j € D***}. Consider

the following classification rule:

Yi= ) c (TR < a). (B.6)
ce{1,2}

Define the marginal FSR

E{ S jepen IV = ¢ Y; £ . A5 = a)}

mFSR{ = -
E{ S epr IV = ¢, 45 = 0) |

(B.7)

We assume that the instances (X, A;) are independent draws from an underlying random mix-

ture model (B.2). It can be shown that, following arguments in Storey (2003) for FDR analysis,
mFSR{? = P(Y; # ¢|Y; = ¢, A = a), (B.8)

which is the conditional probability required in the sufficiency principle [cf. Equation (1) in the
main text.

Based on the work of Cai et al. (2019), we can similarly show that under mild conditions,
FSR{Y = mFSR{? + 0(1), when m, == |{j € D'**': A; = a}| — <. (B.9)

The next proposition shows that thresholding the theoretical R-value leads to a fair selective

inference procedure.



Proposition 1. Consider the classification rule (B.6). Then we have

P(Y; #c|Y; =c¢,A=a) < a, for c € {1,2} and a € A. (B.10)

We would like to make two important remarks. Firstly, the theoretical R-value, which may
be viewed as the counterpart of the data-driven R-value, represents the minimum conditional
probability required to ensure that an individual with score S§ = s is selected into class c.
Secondly, the theoretical R-value is a fundamental quantity that is closely linked to the sufficiency
principle in the fairness literature. Proposition 1 highlights that by setting thresholds for the
theoretical R-values, the thresholding procedure fulfills the sufficiency principle and controls the

group-wise error rates.

B.4 Oracle theoretical R-value and the optimality theory

We present and prove an intuitive result that shows the class probability
Sor(w,a) = P(Y; = ¢|X; =z, A; = a)

is the optimal choice of confidence score for calibrating the theoretical R-value. To simplify the
arguments, we develop our optimality theory based on the mFSR, an asymptotically equivalent
variation of the FSR. The relationship between the mFSR and FSR has been established in
Equation (B.9).

We aim to construct a selection rule under the binary classification setting that solves the

following constrained optimization problem:

Minimize the EPI, subject to mFSR{ < a, for ¢ € {1,2} and a € A. (B.11)

Our strategy is to convert the oracle scores Sg’% to oracle theoretical R-values



{TRG), : c € {1,2},7 € D'} .

The process of conversion follows the general strategy outlined in Section B.2, and is described
in more detail in the proof of Theorem 2 below.

Consider the selective classification problem outlined in (B.11). Define the oracle procedure
Sor = {0 1 j € D'}, where

Shp= > c-L(TRG, < ac). (B.12)

ce{1,2}

The optimality of the oracle procedure is established in the next theorem.

Theorem 2. Consider random mizture model (B.2). Let D, o, denote the collection of selection
rules of the form (B.6) that satisfy mFSR, < «. for ¢ = 1,2 and all a € A. Let EPIs denote
the EPI of an arbitrary decision rule §. Then the oracle procedure (B.12) is optimal in the sense

that EPIs,,, < EPIs for any 6 € Dy, a,.-

The optimality theory indicates that, during the training stage, we should utilize all features,

including the sensitive attribute A, to best capture individual level information.

B.5 R-value and Storey’s Q-value

Excluding the sensitive attribute A in our analysis, the theoretical R-value is closely connected
to the g-value, a useful tool in large-scale testing due to its intuitive interpretation and ease of
use, as described in Storey (2003).

To test hypotheses {H; : j € D'} with associated p-values {p; : j € D"} let 7 be
the proportion of non-nulls and G(¢) the alternative distribution of p-values. The g-value for

hypothesis H; is defined as

. o (1—m)t
nf {pFDR“’ = U mi+ G0 } ’



which roughly measures the fraction of false discoveries when H; is rejected.

The g-value and R-value algorithms operate in the same manner. Conducting an FDR
analysis at a given level a entails obtaining the g-value for hypothesis j and rejecting it if the
g-value is less than or equal to a. Likewise, conducting an FSR analysis at level a involves

obtaining the R-value for individual j and selecting it if the R-value is less than or equal to «.

C R-value and Conformal P-value

In this section, we adopt a multiple testing perspective to analyze the R-value. Although moti-
vated differently, we show that the R-value is equivalent to the (BH) g-value of the conformal
p-values (Bates et al. 2023) in a one-class classification scenario. For comparability considera-

tions, we exclude the sensitive attribute A in the following discussions.

C.1 Selective inference for one-class classification: a multiple testing
perspective

The selective inference perspective described in Section 2.2 provides a flexible framework ac-
commodating various types of classification rules. For instance, if the interest lies solely in
pinpointing high-risk individuals, the action space is defined as A = {0, 2}, and one may employ

the following rule for screening;:

A

V; =2-1(S7 > t5), t3>05, forje D" (C.13)

This setup is closely related to semi-supervised multiple testing or outlier detection in conformal
inference (Mary & Roquain 2022, Bates et al. 2023, Liang et al. 2024).

Next, we explain the connection between the FSR and FDR from a multiple testing perspec-



tive. Consider testing m hypotheses:

Hjo: Y;=1 vs. Hj:Y;#1(ie,Y;=2), forje D" (C.14)

In the context of the selective inference framework of Section 2.2, this multiple testing problem
has the state space C = {1,2}. A multiple testing procedure represented by YJ € {0,2}, j € Dtest
corresponds to the selection rule in (C.13). Here, the action space A = {0,2} differs from the
state space C = {1,2}, with f/] = 2 indicating that Hj, is rejected, and }A/] = 0 signifying
insufficient evidence to reject H;y. Consequently, FSR{# | as defined in (4), is equivalent to the

widely used FDR, i.e., the expected proportion of false rejections among all rejections.

C.2 A brief review of conformal p-values

The problem of one-class classification, also known as outlier detection or out-of-distribution
testing in conformal inference, can be formulated within the framework of selective inference.
Consider the observed data {(X;,Y;) : ¢ € D} originating from two classes, ¥; = 1 and Y; = 2.
We divide the set D into two subsets, D¢ = {i : ¥; = ¢}, ¢ = 1,2, where D' and D? represent
the index sets of inliers and outliers, respectively.

In the context of one-class classification, the objective is to accurately identify outliers (in-
dividuals with label Y = 2) in a set of unlabeled test data {X; : j € D'*'}  while maintaining
strict control over the error rate. By considering individuals in class “1” as the null cases, we

can formulate an equivalent multiple testing problem (C.14).

Remark 9. In the context of outlier detection, the standard practice is to only consider the
labeled inliers D' when computing conformal p-values. It is worth noting that recent research
by Liang et al. (2024) has revealed that this approach may result in potential efficiency loss.
Nevertheless, for the sake of comparability, we adhere to the conventional practice and exclude

D? in our investigation.



The construction of split-conformal p-values (Bates et al. 2023) involves partitioning D! into
two subsets: D" for training a score function and D for calibrating a significance index.
Treating 5’2() as a conformity score function that indicates the likelihood of belonging to class

2, the conformal p-value for testing Hjy can be expressed using our notation as:

S iepea S?(X5) > S(X;)} +1

X)) =
( ]) ncal+1

(C.15)

g3
(S

Il

>

Remark 10. To avoid confusion, note that in our framework a higher score indicates a higher
likelihood of being an outlier. This is opposite to the convention in Bates et al. (2023), where a
lower score reflects stronger evidence. To align the definitions, we have replaced the expression
“S < t” in the conformal p-value definition of Bates et al. (2023) with “S > t” in our formulation

(C.15). This adjustment ensures that both formulations are equivalent.

C.3 R-value is the BH g-value of conformal p-values (for outlier de-
tection problems)

For the outlier detection problem (C.14), we consider using the thresholding rule (C.13) instead
of the selection rule (14) as we are only interested in selecting the high-risk class (Y = 2).
To see the connection of our R-value to the conformal p-value (C.15), recall the definition of

Storey’s g-value

¢ {a()} = (1 —ma(t)/G{at)},

where 7 is the proportion of non-null cases in D' and G(-) is the cumulative distribution
function (CDF) of the p-values. Now recall m = |D'**|, let G/(t) denote the empirical process of
the scores {gf . j € Diestl
A 1 a0 . 1 “o
Gt)=— 3 n{u(sj) gu(t)} == 3 n(sj 2t>, (C.16)
je'Dtest je'Dtest

where the last equality holds because, by (C.15), a larger score corresponds to a smaller conformal

10



p-value. Next we consider a modification of Storey’s g-value, referred to as the BH g-value, which

ignores the (1 — 7) term and substitutes G in place of GG in Storey’s g-value:

G2
UCH) for i € D U D't (C.17)

Q)
i

>
"
T
>

by
(Y
—~

Combining (C.15) — (C.17), we have

m Zie’Dcal I (S? >t)+1
cal 1 ’
" + ZjeDtest ]:[ < 32 Z t
m Ziepmlﬂ<§fzt7yi: > 1

1
cal '
n —l— 1 Zjeptest ]I ( ]2 Z t)

(C.18)

The last equality holds because under the one-class classification setup, D is a “pure” training
set in which all observations are from the null class “1”. Let ¢ take values in {S}, : k € De?uDst}
and denote the corresponding values {GPH : k € D« U Diest}.

We also need to apply a monotonicity adjustment to ensure that the g-value function is

non-decreasing in the conformity score. Let

gt = min  ¢7,  for j € D' (C.19)
keDealyptest: SE<S?

Since there is no overlapping selection, the adjustment in (13) is unnecessary. This precisely

recovers the R-value defined by (10) and (12) (excluding the sensitive attribute).

C.4 Discussion

We emphasize that the fundamental connection between the R-value and conformal g-values
only holds under the one-class classification setup. The BH g-value (C.18) will be different from
the R-value (16) under the binary classification setup that we have considered in this article.
Specifically, the cardinalities of the calibration sets will be different under the two setups, and

the equality (C.18) does not hold. Our R-value does not explicitly utilize conformal p-values

11



under the binary classification setup.

The conformal p-value approach by Bates et al. (2023) remains applicable for selective in-
ference in the binary classification setup, specifically for the selection of cases from class 2.
Nevertheless, it is noteworthy that the conformal p-value method utilizes a smaller data set, as
the data set D? is discarded, in comparison to our R-value approach. Consequently, this may
lead to suboptimal information utilization and a reduction in statistical power. In addition, it is
worth noting that the FASI algorithm may not be well-suited for the outlier detection problem,
as it presumes that the test data and calibration data are exchangeable, which is unlikely to hold
in practical scenarios. Therefore, both the conformal p-value and FASI approaches would require
modification to address the outlier detection problem with labeled outliers. Related issues have

gone beyond the scope of this study and will be pursued in future research.

D Proof of Theorem 1

We begin by presenting the proof of part (a) of Theorem 1 in Section D.1, followed by the more
involved proof of part (b) and its corresponding lemmas in Section D.2. Since the non-asymptotic
theory in Theorem 1(b) provides only an upper bound on the FSR, we also offer an asymptotic
analysis in Section D.3 to demonstrate that, under the standard regularity conditions commonly
used in multiple testing, the upper bound from Theorem 1(b) converges to 0, thereby establishing

the asymptotic validity of the stable version of FASI algorithm.

D.1 Proof of part (a)
D.1.1 An equivalent expression of the FASI algorithm

Consider a class of decision rules that select subjects into class ¢ if the confidence scores exceed
a threshold ¢. For the ath group, a € A, the estimated false discovery proportion (FSP), as a

function of ¢, can be described as the following empirical process:

12



_ { ZieDgal H(gf >1,Y; #¢)+ 1}/(71@ +1)
- { Zjepflest H(g]c > 1)V 1}/ma .

Let S¢ = {S¢:i € D UD) for a € A.

FSP. (1) (D.20)

Consider a selection procedure represented by the process given in (D.20). We aim to find

the smallest threshold, denoted as 7,, for which the estimated FSP is less than a:
To = [min {t €S F@Z(zﬁ) < Och Vv 0.5. (D.21)

The adjustment “(-)\V0.5”, which shares similar ideas to the adjustment in (13), indicates that we
never assign the jth individual to class ¢ when the confidence score 5'; < 0.5 [cf. the equivalent
rule based on 5’; given in Equation (D.22)]; this also effectively avoids overlapping selections; see
Remark 5 for related discussions. Note that while the thresholds for the R-values from different
groups are identical at a., the thresholds for the scores 5';, denoted {75 : a € A}, vary depending
on A; = a, the group membership of the j-th subject.

The R-value defined in (13) of the main text can be written as:

Q=3 UA;=a)- min  FSPL(t), R = max {I(

{teSg:t<S¢}

<0.5), Q;} _ for j € Dlest.

Now we show that the decision rule based on thresholding the R-value can be equivalently
represented using a decision rule based on thresholding the scores {S']C, j € D'}, This conclusion

is formally stated in the following lemma.

Lemma 1. Consider ¢ defined in (D.21). Then the following two rules are equivalent:

5 =IR <)) <= §=>» IA;=a)-1(5>7), jeD" (D.22)
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D.1.2 Upper bounding the FSP process by martingales

We now describe the true FSP process of the FASI algorithm using the confidence scores, where
the FSP process is outlined in (D.20) and the algorithm is given by the second representation in

(D.22). Suppose our selection procedure chooses threshold ¢ in the test set D!, Let

Vi) = D I(SE=tY 40, W)= > I(SE>tY;=c) and
jEszeSt jED(tLeSt

Ki(t) = Y LS5>t) = Vi(t)+ W)
je'D(tIest

denote the counts of false selections, correct selections and total selections, respectively. For the

calibration set D¢, define

VE) = Y ISE=tYifc), Wit = Y US>t Yi=c),

ieDgal ieDgal

Ki(t) = Y IS >1) = Vi) + Wi(t)

as the corresponding counts of selections. Consider the data-driven thresholds 7¢ defined in
(D.21). Then the group-wise FSPs of the proposed FASI algorithm, as defined by the second

representation in (D.22), can be computed as

t(,c
FSPC{LC} (TC) _ V:z (Ta)

a —W, fOI'CLEA and 66{1,2}

The operation of the FASI algorithm implies that

Vi(re) Ve(rs) +1
Ve(re)+1 Ki(re) v 1
Dy +1  Vi7S)
Dt Ve(re) + 1
Dy +1  Virg)
= YD Ve(rg) + U

FSP{(r7)

— TSP, (%)

a

(D.23)

where the last two steps utilize definitions (D.20) and (D.21), respectively.
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D.1.3 Martingale arguments

The ratio appearing in (D.23) motivates us to consider the following process
Vo) /{vi(t) + 1}, (D.24)

which we show is a martingale. We start with the following continuous-time filtration:

Fio= ofVi(s), Vi(s), Wals), Wels) : tg < s < t}

= 0-{‘/;(8)7 VCLC(S>7K5(S)7KS<S) : tfz <s< t}7

where t! represents the lower limit of the threshold. That is, if ¢, is employed, then all subjects
in group a are classified into class c.

In our proof, it is sufficient to consider a discrete-time filtration since FASI only selects
thresholds from S¢. Let m* = |D| + |Dst| denote the total number of selections in both D
and D! when the threshold is t,. We consider a o-field that contains all information of the
entire selection process. Specifically, let {s; : k = m},--- 1} denote a sequence of thresholds
(times), where sy, is the threshold when exactly k& subjects, including those from both D and
Dlestare selected into class ¢, and k takes values in the order of m*, m* —1,--- |1 (backward in

time). This leads to the following discrete-time filtration:
Fp = o {VE(s5), ViE(sy) WE(s) Wesy) £ = mim? = 1, k) (D.25)

We can see that Fy is a backward-running filtration as for k; < ko, Fi, C Fy . Note that at

time s, only one of the four following events is possible:
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A1 = {Vi(sim1) = Vilse) = L,V (sk—1) = Vid(sw), Walse—1) = Wa(sk), Wi (s—1) = Wg sk},

Ay = {Va(si—1) = VVi(sk), Ve (sk-1) = Vi (sk) — 1, Walsi—1) = Walsw), We(si—1) = Wilsi)},

Az = {Va(si—1) = Va(sn), Vo (sk—1) = Vi (sk), Walsr—1) = Wa(sk) — L Wg(sk—1) = Wglse)},

Ay = {Vi(skm1) = Vilsw), Vi (sk-1) = Vi (sw), Walse—1) = Wa(sk), Wi (s—1) = We(si) — 1}

According to Assumption 1, and the fact that FASI uses same fitted model to compute
the scores, we have P(A;|FP)/P(As|FE) = Vi(sk)/V.E(sk). Moreover, we must have P(A;|F?) +
P(Aq|F) + P(As| F) + P(A4|FP) = 1. It follows that there exists a 7, such that

Vi (sk)
Vi(sk) + Ve(se)'

Vi (sk)

P(Az|Fy) = Y -

and P(As|F) + P(A4|F?) = 1 — . It will soon become evident that the value of ~; does not
matter in the theory, as it will be canceled out in the calculations.

To see why (D.24) is a martingale wrt Fy, note that

{ Vi (sk-1) |fa,}  Vi(s) -1 Vii(sk)
Velsi )+ 17K 7 Ve(s) + 1 5 Vi(sy) + Viesw)
VE(sk) Vii(sk) ViEi(sk)
a CAvL - a a 1—
T Vese Ve + Vet T Vs 410 W
VE(sk) VE(sk)
- ___a\ " 1 — L S —
vac(3k>+1 (7k+ 716) Vac(5k>+1

D.1.4 FSR Control

The threshold 75 defined by (D.21) is a stopping time with respect to the filtration F} since
{78 < sx} € F{. In other words, the event whether the kth selection occurs completely depends
on the information prior to time s, (including sy).

Let Diest0 and D0 be the index sets for subjects in Dt and D that do not belong to

class ¢, respectively. In the final step of our proof, we shall apply the optional stopping theorem
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to the filtration {F{}. Recall that ¢ is lower limit of the threshold, and m} is the total number

of misclassifications in both D¢ and D! when the threshold is t!. The group-wise FSR is

FSRIY = E{FSP{?(r%)} (D.26)

"le‘—l—l Vt(Tc)
< .E |-E a a\'a Fm*
= o [ { D] Ve(re) £ 107

D +1  Vi(t)
Diest| Vie(t) + 1

|Dcal| + 1 |Dtest,0| }
= «a-E - . 2 D.27
{ Diest| D0 41 (D-27)

- x|

< Yeal,

To get Equation (D.27) we have used the fact that when ¢{ is used then all subjects are classified

to class c. This completes the proof.

Remark 11. We provide a remark to explain the E operator in (D.26). As indicated by (D.22),
the FASI algorithm is equivalent to a thresholding rule based on Sf The data-driven threshold
(or stopping time), 7¢, is a random variable that varies across different realizations or data sets.

Y a’

The FSP, denoted as FSP{(7¢), is a random variable that differs across data sets. The FSR,

a

defined as the expectation of the FSP, integrates the randomness across the training, calibration

and test data.

D.1.5 Proof of Lemma 1

First, it is easy to see that the two decision rules are equivalent (i.e. J; = d7 = 0) if S*; < 0.5.
We only consider the situation where SJC > 0.5.
Next, suppose that 5} = 1 holds for some j € D**, Without loss of generality, assume that

A; = a. It follows that H(S”; > 7¢) = 1, indicating that the stopping time 75 must satisfy
oef{teS; t< S’;} (D.28)

We conclude that
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R;=(Qj= min FSP,(t) <FSP,(7.) <.

{tesg:t<S¢}
where the first two equalities are due to the definition of R-value and the monotonicity adjust-
ment, whereas the first inequality follows from (D.28) and the second inequality follows from the
definition of 7¢. Hence I{ R < a} = 1, proving the first direction of the equivalence.
Conversely, suppose that ]I{R; < a} = 1. Without loss of generality, assume that A; = a.

By the definition of the R-value, we have

Ri=Qj= min FSP,(t) <o

{tesg:t<S¢}

That is, there exists a threshold ¢ < 5'; in S¢ such that F/S\PZ(t) < a. It follows that

c
7

7o = min {t : PTS\PZ(t) < a} < min {t ; F/STDZ(t) < oz} < S

teSg teSg,th*;

~

implying that &7 = >, ,1(4; = k) - (S5

vV

78) =1(A; = a)]I(SJC- > 7)) =1.

Combining the two arguments above, we have §; = 1 <= ¢; = 1. We can similarly show that

0; = 0 <= 0} = 0, establishing (D.22).

Remark 12. In sensitive applications, there may be reservations about procedures that employ
different thresholds based on membership in a protected group, even if the resulting fairness
guarantees are equivalent. Therefore, it is crucial to communicate our fairness guarantee in
a manner that avoids misinterpretation associated with the use of multiple thresholds. A key
advantage of the FASI procedure based on the R-value [the first thresholding rule in (D.22)] is its
simplicity in conveying fairness while remaining user-friendly in operation. By employing a single
universal threshold, we provide a tool that is more interpretable from a fairness perspective. For
practitioners, this approach is significantly easier to understand compared to managing multiple
thresholds (when multiple thresholds are involved, it can become challenging to explain to the

public how the resulting classification algorithm is fair).
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D.2 Proof of part (b)

The proof is more complicated but follows essentially the same strategy of the proof for part (a).

Details are provided for new arguments and omitted for repeated arguments.

D.2.1 Preliminaries and notations

Consider the R-value (13) that utilizes both D¢ U D! via (11). The estimated FSP in group

a for a given threshold ¢ is:

. e IS > Y £ )+ 1Y (g + 1
FSPa(t) — { ZZEDa ( . ?é ) }/( ) . (D29)
{ ZieDgﬁstuDgal ]I(Sz'c > t) + 1}/(7% +mg + 1)

Now employing the new estimated FSP (D.29), define
7o = [min {t € S : P@Z(t) <a}]Vvo.5,

Similar to the previous proof, Lemma D.1.5 indicates that the FASI algorithm is equivalent to

the following thresholding rule based on confidence scores:
{ > ucal(4; = a) - I( A}: >718):j €Dt cell.

Consider the modified FSP definition in Theorem 1: FSR{?* = E |:FSP({LC}’*<T§)], where

S jeppent (S8 > 78,Y; # €)
Zjepéﬁst H(Sf Z Tac) + 1 .

FSP{h(7¢) =

a

It follows from the definition (D.29) and the operation of FASI algorithm that

na +1 Miepgripge IS 2 70) +1 3 icppen I(SF 2 75, Y; # ¢)
Mo+ Mo+ 1 3 pe (S8 278V 20+ 1 Y iepen I(SE>78) +1

FSP({IC}’*(TC) <«

a

The product of the last two terms can be reorganized as
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14 ZieDgal H(‘§f > Ta) Zjel)gest ]I(Szc > Ta, Y # )
2 jeniest I(Sf > 7a) +1 D jengel I(S¢ > 70, Y; #¢) + 1
S iepgat 1038 > 70, Vi = €) + Licpeu (S5 > 70, Yi # 0)
1+ T gy - Mi(75)
Zje'D}lesz ]I(S,Lc Z 7—(],7 }/; = C) —'I_ ZjEfoS‘ ]I(S,LC Z Ta’ }/Z # C) + 1
< My(73) + max {My(7;), M3(75)} , (D.30)

where in the above equation, we have three martingales respectively defined as:

Y jepuen 1(SE > 78,V # €)

M) = ZjeDgal H(Szc > 7o, Y # )+ 1
My(re) = e T2 YA )
ZieDgﬂl I(5F =2 75, Yi#c) + 1
Y iepen WS =18 Yi £ €)Y epen I(SE > 78,Y; # )
Ms(7y) - -

Zz’eDgal H(S’zc > 75 Yi # )+ 1 Zz’eDgal H<gzc > 75, Yi#c)+ 1

In the derivation of (D.30), we have used the following inequality:

r+y T Yz
. < max ,
24+ (t+1) z+1 z+1" (t+1)(z+1)

for any positive integers x, y, z, and t. The proof for this inequality is elementary and hence

omitted.

D.2.2 The main proof

Noting that My (7¢) < 1 holds trivially true, and utilizing the fact max(x,y) = (x;y) - |x;y|, we
can easily derive the following upper bound:
a—l—l) Mg(TC)"—l |M3(Tc> — 1|
E [FSPiH (1)) <E ot D) fyg e o i . (D31
()] < B| ST g o SRS BR (D31)
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To characterize the FSP process, recall the counts in Section D.1.3:

Vi) = D IS5 =Y #e), Wity = > LSy >t,Y=c), Ki(t)= > (S5 >1),

je'DEest jEDZESt ]GDZESt
Vi) = D SE= YA, Wity = Y IS >tYi=c), Ki(t)= Y IS > 1),
ieDgal ieDeal i€ Deal

defined respectively for the test set and calibration set. Moreover, we employ the same discrete-

time filtration as in Section D.1.3:
'FI? =0 {W(Sj)a Vac(sj)7 W;(Sj),W;(Sj) LJ= mZamZ -1 k} :

Again, the threshold 7¢ of the FASI algorithm with modified mirror process (D.29) is a stopping
time conditional on F}.

In the next subsections (Sections D.2.3 and D.2.4), we demonstrate that both M;(t) and
Mj3(t) are super-martingales adapted to F. By applying the optional stopping theorem, we
obtain that

nlm?

a (D.32)

E{M(ra)} < o5 S G

and E{Mg

where myg = Zjepgest I(Y; # ¢), mg = Zjepgest I(Y; = ¢), ng = ZieDgal I(Y; # ¢), and n, =
Y iepear I(Y; = ¢). As we have focused on selection individuals from class ¢, for simplicity, we

have suppressed ¢ in the above notations. It follows from (D.31) and (D.32) that
E [FSPI(79)] < acye + SEIMs(75) — 1,

proving the desired result. O]

Remark 13. In Section D.3, we discuss sufficient conditions under which the data-driven thresh-
old satisfies the almost sure convergence 7¢ <=5 7* for some constant 7* € (0,1). In the asymp-

i i Wi = = My = = Ng, Wi it
totic regime, we assume that m? =< m! =< m, and n? < n! < n,, with all of these quantities
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diverging to infinity. Specifically, we establish the strong convergence of the data-driven threshold

7¢. It follows that

lim  E|Ms(r) — 1] =

Nag,Mq—>00

Hence the stable version of the FASI algorithm controls the FSR asymptotically:
E [FSPL{ZC}’*(T(S)} < a.+o(1).

D.2.3 Martingale arguments for M,(t)

Consider the events A; to A, defined in Section D.1.3. The conditional probabilities of these

events along the filtration F}' are given by

Vi (sx)
Vi(sk) + Vie(se)’
Wa(sk)
Wi(sk) +We(sy)’

Vi (sk)
Vi(sk) + Vie(se)'

PALF) = (1 =) -

PIANF) = - P(A|FE) = -

W (sk)
Wi(sk) +We(se)

P(As|lF¥) = (1—m)-

It is easy to verify that M, (t) = V‘C/((ft()tj—l is a backward-running martingale by noting that:

E { M (sr—1)|F5 }
Vilsk) =1 Vi (sk) Vi (sk) Vi (sk) Vi (sk)

— L~ 7 . . a . . 1_
Ve ¥ 1 Vile) + Vese) T Velsn) T Vi) + Velen) | Velse) 410 )
Vii(sk)

= —2 > =M .o
Ve(se) + 1 1(5k)

D.2.4 Martingale arguments for M;(t)

We consider the same events, same probabilities and same filtration as before. Write

_ W@ Va(t)
Ms(t) = Wity +1 Ve(t) +1

To see why Mj3(t) is a martingale, note that
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E {M3(sr—1)|F5 }

o Walsk)  Va(se) —1 - Vi (sk) Welse)  Vilsk) - Vi (sk)
Wilse) +1 Ve(si)+1 " Vise) + Velsi)  Wisi) +1 Velse) " Vi(se) + Ve(sy)
Welsk)  Valse) (1= ) Wa(sk)
Wi(se) Ve(sy) + 1 W (sk) + We(sy)
(Walse) =1 Valsw) (1= ) Wa (sk)
Wi(sp)+1 Ve(sy) + 1 MW (sE) + We(sy)
Some simple calculations yield
We(s Vi(s
E (M )|} = —valt) - Valsw) - ypeoy o

T Wi(sp) +1 Ve(sy) +1

D.3 Asymptotic analysis of upper bounds

To rigorously establish the asymptotic validity of the stable version of FASI, we conduct an
asymptotic analysis of the residual term from Theorem 1(b). This analysis precisely shows that

lim E|Res(r) — 1| =0,

(n,m)—00

thereby corroborating our numerical results and formally confirming our intuition that FASI
effectively controls the FSR. In contrast to the finite-sample theory presented in the main text,
this component of our theory utilizes classical limit theorems, which require standard regularity
conditions commonly employed in statistics. It is important to emphasize that these conditions
are necessitated by the available theoretical tools and do not imply that the FASI method is

inherently dependent on them.

D.3.1 Preliminaries and assumptions

Since our focus is on group-wise FSR control and given that the theoretical analysis can be

applied to each group to establish the properties of the FASI algorithm, we restrict our analysis
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to a particular group. The asymptotic regime assumes that m{ < m! =< m, and n? < n! < n,,

with all of these quantities diverging to infinity. In what follows, we omit the notation a for
group membership in order to reduce notational complexity.

Suppose our objective is to select cases with Y; = 2. To simplify the discussion, we assume
that the scores are defined as S; =1 — S'CZZ(XZ-, A;) € (0,1). Consequently, we select individuals
when their scores are small. This slightly modified notation system aligns more closely with the
framework of multiple testing while utilizing the same decision rule as before.

Denote the estimated FSP as

C {SipeI(Si < tYi# )+ 1}/ (n+ 1)
a { Zieptestupcal I[(SZ < t) + 1}/(77, +m + 1) '

FSP(t)

Then the data-driven threshold of the FASI algorithm is given by

7={te[0,1]: FSP(t) < a}. (D.33)

Our analysis focuses on the scenario where S; are continuous random variables, such as
softmax score outputs from machine learning algorithms. The data points (S;,Y;) are assumed
to be i.i.d., which is reasonable because: (i) the score functions are trained using an independent
dataset, and (ii) the De Finetti Theorem can be employed to identify a latent variable, enabling
analysis conditional on that latent variable. This assumption leads to the random mixture model
defined in (B.2), as considered in Section B.3. Omitting the group membership a notation, the

CDF of the scores (within a specific group) is given by:

Fit)=P(S; <t,Y =1)+P(S; <t,Y =2) =m Fi(t) + mFy(t), i€ DuD™" (D.34)

where m, = P(Y; = ¢) for ¢ € {1,2}. We assume that the conditional CDFs F(t) and Fy(t) are

strictly greater than 0 on the interval (0, 1).
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Define the marginal false selection rate as mFSR(t) = w1 Fi(t)/F(t). The oracle threshold 7*
is defined as:

™ =sup {t € (0,1) : mFSR(¢) < a}. (D.35)

The marginal FSR is analogous to the marginal false discovery rate (mFDR) in multiple testing
(Genovese & Wasserman 2002, Sun & Cai 2007).

We introduce the following assumption, which plays a key role in our asymptotic analysis to
ensure the existence and convergence of the data-driven threshold. This critical assumption was

also utilized in Jin & Candes (2023), albeit in a slightly different context.

Assumption 2. Let t € [0,1] be a threshold for the scores S;. Denote o as the nominal FSR
level, and mEFSR(t) as the marginal FSR of the thresholding rule {I(S; < t):i € [m]}. For any

e >0, we have

3 7" —e <1 <7 such that mFSR(7') < «. (D.36)

3 0< Kk <7* such that 0 < mFSR(k) < a. (D.37)

Remark 14. Assumption 2 can be derived from the Monotone Likelihood Ratio Condition
(MLRC, Sun & Cai 2007). Under this condition, it can be demonstrated that mFSR(t) is
monotonically increasing in ¢ (Cao et al. 2013). For i.i.d. scores S; following the random mixture
model (D.34), the MLRC naturally implies both (D.36) and (D.37) outlined in Assumption 2.
The MLRC is a common (and often implicit) condition in the FDR literature. For instance, it
simplifies to the assumption of concavity of the p-value CDF (cf. Genovese & Wasserman 2002,
Storey 2002). Therefore, while Assumption 2 might appear complex, it is actually less restrictive

than many standard assumptions commonly used in the FDR literature.
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D.3.2 Key lemmas

We first state three lemmas. The first two, which are similar to the large-sample theories in
Storey et al. (2004), are consequences of the well-known Glivenko-Cantelli Theorem, and are
therefore stated without proofs.

Again, we omit the group notation a; let n = |D!| and m = | D]

Lemma 2. Consider the random mizture model (D.34). The empirical CDFs obey the following
strong uniform convergence:
1 + ZiE’Dcal ]I(SZ < t)

sup — F(t
te(0,1) n+1 ®)

1+Zj6Dt55t I[(SJ < t) —F(t) ja._s;> 0
m+1 '

— 0; sup
te(0,1)

Lemma 3. Consider the random mizture model (D.34). The conditional empirical CDFs obey

the following strong uniform convergence: for ¢ € {1,2},

1+ EieDcal ]I(S,L < t, Y; = C)

—Wch(t)‘ 250,

sup
t€(0,1) n+1
14> e I(S; < t,Y; =¢ as
sup ZZEDt t ( J J ) . Wch(t)‘ .S. 0.
te(0,1) m+1

The final lemma, which is integral to establishing the strong convergence of the data-driven
threshold, follows from standard e-N arguments; we provide a proof in Section D.3.5 for com-

pleteness.

Lemma 4. Let {f,}n>1 :[0,1] — (0,00) be a sequence of functions and f : [0,1] — (0,00) be

another function. For a given constant o, define

T, =sup{t € [0,1] : fo(t) <a} and 7 =sup{t €[0,1]: f(t) < a}.

Assume the following conditions hold:

(1) For any € > 0, there exists some t € [T* — ¢, 7) such that f(t) < «;
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(i) There exists a § € (0,7%) satisfying f(0) < a such that sup,es1 | fa(t) — f(1)] 220.

a.s.
Then we have T, —> T*.

D.3.3 Uniform convergence of the threshold

Now we establish the strong convergence of 7 as mentioned in Remark 13 in Appendix D.2.2.

The next proposition establishes the strong convergence of the data-driven threshold.

Proposition 2. Let 7 [defined by (D.33)] and 7* [defined by (D.35)] denote the data-driven and

oracle thresholds, respectively. Under Model (D.34) and Assumption 2, we have T LBy

Proof. To prove the desired result, we apply Lemma 4 by substituting f(¢) and f,(¢) with
mFSR(t) and P@(t), respectively. Our primary task is to ensure that both Conditions (i)
and (ii) of the lemma are met. Condition (i) is satisfied as a result of Condition (D.36) from
Assumption 2, combined with the equation mFSR(7*) = . Furthermore, Assumption 2 ensures
the existence of a k > 0 that meets the criteria of (D.37). The subsequent uniform strong
convergence easily follows from (a) Condition (D.37) and (b) the results of Lemmas 2 and 3:

sup PTS\P(t) —mFSR(#)| = 0.

te(k,1)

Thus, Condition (ii) is fulfilled. Recognizing the equal roles of 7 and 7* in both Lemma 4 and

our proposition, by applying Lemma 4 we conclude that 7 =5 7*. O

D.3.4 Asymptotic FSR control

To demonstrate that lim, m)—eo E [Res(7) — 1| = 0, it suffices to prove the following lemma.

Lemma 5. Consider Model (D.34). Suppose 7 == 7% € (0,1). Then, for c € {1,2}, we have

n,Mm—00 n -+ 1

P { lim 1+ ZjeDtest I(S; <7.Y;=0¢)

n,m—00 m + 1

1 ; ca. ]I Sz S ,}/i -
IP’{ lim LT 2iepe I £ 7 9 :WCFC(T*)} = 1 (D.38)
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Proof. We only prove the first equality in (D.38), as the second can be established in a similar

manner. The proof involves two simple decompositions. The first decomposition is

1 + ZiE'DC”‘l ]I(Sl S 7—, }/; - C)

— (")
n+1
I+ Yoiepea LS <7, Yi=c) 143 pea (S < 7%, Y; =)
B n+1 n+1
1 ) ca ]I SZ S *7}/;/ -
+{ lim * 2 iepen I ! 2 —Wch(T*)]
n,m—00 n-+1
= I+1I.

Term II converges to 0 almost surely due to the uniform strong convergence of the CDFs. To

address Term I, we employ a second decomposition:

1 + Ziepcal ]I(S’L S T, 1/;, = C) 1 + Zie'Dcal H<S7, S T*y 1/;, = C)

n+1 n+1
ol Y epea (T <SS <Y =) 14 e (T < S ST Y =) (D.39)
N n+1 n+1 ' '

We can see that (D.39) converges to 0 almost surely if S; is continuous and 7 %3 7*. This

completes the proof of the lemma, thereby establishing asymptotic FSR control. O

D.3.5 Proof of Lemma 4

The lemma can be proven by combining the results from two directions.

Direction 1 (lower bound). We show that lim

oo Tn = T° almost surely. Let € > 0 be an

arbitrarily small constant. Condition (i) implies that there exists t. € [7* — €, 7") such that
f(te) < a. Since t. > § for sufficiently small ¢, the uniform convergence in Condition (ii) applies
on [4,1). Hence we can find N; such that for all n > Ny, |f.(t.) — f(tc)| < a— f(tc). This implies
falte) < f(te) +a— f(t) = . Since f,(t.) < «, we have 7,, > t. > 7 — e for all n > N;. As

€ > 0 is arbitrary, we conclude that lim T, > 7" almost surely.

T — 00
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Direction 2 (upper bound). We now show the more complicated direction:

limy, 00 7 < 7* almost surely.

We argue by contradiction. If the upper bound does not hold, then we can find a subsequence
{n'} and € > 0 such that 7,, > 7* + € holds with positive probability. Consider an arbitrary
to € [7*,1). By the definition of 7%, we must have f(¢y) > a. Note that if we choose ¢ > 0
sufficiently small, then t, > §, so we can apply the uniform convergence in Condition (ii).

Specifically, we can find Ny such that for all n’ > Ny, | fu(to) — f(to)| < W Hence,

Fur(to) > f(to) — f(tO)T_O‘ > a.

This indicates that for this subsequence {n'}, we must have 7, < t; (and the inequality is
strict); otherwise, it would contradict the definition of 7,,,. Finally, since this argument holds for

an arbitrary ¢, € [7*, 1), we conclude that lim,_, 7, < 7* almost surely. a

E Proof of Theorem 2

The theorem implies that the optimal confidence score for constructing R-values should be
Sop(xr,a) = P(Y = ¢/X = z,A = a). A similar optimality theory has been developed in
the context of multiple testing with groups (Cai & Sun 2009). However, the proof for the binary
classification setup with the indecision option is much more complicated; we provide the proof
here for completeness. We first establish an essential monotonicity property in Section E.1, then

prove the optimality theory in Section E.2.
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E.1 A monotonicity property

The oracle rule employs {S(C)’iz cc€{1,2},j € D"} as the confidence scores. The corresponding
oracle theoretical R-values {TR$, : ¢ € {1,2},j € D'} can be obtained via the conversion

algorithm in Appendix B.5 [cf. Equation B.5]. Let
t={tc:t.€[0.5,1],ce{l,2},a e A}

be a collection of eligible thresholds.

Consider a class of thresholding rules of the form:

dh L (t) = Z c~{Z]I(Aj:a)]I(Sgé>tZ)}, j € Dt

ce{1,2} acA

Denote the mFSR level in group a for selecting class ¢ as Qbp,(t;). The next proposition

characterizes the relationship between Qg ,(t;) and t;.
Proposition 3. Q% ,(t;) is monotonically decreasing in t;,.

Proof of Proposition 3. Define QCOR’a(tg) = 1 — Qbr.(t;). We only need to show that
QbR (t;) is monotonically increasing in t;. Let M, = {j € D'**" : A; = a}. According to the

definition of the mF'SR and the definition of Sgp ;, we have

E{ > {SBR,J- - Qi(ti)} I(Sor; > tZ)} =0, (E.40)

JEMa

where the expectation is taken over D!, Tt is important to note that the oracle procedure,
which assumes that all distributional information is known, does not utilize D" and D. It
is easy to see from Equation (E.40) that Q¢(t) > t¢ otherwise the summation on the LHS must
be positive, leading to a contradiction.

Next we show that t; < t, implies Q% ralt1) < Q5 r.a(t2). We argue by contradiction. Assume
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instead that QgRﬂ(tl) > Qnga(tQ), then we have

> {56k — Qora(t1) (SR > 1)

JEMa
= > {6k — Qopalta) + Qoralts) — Qopa(t) HI(SG, > t1)
JEMa
= D {6k — Qora(t2)YI(S5, > ta2) + Y {SGk — Qopalta) Mt < SG57 < 1)
JEMq JEM,
+ 3 {@onalts) = Qomalt) }USER > 1) = 1+ 1L+ 111,
JEMa

Taking expectations on both sides, it is easy to see that the LHS is zero. However, the RHS is
strictly greater than zero. For term I, we have E(I) = 0 according to the definition of mFSR. For
term II, we have E(/1) < 0 as we always have QCOR,a(t) > t. For term III, we have E(/1]) <0
since we assume QCORﬂ(tl) > Qgpwa(tg). It follows that the assumption QCORﬂ(tl) > QCOR?a(tQ)

cannot be true, and the proposition is proved. O

Remark 15. The proposition is essential for expressing the oracle procedure as a thresholding

1

rule based on Sgg%. Specifically, denote Q5 ,(+) the inverse of Q¢ ,(+). The monotonicity of

Qop.q(t) and the definition of the theoretical R-value together imply that for all ngé > 0.5, we
have for j € Dt S&l =S, I(A; = a) - QSE}G(TRE’J&). For notational convenience, let T; =
P(Y; = 2|X; = x,A; = a). Then S55 = 1—-T; and S5J, = Tj. Let t5% = max {0.5, (Q5%) " (ae)}.

The oracle rule can be written as, for j € D",

6JOR(X]7 AJ) - ZCG{O,I} c- ]I(TRBJR S Oéc)
Y eetnay ¢ { X ueall4; = QL(SE} > 157) )

2acal(A; = a) {I(T; <1 —tgR) + 21(T; > t5R)} -
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E.2 Proof of the theorem

Define the expected number of true selections ETS = ) I(Y; = ¢, Y; = ¢). Then it can be

je'Dtest
shown that minimizing the EPI subject to the FSR constraint is equivalent to maximizing the

ETS subject to the same constraint.

According to Proposition 3, the oracle rule can be written as
Sor = Oor(Xj, Aj) = YaeallA; = a) {L(T; <1 —t55) + 21(T; > t3p)} -

The group-wise mFSR constraints for the oracle rule imply that, for all a € A:

E { > (T — on)I(Ghy, = 1)} =0, E { > (=T — a)l(dhy, = 2)} = 0. (E.41)

JEMaq JEMq

Let 8 € {0,1,2}™ be a general selection rule in D,, 4,. Then the mFSR constraints for § implies

that, for all a € A,

E{ > Ty — an)I(5; = 1)} <0, E{ > (1=Tj - an)l(s; = 2)} <0. (E.42)

JEMq JEMq

The ETS of § = {4, : j € D'**'} is given by

ETS; =E

> D {6 =11 -T) + 1 =2)T3}

aEA jEM,

=Y (ETS;* + ETS;").
acA

The goal is to show that ETS(§9%) > ETS(d). We only need to show ETS;5, > ETSy* for
all ¢ and a. We will show ETS;;?R > ETS;’G for a given a. The remaining inequalities follow
similar arguments. According to (E.41) and (E.42), we have

E [Z (T — ) {18 = 1)~ 1(5, = 1>}] >0, (E43)

eEM,

Let Mo = (1 —t3% — a1)/t4p. It can be shown that Ay, > 0. For i € M,, we claim that the

oracle rule can be equivalently written as

A T: — ay
62)}% = ]I{ 1]—T < )\La} .

J
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Using the previous expression and techniques similar to the Neyman-Pearson lemma, we claim

that the following result holds for all j € M,:
{I6hr =1) = 1(&; = D}{T; — a1 = Au(1 = T))} <0.

It follows that

B [Z (U0 =1) = 1(0; = D}T) — a1 = Aa(1 = T))}| 0. (E.44)

EM,

According to (E.43) and (E.44), we have

MoB DY (1 =T) {6, = 1) —=L(6; = 1)} = Ao (ETS;55 — ETS;®) > 0.
JEMq

Note that Ay, > 0, the desired result follows. The theorem is proved by combining the results

from all groups a € A.

F Related Fairness Algorithms

We discuss two closely related works developed based on the sufficiency principle, in order to
emphasize the advantages of FASI.

Zeng et al. (2022) presents a group-wise thresholding rule that maximizes the classifier’s power
subject to the constraints imposed by the sufficiency principle. However, this method does not
allow for indecisions, thereby rendering it impossible to control the error rate at user-specified
levels. In contrast, Lee et al. (2021) proposes a selective classification procedure that satisfies
the sufficiency principle and allows for indecisions. This enables fair decision-making with error
rate control. However, the approach by Lee et al. (2021) relies on complex fitting algorithms
and imposes stringent assumptions for theoretical development, which lacks reliable theoreti-
cal guarantees regarding output reliability in practical scenarios. Moreover, both methods fail

to address the issue of inflated decision errors that arise when classifying multiple individuals
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simultaneously.

We emphasize that the choice of fairness definition should be contextual and informed by the
specific automated decision-making scenario. FASI offers several advantages that make it a more
practical choice for practitioners. Firstly, in high-stakes scenarios, the proposed selective infer-
ence framework with an indecision option effectively handles situations where the consequences
of incorrect decisions are significant. This approach provides practitioners with guidance on
which observations require further attention, rather than automatically making decisions when
the accuracy may not be sufficient. Secondly, when multiple individuals need to be classified
simultaneously, it is crucial to employ a suitable error criterion that can aggregate cumulative
errors and control for multiplicity. FASI addresses this concern by providing the FSR, which
generalizes the powerful and practical FDR criterion in large-scale testing problems. Lastly, in
scenarios where complex or blackbox machine learning models are utilized, having a model-free
algorithm like FASI becomes essential. This allows for the deployment of user-specified black-
box models while simultaneously ensuring provable validity in controlling the associated risks
without imposing strong model assumptions.

Table 1: Comparison of algorithms developed to fulfill the sufficiency principle.

H User Specified Error Rate ‘ Finite Sample Theory ‘ No Assumptions on Model Accuracy

Zeng et al. (2022):

FairBayes-DPP No No No
Lee et al. (2021):
Fair Selective Classification No No No
Via Sufficiency
FASI Yes Yes Yes

G The setup of multinomial classification

Let C' C C represent the set of classes to be selected. With indecisions being allowed, the
action space is A = {0,C’}. We denote the selection rule for m individuals in the test set as
{Y;:j e D'} € A™.

The FSR can be defined in two ways with respect to the subset C’. The first definition
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evaluates the fraction of incorrect selections for each individual class separately:

~

Zjeptest ]I(E/] =C, Y; % C, Aj = a)
ST

FSR% =E , forallae Aand ce ('

By contrast, the second definition calculates an overall error rate by combining selections from

all classes in C’:

Ejeptest ]I(}/; E C,, Y] # )/3-’ A] — a)

FSRS = E -
{ ZjeDtest I(Y; e C A; = a)} v

], for all a € A.

The second definition of FSR introduces several complicated issues. Firstly, it requires the
employment of a new score function to achieve optimality under the oracle setting. Secondly,
substantial adjustments must be made to the mirror process described in Section 3.2. Thirdly,
the development of martingale theories becomes notably more intricate. Finally, when dealing
with scenarios involving more than two classes, an additional layer of complexity arises. These

various issues offer intriguing and crucial avenues for future exploration and research.

H Additional Numerical Results

H.1 The stable version of the R-value

In this section, we present simulation results to demonstrate that when |D***| is small, the stable
version of the R-value [defined via (11), (12), and (13)] exhibits lower variability than the R-
value defined via (10), (12), and (13). The only difference is that the stable version employs
both test and calibration data to stabilize the denominator of the FSP estimate. For clarity
and easy presentation, we refer to the version using more data as the R-value and the version
using fewer data points as the RX-value in this subsection. However, in the main text, we do not
give different names to these two R-values because their basic construction steps and underlying

ideas are identical.
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To illustrate important patterns in variability, we examine the distribution of the R-value
corresponding to a fixed confidence score of s(z,a) = 0.9.

We consider the setting described in Section 4 with Fy yy = Fy p = N (1,2 - I3) and Fypy =
Fy p = N(ps,2-I3). We set moyp = o = 0.8, 1 = (1,1,1) 7 and po = (2,2,2)". The confidence
scores are constructed as the oracle class probabilities P(Y = ¢| X, A).

In Figure 11, we compute 1,000 RX-values and R-values for a fixed score of s = 0.9 based on
randomly generated D and D**!. The size of the calibration set is fixed at |D!| = 1,000 and
the test set has sizes |D**| € {5,50,200}. The columns of Figure 11 show the histograms the

RX-values (left) and R-values (right) with D' increasing from 5 (first row) to 200 (last row).

|Dtest| — 5 |Dtest| — 5
2t 24
ééo- ééo-
Sl olfiilil e e e e | S L
R ) )
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
-value with s(z,a) = 0. -value with s(z,a) = 0.
RX-val th , 0.9 R-val th , 0.9
‘Dtest‘ — 50 ‘Dtest‘ — 50
f
%éo- %éo-
. SR - |
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
RX-value with s(x,a) = 0.9 R-value with s(z,a) = 0.9
| Diest| = 200 | Diest| = 200
g1 il g1 il
%fzo- %20-
'-O 1:;: T T '-O 1:;: T ) T
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
-value with s(z,a) = 0. -value with s(z,a) = 0.
RX-val th , 0.9 R-val th , 0.9

. RX-value . R-value

Figure 8: The comparison between the RX-value and R-value for varying sizes of the test data set. The
left column shows the histograms of the RX-value (orange) and the right column shows the histograms
of the R-value (green). The RX-values and R-values are computed for a fixed confidence score of
s(z,a) = 0.9 based on 1,000 randomly generated data sets.

When |D*| =5 | we notice that the RX-value has much more variability than the R-value.
This is because the denominator of the RX-value only utilizes 5 observations when computing the

total number of selections. By contrast, the R-value uses 1,005 observations since it has access

to data from both D and D'***. Moving further down the rows of Figure 11, the advantage of
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the R-value slowly disappears as |D"*| increases. This causes the variability of both RX-value
and R-value to become almost identical.

We conclude from this small simulation that the R-value [defined via (11)] is more desirable
in settings where |D'*!| is small since it can use more data to decrease its variability. However,
while the RX-value [defined via (10)] has more variability for small |D**|, this disadvantage can
be quickly overcome through the introduction of a reasonably sized test set.

On the other hand, the RX-value defined via (10) offers finite-sample guarantees for FSR
control, whereas the R-value defined via (11) controls the FSR only asymptotically. In practice,

however, the differences in FSR. levels between the two versions of FASI are negligible.

H.2 Imbalanced group sizes

In this section, we revisit Simulations 1 and 2 presented in Section 4 to examine the impact of
imbalanced group sizes on FASI’s performance. In addition to evaluating group-wise FSRs, we
also consider the overall FSR levels, as defined in Equation (4). It is important to note that our
methodology is primarily designed to control group-wise FSRs; while controlling these does not
automatically ensure overall FSR control, our simulations did not reveal violations of the overall
FSR levels.

Our simulation setups are similar to those in Section 4, except that we now vary 7y, the
proportion of the Male protected group, from 0.05 to 0.95, rather than fixing m); = 7 = 0.5.
We consider two settings: (i) moyp = mor = 0.5, and (ii) 7o = 0.5 with myp; = 0.2. The results
from these settings are illustrated in Figures 9 and 10, respectively. The following observations

can be made:

e The FASI method controls both the group-wise and overall FSR at the nominal level across
all values of m,;. However, when ), is very small, the Male group-wise FSR control tends

to be conservative due to the small sample size.
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Figure 9: A similar setup to Simulation 1 (described in Section 4) but with myp = 795 = 0.5, and

mys ranging from 0.05 to 0.95.
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Figure 10: A similar setup to Figure 9 above in this response file and Simulation 1 (described in
Section 4). However, now with T = 0.5, mgpr = 0.2, and )y ranging from 0.05 to 0.95. Overall FSR

is controlled for all values of m;.
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e When the conditional proportions are similar (e.g., mgp = maas = 0.5), indicating minimal
disparity between male and female distributions, the FCC method performs well in terms
of FSR control. In contrast, when heterogeneity is more pronounced [i.e., Setting (ii)
with mop > my u), the FCC method only controls the overall FSR but fails to control the

group-wise FSRs.

H.3 Numerical investigations of the factor v,

In Theorem 1, we show that the FASI algorithm can control the FSR at level v, 4. This section
investigates the deviations of 7., from 1. For simplicity, we only focus on 7 ,. The setup of the
simulations is identical to that in Section 4.

Figure 8 shows the estimates of v, , for both the Female (green solid line) and Male (orange
dashed line) groups. We vary myp from 0.15 to 0.85 while fixing mps = 0.5. The y-axis plots
the estimate of 7 , averaged over 1,000 independent simulation runs. In both settings, v, is
nearly 1 across both the Female and Male groups. In the most extreme setting (mp = 0.85),

M, deviates away from 1 by 0.01.

Simulation 1 Simulation 2
1.10 4 1.10 4
1.05 1 1.05 1
§1.00- e m——tl §1.00- AN
0.95- 0.95-
0.90- 0.90-
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
To|F To|F
= Female === Male

Figure 11: Estimates of 71, from the simulations in Section 4. The solid (green) line represents the
estimate of 1 r for the Female protected group and similarly the orange (long-dashed) line for the Male
protected group.
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H.4 FASI deployed with other machine learning models

One of the attractive guarantees of our proposed selective inference framework is that we can
have the guarantees of Theorem 1, regardless of the machine learning algorithm that is used to
generate the confidence scores. In this section, Figure 12 replicates the results of Simulation 1
in Section 4, for a variety of machine learning models where the data has two protected groups,
Female and Male. In this section we use, logistic regression, GAM, Nonparametric Naive Bayes,
and XGBoost (James et al. 2023, Hastie et al. 2009, Silverman 1986, Chen & Guestrin 2016) to
estimate the confidence scores that will be converted to the R-values for our FASI framework.

The left column of Figure 12 plots the FSR for classification group 2 against a varying
proportion of signal myr from the Female protected group i.e. the true proportion of Females
that belong to class 2. The right column shows the corresponding EPI for each ML model. The
goal is to control FSR at the 10% level.

As we go down the rows, we notice that every model is able to effectively control the False
Selection Rate (similar to Simulation 1), however each model has a different EPI. Here, it seems
that Logistic Regression, GAM and Nonparametric Naive Bayes have a similar EPI that gets
close to 20% in the most extreme case. However, XGBoost has a slightly higher EPI that gets
closer to 30% in the worst case. This is a consequence of the accuracy that each ML model has
when estimating the true conditional probability P(Y = 2| X, A) for use in our FASI algorithm.
However while some models are more or less accurate than others, they are all able to control

the FSR at the desired level.
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Figure 12: FSR control for the high risk classification. Left column: The resulting FSR from multiple
different ML models that are used to estimate the confidence scores used to calculate the R-value.
Right column: The corresponding EPI from different confidence scores. The overall FSR (green / solid)
as well as both the Female (blue / dashed) and Male (orange / dot-dashed) protected group FSR’s
are controlled at the desired 10% level, for all ML algorithms. The x-axis varies the amount of true
proportion of high risk observations from the Female protected group, while fixing the true proportion
from the male group at 50%. Al



